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Abstract—Finding a widest path to transmit the maximum
possible data rate is well-known in the field of computer
science. For computational complexity, the network type
has a significant impact: It is relatively easy to solve
for simple graphs, whereas it is NP-complete for wireless
networks based on slotted time models. These models
neither facilitate the problem of finding widest paths, nor
are they best suited to reflect realistic networks based
on IEEE 802.11. Therefore, this paper studies the widest
path problem for hybrid multi-channel Wireless Mesh
Networks (WMNSs) without slotted time. In our model,
wireless data rates are equally shared among edges within
interference range. We prove NP-completeness of the widest
path problem (even for a simpler model), but heuristics
already demonstrated good results in practical settings.
Index Terms—Wireless Mesh Networks, Hybrid Topologies,
Widest Path Problem, NP-Completeness

I. INTRODUCTION

The widest path problem is and has always been an
integral part of computer science. It depicts one the
most fundamental problems of routing in communication
networks, when the focus is to maximize achievable data
rates on paths through the network.

Solving the widest path problem is unproblematic in
conventional networks modeled as simple graphs [1],
but the computational complexity highly depends on the
network type. When examining overlay networks for
example, the problem of finding a widest path becomes
NP-complete [2] due to edges that cannot be used
independently from each other. Naturally, complexity
increases also when considering wireless networks, as
they are prone to the same dependence issue when exam-
ining certain edges. Additionally, multi-channel wireless
networks are often modeled using slotted time [3], [4],
which tremendously contributes to complexity. The issue
with slotted time models is that they require meticulous
planning and scheduling of transmissions on a network-
wide scale to be put into practice, rendering these mod-
els unrealistic for distributed Wireless Mesh Networks
(WMNs) based on IEEE 802.11, where nodes usually
operate independently from each other (following local
rules only). Finding a widest path in a wireless network
based on slotted time is also NP-complete, as it requires
an optimal graph coloring [3].

This is why this paper studies the widest path problem
in multi-hop multi-channel hybrid WMNs based on a

much simpler model, where achievable data rates depend
on the set of wireless edges within an interference range.
We also incorporate wired edges in the model, which are
likely to occur in practical WMN instances, e.g., if nodes
are in close proximity to each other. Therefore, hybrid
topologies depict a highly relevant use case in practical
scenarios. Fig.1 shows the scenario of a widest path from
a source node s to a destination node ¢ in a hybrid
WMN. Although we will show that the widest path
problem is still NP-complete using our simpler model,
we also propose a very promising heuristic algorithm.
Unfortunately, the heuristic’s approximation error cannot
be bounded, but it already proved to be very effective in
real-world-like topologies [5].

This short paper provides the following contributions:

1) A proof for NP-completeness of the widest path
problem for hybrid multi-channel WMNSs.
2) A heuristic based on Dijkstra’s algorithm.

The remainder of this paper is organized as follows:
First, Sec. II briefly summarizes the state of the art for
widest path complexity. Sec. III introduces definitions
and the formal problem statement. The NP-completeness
proof as well as the heuristic algorithm reside in Sec. IV.
The paper concludes with directions for future research.

II. RELATED WORK

The body of related work on the topic of widest paths is
extraordinarily large, but the focus often differs. First,
there are many different routing approaches and dis-
tributed protocol designs for widest paths in wireless
networks (e.g. [6], [7]), but this paper focuses solely on
the theoretical aspects of the problem, i.e., computational
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Fig. 1. Widest path in a hybrid WMN from a source s to a target
node t. Network is comprised of Ethernet and wireless connections.



complexity. Furthermore, we do not cover multiple ad-
ditive or independent metrics (e.g. [8]), but focus only
on a singular data rate metric, only.

When it comes to path search in network graphs,
Dijkstra’s algorithm needs to be mentioned as one of
the fundamental algorithms [9], but it is designed to
find paths which are minimal with respect to a cost
metric. With a few adaptations to metric handling (not to
the algorithm itself), Dijkstra’s algorithm is able to find
widest paths in single-layer networks modeled as simple
graphs [1]. Therefore, finding widest paths in simple
graphs requires polynomial time. There has been a study
on widest paths in overlay networks, discovering NP-
completeness of the problem in this type of networks [2].
As already mentioned in the introduction, widest path
approaches for wireless communication usually cover
slotted time models and render the widest path problem
NP-complete as it requires a solution of graph coloring
problems to build global transmission schedules [3], [4].

