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Abstract—Underwater networks are characterized by undesir-
able time variability of the channel conditions due to Doppler
effect, serious multipath and variable impulse response. Energy
efficiency is a primary concern in these scenarios, because nodes
batteries cannot be recharged or replaced. Accordingly, in order
to increase network lifetime and effectiveness of underwater
channel transmissions, in this paper, we present a reinforcement
learning approach for communication in multihop underwater
networks. The proposed methodology employs a Markov under-
water channel model to characterize the link status that allows
the relay device to choose the most efficient next hop node to
forward data towards a remote gateway device for connection to
the terrestrial internet. Simulation results are presented to show
the effectiveness of the proposed methodology in terms of energy
consumption and latency performance so allowing to increase
network lifetime.

I. INTRODUCTION

Oceans and seas represent about three quarters of the world
surface and include a richness of ecosystems and environments
that are considered almost completely unexplored. Internet of
Underwater Things focuses on creating a worldwide network
of smart interconnected underwater devices and objects. This
will be an enabler to digitally connect our oceans and lakes
to the ”dry” Internet and realize a connected world of devices
to answer a number of scientific questions about this undersea
universe. To realize this vision, smartness of devices is needed
in such a way to increase network lifetime, in spite of the high
communication costs incurred in underwater.

Communications in water can employ three main
paradigms, i.e., optical, acoustic and radio frequency (RF). RF
communications, which are the most efficient under an energy
point of view, perform poorly as we increase the distance from
the sea surface [1]. Howbeit, RF waves are recommended
for supporting communications between underwater devices
close to the surface and terrestrial or surface stations located
out of the water. Optical underwater communications are
still at their infancy and require considerable hardware costs
while suffering serious propagation issues when no line-of-
sight communication can be provided (for example in case of
seafloor obstacles). Acoustic communications are today the
most widespread technique for underwater communications
since they allow to trade-off relatively low hardware costs
and good transmission ranges [1]. However, because of the
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relevant transmission energy costs as a result of the employed
hardware, it is required to design appropriate energy efficient
techniques for network management. Indeed, in underwater
scenarios, devices’ batteries cannot be recharged or replaced
and, thus, maximizing network lifetime becomes a primary
concern [2]. Support of energy efficiency should be performed
jointly at all layers of the protocol stack and calls for consid-
erations on both the channel conditions, and the position of
nodes. Moreover, reduction in signaling data is required for
the purposes of network management. As a matter of fact,
all these features impact on the delivery delay performance,
network lifetime and fairness in energy consumption.

In this paper, we present a machine learning framework
for support of efficient underwater communications in noisy
environments. The proposed approach considers an underwater
IoT network, where acoustic modems equipped with sensing
capabilities transmit data to a gateway device employed for
communication with the terrestrial Internet. Underwater de-
vices are vulnerable to possible bad channel conditions, noise
and/or ongoing jamming actions. In order to circumvent these
issues, in this work, we employ a Q-learning [3] approach
to make optimal relay choices by taking into account their
individual residual energy and the average energy of nodes in
their neighborhood, to pursue a fair energy balancing inside the
network. In this way, a trade-off between energy consumption,
delivery delay and network lifetime, is achieved.

Underwater acoustic networks have been envisioned mainly
for stand-alone applications and control of underwater sce-
narios with a substantial focus on network security. In [1], it
was discussed that the traditional method of communication in
underwater networks fails due to absence of failure detection,
real-time monitoring and low storage capabilities. Moreover,
there is a possibility of path loss and signal spreading while the
signal propagates. Numerous design challenges, thus, emerge
and are mainly related to low bandwidth, impaired channel
as a consequence of multipath propagation and fading, very
high propagation delay associated to the dynamic channel
behavior, as well as high bit error rate and temporary loss
of connectivity. Furthermore, the high installation costs of
underwater networks compared to terrestrial networks result
in a need for a trade-off between cost and power. As cited in
[2], there exist many protocol solutions relying on the use of
link quality information for cross layer relay determination to
calculate optimal hop distance and reduce energy per bit of
information sent [4]. Software-defined networking (SDN) [5],



Fig. 1: System architecture.

which separates the data and control plane, has been recently
introduced to support communication in underwater networks
and increase security. However, this requires that the nodes
exchange, at network set up, control traffic with a Controller
node, which has to be underwater as well. In [6], deep neural
networks are employed for symbol detection in orthogonal
frequency division multiplexing (OFDM) systems by working
at the physical layer. Similarly, in [7], machine learning is
employed again for tuning physical layer parameters, such
as modulation and coding. Nevertheless, none of the above
approaches considers the use of machine learning at the
network layer apart for [8], which does not take into account
channel instability.

