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Abstract—Maintaining certain physical activity levels is impor-
tant to prevent or delay the onset of many medical conditions
such as diabetes, or mental health disorders. Traditional calorie
estimation methods require wearing devices, such as pedometers,
smart watches or smart bracelets, which continuously monitor
user activity and estimate the energy expenditure. However, wear-
able devices may not be suitable for some patients due to the need
for periodic maintenance, frequent recharging and having to wear
it all the time. In this paper we investigate a feasibility of a device-
free human energy expenditure estimation based on RF-sensing,
which recognises coarse-grained user activity, such as walking,
standing, sitting or resting by monitoring the impact of a person’s
activity on ambient wireless links. The calorie estimation is then
based on Metabolic Equivalent concept that expresses the energy
cost of an activity as a multiple of a person’s basal metabolic
rate using Harrison-Benedict model. The experimental evaluation
using low cost IEEE 802.15.4 transceivers demonstrated that
the approach estimated energy expenditure within an indoor
environment within 7.4% to 41.2% range when compared to
a FitBit Blaze bracelet.

Index Terms—activity recognition, IoT, energy expenditure
estimation

I. INTRODUCTION

Sedentary lifestyle is known as a ’silent killer’ [19] due
to its detrimental effect on health and potential risks of
developing chronic diseases such as type 2 diabetes, stroke
and heart disease [21] [20]. While wearable technology such
as activity trackers or smartwatches became popular to monitor
physical activity levels and encourage physical lifestyles [10],
they require periodic maintenance [36], such as recharging or
replacing batteries which some users including elderly people
cannot be relied upon to perform regularly or reliably. In
addition, some people prefer not to wear electronic devices
for personal reasons or other health conditions [8] [35].

Recently, RF-sensing technique has been proposed to detect
human motion by analysing its impact on the parameters
of surrounding wireless links. RF-sensing exploits the phe-
nomenon that the human body, which consists of approxi-
mately 60% water, reflects, scatters and attenuates radio waves
[37] and causes signal strength disturbances in a ambient
wireless links which can be measured by conventional wireless
transceivers. Since the pattern of these disturbances depends
on the human position in relation to a mesh of wireless links,
the person’s location, motion or activity can be detected using
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machine learning and statistical analysis techniques. The ad-
vantage of RF-sensing is that it can operate without attaching
any wearable device or instrumenting the indoor space with
specialised equipment. Unlike image or video based activity
tracking methods, the technique is non-intrusive has minimal
privacy implications, and does not require cooperation from
the user. RF-sensing is an active research area with numerous
recent applications including tracking and monitoring the
chronic health conditions of the patients [6], breath detection
[22], fall detection [9] [34] [15], gesture [24] and even speech
recognition [32] through fine tracking of lip movement.

Most prior work on physical activity tracking was focused
on wearable devices such as smartphones [38], smartwatches
[23], pedometers [3] or activity trackers [7]. Traditional activ-
ity trackers use accelerometer to recognise user activity and
estimate calorie consumption based on personal details such
as weight, height and age [14]. Research has been done into
evaluating the accuracy of activity trackers [29], algorithm
development, integration of sensors such as heart rate [28],
novel hardware concepts, such as smart shoes [13]. More
recent research investigates wearable devices to detect the
initial symptoms and early signs of chronic conditions such
as heart disease [30].

In this paper, we investigate an RF-sensing based approach
for activity monitoring and energy expenditure estimation
and evaluate its performance using real measurements. The
proposed approach monitors received signal strength (RSSI)
fluctuations resulting from user movements within an indoor
environment and applies machine learning algorithms to clas-
sify user activity. The energy expenditure for each activity
is then estimated based on its Metabolic Equivalent (MET)
values and activity duration. The approach has been evaluated
experimentally through a series of wireless measurements of
various coarse-grained activities within a room using off-the-
shelf IEEE 802.15.4 compatible transceivers. To the best of our
knowledge this is the first study that proposes and investigates
device-free RSSI-based method for human energy expenditure
estimation.