In this paper, we employ a simpler, yet more realistic
model to change the perspective on the problem. Instead
of time slots (which lead to global schedules) we simply
assume that edges within an interference range need to
share their achievable data rate. With this model, we can
show that widest path is still NP-complete, but develop
a very promising heuristic to the problem. To the best
of our knowledge, this paper is the first to conduct
fundamental examinations of the complexity of finding
a widest path in hybrid multi-channel WMNs.

III. DEFINITIONS AND PROBLEM STATEMENT

As for our general notation', we distinguish between
wired components of the network using a bar above
an identifier (e.g. G) and a tilde (e.g. é) to indicate
wireless components. An instance of a hybrid multi-
channel WMN an be formalized as a tuple (G
(V,E),G = (V,E,C),P). G is the wired and G the
wireless graph. P : V U V — R? assigns each node a
two-dimensional Euclidean coordinate. The function C
assigns each wireless node a set of channels to which
its wireless interfaces are tuned to. Please note that E
highly depends on C and P: An edge (u,v) € E if
C(u) NC(v) # 0 and their Euclidean distance (derived
from P) is less than a fixed communication range. For
simplicity, we assume a fixed data rate for any edge in
E, which is 7. More importantly, all edges within inter-
ference range are said to share their achievable data rate
equally. Again for simplicity, we assume the interference
range to be twice as large as the communication range.
Concerning wired parts of the network, an edge in E is
said to have a fixed rate of 7. We assume 7 < 7.
Based on this model, the problem of finding a widest
path is to obtain a path fulfilling the following constraint:
The minimum data rate of all edges included in the path

!This notation is taken from a more complex model presented in [5].

is maximal among all paths in the network. Clearly, a
path’s achievable data rate is bounded by the slowest
rate on all links. But unlike wired edges, wireless edges
share their rate among all other edges within interference
range — possibly reducing the resulting path’s data rate.

IV. COMPLEXITY OF FINDING A WIDEST PATH IN
HYBRID MULTI-CHANNEL WMNS

This section examines the problem of Hybrid Wireless
Multi-Channel Widest Path (HWMCWP) based on defi-
nitions and the model of the previous section. The much
easier model will not render the problem simpler, but
represents WMNs based IEEE 802.11 more realistically,
as no global transmission schedules are required. The
problem of finding a widest path is still NP-complete, but
as we will see, the proof’s construction generates topolo-
gies not remotely resembling realistic scenarios, indicat-
ing that simple heuristic solutions could be promising —
especially when compared to graph coloring problems,
which arise from a slotted time model. A thorough eval-
uation of the impact of HWMCWP’s NP-completeness
in practically relevant settings would require optimal
results, e.g., using integer linear programming formula-
tions or combinatorial approaches, which is beyond the
scope of this short paper.

A. NP-Completeness

The proof’s idea is similar to the one in [2], where
overlay networks are covered. First, we introduce the
decision problem of HWMCWP: Given a hybrid wireless
mesh instance (G' = (V,E),G = (V, E,C),P), nodes
s and ¢t and a constant K € RT, the task is to find a
path from s to ¢ that transports at least K units of flow

through the hybrid network.
Theorem. HWMCWP is NP-complete.

Proof. First, HWMCWP’s decision problem is € NP,
because a nondeterministic algorithm guesses a subset
of EUE and checks if these edges resemble a path
with at least K units of flow. Checking is a bit more
complex, because edges on the same channel require
more attention as their achievable rates are equally
shared if they are within interference range, but this can
be clearly done in polynomial time.

To show NP-completeness, we reduce Path Avoiding
Forbidden Pairs (PAFP) (which is NP-complete [10]) to
HWMCWP. PAFP is defined as follows: Given a graph
G = (V,E), s,t € V and a set F C {{a,b} | a,b €
V,a # b}, PAFP asks if there is a path from s to ¢
containing at most one node from each pair in F'.

Let G,s,t, F' be an arbitrary instance of PAFP. We
need to construct an instance of HWMCWP (G =
(V,E),G = (V,E,C),P),s,t € VUV and K € R
such that it has a widest path from s to ¢ with at least
K units of flow if and only if G has a path from s to ¢
that contains at most one node from each pair in F'.