Taking inspiration from [8], in our work, we propose to use
reinforcement learning (RL) to model an underwater system,
where nodes are able to preserve energy efficiency and network
lifetime by using network intelligence to tune transmission
choices according to the channel state. In our work, Q-learning
is combined with Markov channel modeling and the efficiency
of this joint approach is assessed through simulation.

The rest of the paper is organized as follows. In Section
II, we provide a description of the considered system. Section
III details the distributed communication protocol employed
by Underwater IoT nodes. In Section IV, we expound the
Q-learning framework being considered while, in Section V,
the Markov channel model is presented. In Section VI, we
provide some numerical results to assess the effectiveness of
the proposed approach. Finally, in Section VII, conclusions
are drawn.

II. SYSTEM ARCHITECTURE

In this section, we describe the system architecture consid-
ered in our work, as depicted in Fig. 1. Our network consists
of different underwater devices that are able to sense, interpret
and react to external conditions. These devices are heteroge-
neous, both in their capabilities (e.g., complex underwater ve-
hicles or much simpler sensing devices equipped with acoustic
transducers) and in the type of data they sense and elaborate
(e.g., pictures of marine wildlife or data related to the salinity
of water, variation in sea water acidity as a consequence of
fossil fuels pollution, temperature, etc.,). Some devices could
consist of vehicles remotely operated by a surface vessel
by means of a cable connection (e.g., a remotely operated
vehicle (ROV)), while others can be unmanned underwater

vehicles (e.g., an autonomous underwater vehicle (AUV)),
which can move without any human interaction, either close
to the surface or in depth; other devices can be static. We
also assume that the network of underwater things can be
interconnected with the terrestrial IoT or with a remote marine
wildlife monitoring center equipped with appropriate servers,
where the collected data can be stored for future processing.
A surface vessel equipped with long distance connection (e.g.,
satellite or cellular network) to an onshore station can allow
to connect the underwater devices to the terrestrial network.
Each underwater physical device can be thus characterized
and described as a smart object, which, in order to efficiently
collect and forward information, takes into account both real
time and historical information on how the node acted in
the recent past based on the sensory data and the physical
conditions of the channel.

Interconnecting underwater devices is still a challenging
task and standard approaches proposed for wireless terrestrial
networks cannot be employed due to the high time variability
of the underwater channel caused by Doppler effect and
physical channel features, as well as due to noise caused
by cargo or ships moving in the area. Moreover, latency in
seawater is much larger than in wireless networks, because
acoustic waves, as considered in this work, propagate relatively
slowly (propagation speed around 1500 m/s) as compared to
RF waves in the air. Accordingly, channel coherence time can
be shorter than packet length, thus causing severe instability.
Bit error rate (BER) is a very relevant issue, because, in case
of multicarrier modulation techniques, it has been observed
that the BER is still high and no lower than 10−5. There-
fore, use of smart effective communication protocols, able to
support efficient information transmission is to be advocated
in spite of the limited energy resources and the impossibility
to recharge or replace nodes’ batteries. In the following, we
will illustrate the communication protocol run by underwater
nodes, which employ a lightweight smart mechanism to choose
the intermediate relayers to support simultaneously fair energy
consumption and efficiency in path selection towards the
gateway.