The rest of the paper is structured as follows. Section III
explains MET energy expenditure theory and the wireless
sensing model used for measurements. Section IV focuses
on the activity recognition using random forest and k-NN



classifiers and the metrics used for evaluation. Section V
presents experimental results and discussion. Section II de-
scribes related work on activity tracking and physical activity
monitoring followed by a conclusion and future work in
Section VI.

II. RELATED WORK

Activity recognition system is a vital component of future
assisted living applications, which enables e-healthcare sys-
tems to recognise, monitor and track the health of the patients,
detect falls, detect presence, and assist the elderly or disabled
people with everyday tasks [26]. Thus, there is a significant
amount of research on user activity recognition based on
accelerometers, gyroscopes, video and other methods. While
being popular and effective at estimating calorie consumption,
wearable devices may not suitable for certain categories of
patients due to the need for periodic maintenance [18] or other
reasons.

In the early days, physical activity was assessed through
self-reporting, which is a time-consuming and labour intensive
process. Nowadays, device-based physical activity assessments
became widely available and track activity based on either
accelerometer, GPS, heart rate or multisensor technologies. A
detailed review of various techniques in the context of health
studies is described in [16]. In addition to specialised devices,
there is also a significant market for general-use devices
such smartwatches, smartphones or bracelets that estimate the
energy expenditure based on a combination of accelerometer
measurements and personal information about the user [4].
Smartphone based systems utilise built-in sensors to classify
activities, such as walking, sitting or running. More recently,
smartwatches became a promising platform for tracking not
only calorie consumption or the number of steps but also the
initial symptoms or early signs [30]. Apart from smartwatches,
bracelets and smartphones, the researchers have experimented
with novel concepts such as smart shoes [13], which can also
be used for counting steps, activity and calorie estimation
through gait analysis. However, it requires a user to wear a
specialised equipment for sensing and data collection.

There is significant body of research investigating the
accuracy of various physical activity tracking methods. For
example, [17] proposed forecast models that utilised measure-
ments from three on-body accelerometers placed on wrists,
the hip and thigh. The model output was compared with the
calorie expenditure as measured by metabolic analyser. [28]
conducted a large scale study to evaluate the accuracy of
several commercially available activity trackers in terms of
heart rate and energy expenditure.

RF-sensing has emerged recently as a non-intrusive way
to locate, track and recognise the activities of users without
wearing any devices. The RF-sensing approaches use one of
the following wireless signal features for activity recognition:
received signal strength, channel state information or Doppler
shift [33] [11]. The advantage of received-signal strength
based methods is that it is supported by many off-the-shelf
transceivers, and can be implemented using low-cost hardware.

To the best of our knowledge, no prior work has investigated
device-free human energy expenditure estimation.

III. SYSTEM MODEL
A. Human Energy Expenditure model

Our energy expenditure approach uses Metabolic Equivalent
Task (MET) concept, which represents a practical way of
computing an energy cost of a human activity as a multiple
of a Basal Metabolic Rate [2]. The concept is based on the
fact that our cells utilise oxygen to facilitate the energy for
fuel extraction, and the amount of oxygen a person inhales
throughout activity is proportional to the amount of calories
the body burns. One MET is defined as the amount of person’s
oxygen intake while at rest and is equivalent to 3.5 ml O2 per
kilogram of body weight per minute, which is equivalent to
1.2kCalories per minute for a 70kg person. Therefore two
METs represent twice the energy consumption compared to
basal metabolic rate, and five METSs represent the energy con-
sumption five times the basal rate, and so on. The MET values
for various household chores, sports and recreational activities
are available through numerous studies in epidemiology [12]
with some example values shown in Table I. The MET values
in the table are from the most recent version Compendium
of Physical Activities compiled to improve the comparability
across the studies [2].