A node of V not occurring in any pair of F will
be in V without modifications. Also, an edge of E not
incident to any node included in a pair of F will be in £
without modifications. For each forbidden pair (a,b), we
introduce a gadget R, consisting of four nodes ing ,,
out? . in}, , and out!, , placed such that (in ,, out? ),
(inz’b,outgb) € E (ie. within communication range),
but all other tuples ¢ E. This gadget is shown in Fig. 2.
All wireless interfaces of nodes in R, are tuned to the
same channel, therefore, edges in R, are correlated,
when placed within correlation range. This can be easily
achieved using a rectangular placement (by setting P
appropriately). Please note that all gadgets must be
placed in the same rectangular shape, i.e., achievable
data rates and correlations will be exactly the same for
every gadget. To prevent gadgets to correlate with each
other, they use different channels (requiring sufficiently
many channels) or they are placed far enough apart from
each other, i.e., C and P need to be set accordingly.
Let v € V be a node appearing in at least one pair of
F'. Without loss of generality, we consider a fixed order
of these pairs: {v,wg},...,{v,w,—1}. As described
before, each pair {v, w;} will have its own gadget R, .,,
0 <14 < n. We add edges {(outy ., ,in, ,, ) [0<i<
n — 1} to E, which in conjunction with wireless edges
from the gadgets form a path representing v € V in
the HWMCWP instance. The path starts at in, ,, and
ends at out, ,, . and is illustrated in Fig. 3. For any
(z,v) € E, an edge (x,in;, ,, ) will be in E and for any
(v,y) € £ an edge (outy ,, _ ,y) is added to E.

Finally, setting K to the rate achievable between two
wirelessly connected nodes in a gadget () finalizes the
construction, which clearly requires polynomial time.

Now, suppose there exists a path p in G from s
to ¢, which fulfills PAFP requirements. A solution for
HWMCWP can be easily obtained by substituting edges
and nodes of the path according to the construction seen
above, resulting in a path p’. Because at most one node
of each pair in F' is used by p, at most one edge in each
gadget is used. Therefore, the p’ will be able to transport
K units of flow and is the solution to HWMCWP.

Inversly, let p’ be a path in the HWMCWP instance
that transports K units of flow. As K units can be carried

Fig. 2. Gadget R, representing a forbidden pair (a,b) € F.
Distance d; is less than communication range and ds is larger than
communication range, but still less than interference range.

Forbidden pairs containing v

{v, w2}

¥

Representation of v by connecting gadgets

{v,wo} {v, w1} {v, wp_1}

Fig. 3. The representation of a node v in the PAFP instance is a path
connecting gadgets in the HWMCWP instance.

by p’, we know that in each gadget at most one of two
edges is used. If not, the resulting rate would be much
lower than K, as edges within one gadget correlate with
each other and need to share airtime. Therefore, p’ can
be transformed to a path p in G by simply applying
the reverse construction for each node and edge in p.
Because at most one edge of each gadget is used in p/,
it is easy to see that p fulfills PAFP requirements. [

Please note that the proof requires an unrealistically large
channel set and unreasonably long cables. Therefore, the
practical impact of HWMCWP’s NP-completeness may
be insignificant, as the construction in the proof has very
little resemblance with realistic topologies. However,
optimal solutions to the problem may lead to increased
computational complexity, which in turn justifies the
need for heuristic solutions. Wired connections do not
play a critical role in the proof’s construction, which
is why NP-completeness could be shown for non-hybrid
topologies, too. However, they allow simplifications, i.e.,
wireless edges are only required within gadgets to cause
interference. Nevertheless, wired edges could be omitted,
e.g., with an even larger set of wireless channels.

B. Heuristic Solution

The proposed heuristic in this paper is to extend Di-
jkstra’s algorithm. As explained in Sec. II, it already
works with maximum rates instead of minimum costs
thanks to some minor modifications whenever metrics
are handled [1]. We briefly summarize these modifica-
tions: 1) The initial rate from s to itself is oo, whereas
initial rates to all other nodes are 0. 2) If a rate from
s to an arbitrary node x during the algorithm is r(x)
and an edge e = (x, y) with rate r(e) is examined, then:
r(y) = min {r(x),r(e)}. 3) A node with the maximum
known rate is chosen and processed prior to others.