TABLE I
MET VALUES FOR VARIOUS ACTIVITIES
Activity Type

Metabolic Equivalent (MET) Activity description

Resting 1.0 Inactively quiet
Sitting 1.3 At desk

Standing 1.8 Talking on phone/reading
Walking 2.0 Walking around the room

The basic expression for estimating total energy expenditure
(TEE) in calories is [5]:

TEE =BMRX MET xTIME (1)

Where TIME is an activity duration as a fraction of a
day. Basal Metabolic Rate (BMR) is defined as energy re-
quired to maintain basic body functions for sustaining life
such as breathing, nutrient processing, blood circulation and
cell production. BMR depends on individual body metabolic
levels and its accurate value is measured through direct or
indirect calorimetry through measuring the amount of oxygen
consumption or the amount of carbon monoxide produced
by the body. However, a broad estimate of BMR can be
computed based on sex, age, weight and age using Harris-
Benedict equation [27]:

Men : BMR = 88.362 + 13.397 x W+

2
+4.799 x H —5.677 x A

Women : BMR = 447.593 + 9.247 x W+

3
+3.098 x H —4.330 x A ®)
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Fig. 1. The room layout and the location of wireless sensors and monitoring
point in the room. The activity such as sitting and standing were performed in
three different locations based on a typical user behaviour within that room,
e.g. sitting either on an armchair, at the desk or on a sofa.

Where A, H and W represent age in years, height in
centimetres and weight in kilograms respectively. As an
example, a 31 year old male, with a weight and height
of 70kg and 165cm respectively would have a BMR of
1642 kilocalories/day. An activity, such as household walking
for 4 hours (MET = 2.0) would consume approximately
1642 x 2.0 x (4/24) = 547 kCal.

B. Wireless model

Our experiment environment consists of a room about
5mx4.5m size with 5 wireless sensor nodes. The nodes are
equipped with a IEEE 802.15.4 CC2420 transceiver [1] oper-
ating in the 2.4 GHz frequency band. The 802.15.4 standard
defines 16 channels, 5MHz apart and 2 MHz of bandwidth,
and uses Direct Sequence Spread Spectrum (DSSS) to map 4-
bits data symbols to a 32-chip pseudo-random direct sequence,
which is then modulated using offset quadrature phase shift
keying (OQPSK). The nodes were programmed to transmit
beacons once every second with a beacon interval randomised
to reduce collisions. Each beacon contains information about
sender ID, sequence number and all sender’s neighbours
together with their RSSI values, to monitor not only direct
wireless links from nodes, but also the wireless links between
the individual sensor nodes. The beacons are received and
logged by a laptop equipped with a MTM-CMS500-MSP base
station located in the centre of the room. The transmitter
output power was set to -10dBm to reduce effective range
and minimise the impact of activities outside of the room
on measurements. The data has been logged in the following
format:

<timestamp> <sender ID><receiver ID><SEQ><RSSI>

Where SEQ is a beacon sequence number and RSSI is
a signal strength respectively. The returned received signal
strength values for CC2420 transceiver generally range from
-100dBm to 0dBm with £3dB linearity. The RSSI value is
measured by the transceiver over approximately 128 us, which
corresponds to 8 symbol periods.
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Fig. 2.  An overview of activity recognition approach. The RSSI signal
strength values are captures by the laptop and fed into a random forest
classifier for activity recognition. The energy estimation is then based on
looking up MET values for the predicted activity and multiplying that by an
activity duration.

IV. ACTIVITY RECOGNITION

An overall overview of a DFEE approach is presented in a
block diagram in Figure 2. The raw RSSI data is preprocessed
to obtain spatial RSSI signatures for each activity, which
are fed into a Random Forest supervised machine learning
algorithm as described in Section IV-B. Once the activity type
is established, the energy expenditure is computed using the
activity’s Metabolic Equivalent.

A. Data pre-processing

As each wireless link generates a stream of RSSI values,
a dataset represents a collection of multiple asynchronous
streams, which are difficult to align with each other due to
beacon randomisation, time synchronisation and occasionally
lost packets. In order to extract RSSI signatures for each
activity, the streams have been split into N-second epochs,
with RSSI values for each wireless link replaced by their mean
value within the epoch, which resulted in a sequence of tuples:

(EpochID, RSSI_1, RSSI_2, RSSI_i...RSSI_N)

Where ¢ is a wireless link ID and NV is the number of
wireless links in the system. The other possible options for
aggregating RSSI values is selecting either a minimum or
maximum for each link within an epoch, however, selecting the
mean showed the best performance as shown in the evaluation
section later. Prior to classification, the aggregate RSSI values
for each stream were then zero meaned and normalised by
their standard deviation value.

B. Classifier algorithm

The classifier is responsible for mapping a spatial signature
of signal strength values to a specific activity. The activity clas-
sification was done using Random Forest supervised machine
learning algorithm, known for its high predictive accuracy and
robustness to overfitting. Random Forest algorithm operates
by constructing multiple decision trees from random subset of
training data and computing an output class by majority vote
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Fig. 3. Random Forest Classifier. The classifier constructs multiple decision
trees from random subset of training data and computes an output class as a
majority vote of individual tree predictions.

of individual tree predictions as illustrated in Figure 3. The
parameters of the Random Forest classifier were selected to
provide the best overall classification performance and Gini
index estimates were utilized for choosing the best split.

In addition, k-nearest neighbour (k-NN) classifier was used
as a baseline classification method. k-NN algorithm classifies
a sample (in our case spatial signature) based on the majority
voting of its k nearest neighbours. The algorithm is model-
free, does not make any assumptions about the data and is
one of the basic and robust machine learning algorithms. The
optimal value of ¥ = 7 was obtained based on the best
model accuracy using 10-fold cross-validation as detailed in
the experiment section.

C. Metrics

The classifier accuracy was measured using four metrics:
accuracy, precision and recall which are defined below:
Accuracy: The metric shows the total proportion of data that
has been correctly classified and is computed as follows:
TP+TN

A - 4
CUraY = TP Y TN + FP+ FN “)

Where TP, FP, TN and FN refer to true positive, false positive,
true negative and false negative respectively.

Precision: The metric shows the proportion of relevant (i.e.
true positives) within the selected items and is defined as
follows:

TP
Precision = ————— 5
TP+ FP )
Recall: The metric also known as true positive rate or
sensitivity, shows the proportion of relevant items that have

been selected and is defined as follows:

TP
Recall = m (6)

V. EXPERIMENTAL EVALUATION AND DISCUSSION

In this section we evaluate the proposed approach in terms
of classification and overall energy expenditure estimation
accuracy. The section also contains discussion on the perfor-
mance and limitations of the approach.

A. Experiment setup

We have carried out the experiment by considering four
different activities: sleeping, sitting, standing and walking.
The activities were associated with various locations in the
room that are typical for the activity [39]. Each experiment
round consisted of a participant iterating through each activity
spending a 10 minutes in each activity resulting in a 40-
minute dataset. The measurements have been repeated 3 times
resulting in a total of 120 minute of dataset. The participant of
an experiment had the following parameters: height 165 cm,
weight of 70kg, male, aged 31 years old and was wearing
Fitbit Blaze for comparison purposes. Fitbit Blaze is a popular

Fig. 4. Fitbit blaze used for validation.

device which has been evaluated for validity and reliability in
previous studies [31]. A recording of a bracelet measurement
was taken before and after each activity. The data has been
processed using R statistical environment [25].

B. Classification performance

The classification performance has been evaluated with 10-
fold cross-validation, which consisted of splitting the data into
10 folds, and using one for testing and the remaining for
training. This was repeated for each fold and the average
results were taken. Table II compares the performance of
selected classification algorithms in combination with the
selected aggregate function. As can be seen a combination
of a random forest with a mean aggregation function achieves
the highest accuracy rate of 91.7%.

TABLE II
CLASSIFICATION ACCURACY COMPARISON BY CLASSIFICATION
ALGORITHM AND AGGREGATION FUNCTION

Aggregation function

Classification algorithm  mean,% max,% min,%
k-NN 86.7 79.2 79.0
Random Forest 91.7 82.9 82.5
TABLE III
RANDOM FOREST PER-CLASS CLASSIFICATION PERFORMANCE
Sleeping  Sitting  Standing  Walking
Recall 90.6 87.9 90.7 98
Precision 94 89 89 95
F1-score 92 88 90 97

Table III shows the performance of random forest classifier
in terms of precision, recall, Fl-score and accuracy. Most



TABLE IV
CONFUSION MATRIX FOR RANDOM FOREST CLASSIFIER
sleeping  sitting  standing  walking
sleeping 26.7 1.2 0.9 0.7
sitting 0.9 21.7 1.6 0.5
standing 0.7 1.4 20.3 0.0
walking 0.2 0.2 0.0 23.0
TABLE V