Naturally, wired edges will not be affected from any
further modifications, as they can be used independently
from wireless connections. To consider multiple use
of the same channel, we introduce a channel history
H, which is a tuple containing recently used channels.
It has fixed length and will be maintained using the
FIFO principle. Depending on the currently inspected
edge ¢/ we need to consider the following cases: 1)
If for the channel of a wireless edge €', ie., c(€'),



condition c(e’) ¢ H holds, c(e’) is simply added to
H. Further metric modifications are not required. 2)
If ¢(e’) is already k£ > 0 times in the history, i.e.,
edges eq,...,ex—1 use the same channel, the metric
for achievable data rate needs to be adapted. In the
latter case, the metric value of e is modified to be
min{r(ei)/(k+1) | 0 < i < k}, reflecting multiple use
of the same channel. The minimum of all affected edges
is a plausible choice, since any of these edges could
be a bottleneck. If (during the algorithm) the channel
history exceeds its maximum length, oldest entries will
be dropped (FIFO principle). Please note that this is only
a heuristic, because we implicitly change rates of already
processed edges, which violates Dijkstra’s principles.

Forbidden pairs F'

{1,2},{1,3},{2,4}

Fig. 4. Example instance of PAFP. Please note that displaying the
corresponding HWMCWP instance would look too complex.

C. Shortcomings of the Heuristic

Due to NP-completeness of both PAFP and HWMCWP,
there must be an instance of PAFP (and after transfor-
mation, one of HWMCWP) which cannot be optimally
solved using the heuristic presented in Sec. IV-B. This
example is shown in Fig. 4 and whether or not an optimal
solution can be obtained depends on the processing order
of the graph’s nodes. Clearly: (s,4, 3, t) is a vaild path in
the PAFP instance. Please note that after transformation,
i.e., in the HWMCWP instance, V{a,b} € F gadgets
R, need to be considered. Nodes from the PAFP
instance will be translated into paths connecting gadgets,
which are shown in Tab. I for better understanding. Our
heuristic when started with the transformed HWMCWP
starts in s, discovering in}’Q and in%A which can be
reached with the wired rate 7. After passing through
the gadgets, the rate is reduced to the wireless rate 7.
Therefore, iniQ and in‘;”3 can be reached from both
outi3 and 0ut‘2174 with the same rate 7. Suppose the
algorithm examines the neighbors of out},3 next, then
in%Q and m?s will be reached with 7 as well. Subse-
quently, the algorithm processes m%)Q and z’ni”yz (as well
as nodes following the path), rendering them impossible
to discover from 0ut‘2174, as Dijkstra’s algorithm does
not allow already processed nodes to be revisited —
which would be necessary to find the optimal path.
Instead, the heuristic would stick to the choice it made
earlier and would be forced to traverse the same gadget
twice, hence, using edges interfering with each other.

TABLE I
NODE TRANSFORMATION OF PAFP INSTANCE (FIG. 4)

Node in PAFP Instance Path in HWMCWP Instance

1 1'11}’2,outi,z,iniﬁ,outi’3
2 ini%outiz,in%‘l,out%4
3 in{’,g,outi3
4

;4 4
Ny 4, out274

Therefore, it would yield a path transporting 7/2 instead
of 7. The example could be easily modified to cause the
heuristic’s result to be arbitrarily small, therefore, the
worst-case approximation error cannot be bounded.

V. CONCLUSION

In this paper, we examined the complexity of the widest
path problem in hybrid multi-channel WMNSs based on
a simple, yet quite realistic model. We proved NP-
completeness of the problem, despite the simplicity of
the underlying model. Nevertheless, our heuristic design
based on modifications to Dijkstra’s algorithm has the
potential for good results (when compared to heuris-
tics for slotted time models), because realistic settings
are quite different to pathological cases in which the
heuristic inherently fails. We already demonstrated the
heuristic’s ability to provide near-optimal results on real-
world-like topologies in certain use cases [5].

In future work, we will examine the widest path
problems’ complexity in wireless networks with a single
channel, only. Furthermore, the heuristic’s performance
needs to be verified using packet-level simulations.
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