COMPARISON OF DIFFERENT METHODS FOR ENERGY ESTIMATION

TEE DFEE Fitbit blaze
Sleeping (10 minute) 11.4 11.8 11
Sitting (10 minute) 14.8 15.0 12
Standing (10 minute)  20.5 19.8 14
Walking (10 minute) 22.8 22.3 34

activities were classified reliably with walking, sleeping and
standing classified most reliably with 97%, 92% and 90%
Fl-score rates respectively. A confusion matrix in Table IV
shows real and predicted values in percentages averaged across
resamples in columns and row respectively. As can be seen,
sitting has the lowest classification rate and can occasionally
be confused for sleeping or standing. Due to higher overall
performance the rest of the statistics and discussion will focus
on results obtained through Random Forest only.

C. Estimating Energy Expenditure

Based on activity classification results, the energy expendi-
ture was estimated using MET values from the Compendium
of Physical Activities [2]. DFEE energy expenditure is com-
puted as a weighted average of energy cost of activities as
recognised by the classification algorithm.

4
DFEE; = Z TEE; x Ajj (7

Jj=1

Where TEFE; is a theoretical energy expenditure estimation
based on ideal classification accuracy, and A;; is a proportion
of times that activity ¢ has been classified as an activity j based
on the confusion matrix. The DFEE values are compared with
theoretical TEEs, as well as the measurements obtained from
FitBit bracelet, Table V.

As can be seen the DFEE energy expenditure estimates
are in close agreement with theoretical TEE values, due to
relatively high classification rate with the discrepancy of 3.6%,
1.5%, 3.7% and 2.2% for sleeping, sitting and standing and
walking respectively. Both DFEE and TEE overestimated the
energy consumption for all activities except walking compared
to FitBit. It is possible that the latter is using additional factors,
such as pulse rate in addition to accelerometer data when esti-
mating energy expenditure. The discrepancy between DFEE
ranged from 7.4%, 25.4%, 41.2% and 34.4% for sleeping,
sitting, walking and standing respectively.

D. Discussion

The achieved activity classification rate is higher compared
to published results, which could be attributed to a number

of factors. We used a full mesh topology by monitoring the
wireless links between sensor nodes, compared to measuring
RSSI over direct links between wireless stations and the
laptop as in some previous studies on activity recognition.
Using IEEE 802.15.4 sensor nodes has enabled monitoring
of the wireless links bidirectionally, taking into account their
asymmetric nature, especially in indoor environment. It is also
possible that low power wireless links are more sensitive to
user activity than Wi-Fi access points used in prior studies,
which use relatively high power for signal transmissions.
The proposed approach focuses on single-person environ-
ments which can apply to environments such as small of-
fices, elderly people living alone, or students living in their
dormitories. In addition, monitoring people living in confined
environments for a long duration of time, e.g. due to pandemic
is another possible use-case. Unlike some smartwatches or
bracelets, DFEE does not monitor heart rate levels or ac-
tivity intensity when estimating energy expenditure. In this
regard, our approach could be analogous to more traditional
pedometers, which while providing a coarse-grained activity
information, can measure an overall activity level of a person,
but with the advantage of not having to wear any devices.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we describe a novel device-free activity
human energy expenditure estimation approach and evaluate
its performance through experiments. The method is based
on using random forest classifier to analyse the wireless link
fluctuations caused by human activity indoors to classify user
activity and then estimating the energy expenditure using a
Metabolic Equivalent concept from sport and dietary studies.
The experimental evaluation has shown that the approach
achieves a classification accuracy rate of up to 91.7% using
a combination of random forest classifier with a mean ag-
gregate function. The direct comparison with FitBit bracelet
measurements and theoretical MET energy expenditure values
have shown that the proposed DFEE estimates are within 7.4%
to 41.2% for the experiments conducted in this study. The
advantage of the proposed method however is that the user is
not required to wear any devices.

Our approach is based on monitoring received signal
strength measurements, a feature which is available on low-
cost off-the-shelf transceivers. Extending the DFEE approach
to take into account additional wireless signal information
such as channel state information for more detailed activity
recognition, as well as evaluation in wider range of physical
environments is a potential future work.
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