III. COMMUNICATION PROTOCOL IN A NUTSHELL

In this section, we detail the communication protocol, which
is employed by underwater sensor devices to send information
to the gateway surface node. Nodes periodically send in
broadcast, a packet carrying their ID, as well as their residual
energy value. This information can be also piggybacked into
data packets that they periodically send in order to reduce
the signaling overhead. A source node, upon generating a
packet, which has to be delivered to a surface gateway node,
includes, together with the payload, its ID and residual energy
level. Then the source issues this packet in broadcast to its
one hop neighbors. Before sending this packet, based on the
history of successes and failures and the information on its
one hop neighbors’ status, the sender identifies the best next
relay and puts this information in the packet it issues. The
one hop neighbors, and among them, the node, which has



been selected as best next relay by the previous relayer (or by
the source itself), upon hearing this packet, extracts the sender
information, in particular its residual energy, and its Q value,
which is associated to the learning procedure detailed in the
following sections. Consequently, the one hop neighbor of the
current relay node being selected as next relay updates the
corresponding entry in the local neighbor list that each node
stores and will be able, on its turn, to calculate the Q-value
as well for its one hop neighbors for selection at the next
step. Nodes not selected as next hop relayers will discard the
packet. In order to implement a confirmed relay service while
also not increasing the redundancy too much, a node can get an
implicit confirmation whether or not a packet is successfully
delivered to other nodes by analyzing the traffic issued by the
selected next hop relay node. Therefore, after a node sends
a packet, the packet heard by the previous forwarder will be
taken as an implicit acknowledgment; in case of successful
transmission, the packet will be deleted from the memory. If
instead the relayed packet will not be heard, retransmissions
will be triggered till a maximum number of trials, after which,
the packet is assumed to be lost. All nodes store the sequence
of previous actions so that each current relay, upon choosing
the next relay, can decide on the basis of previous forwarding
experiences. The choice is done based on the exploitation of
a Q-Learning methodology aimed at weighting properly the
residual energy of a possible relay node and guaranteeing a
fair distribution of energy into the network in such a way to
choose the optimal relay and maximize lifetime.

IV. MATHEMATICAL MODEL

This section is devoted to the description of the mathemat-
ical model employed to characterize the system behavior.

Reinforcement learning is a branch of machine learning,
where agents take actions and, by trial and error interactions
with the dynamically changing environment, aim to maximize
a given reward. The description of the environment relies on
a Markov Decision Process (MDP), which consists in a set of
states S, a set of actions A, a reward function R and a state
transition matrix P whose elements represent the probability
of making a transition from a state si to a state sj using action
a ∈ A. Similarly, elements in R represent the corresponding
reward for making a transition from a state si to a state sj
using action a. Note that, actions that are taken do not affect
only the sender’s reward, but also impact on all the following
evolutions of the system.

Q-learning [3] is a model-free RL methodology, which relies
on the value of state-action pairs. It is a method, where agents
can learn to act optimally in Markovian environments by
estimating the consequences of their actions. A policy π is
a way of associating each state, s ∈ S and possible action,
a∈ A, to the probability of executing this action when in state
s . The value of taking action a in state s under a policy π
is defined as Q(s, a) and represents the expected return for
taking action a and following the policy π. If we take time
evolution into account, the optimal policy at time t is denoted

as V ∗(st) and is represented by the maximum over all possible
actions a ∈ A of the value Q(st, a), i.e.,

V ∗(st) = max
a
{Q(st, a)}, (1)

where,

Q(st, a) = rt + γ
∑

st+1∈S

pastst+1
max

a
{Q(st+1, a)}. (2)

In (2), the term rt represents the reward after executing any
action a from state s at time t and is thus given by

rt =
∑

past,st+1
Ra

st,st+1
, (3)

where, past,st+1
∈ P and Ra

st,st+1
∈ R.

Calculation of the elements of the reward function R will
be detailed in the following section while derivation of the
transition matrix P will be described in Section V.

By iterations, Q(st, a) can be updated as:

Q(st, a)← (1−α)Q(st, a)+α[rt+γ·max
a
{Q(st+1, a)}], (4)

where, α is the learning rate, which models the rate, at which
we update the Q-values and γ ∈ [0, 1] (also employed in (2)) is
the discount factor of the rewards in the future in consideration
that recent actions affect the current value more than future
ones. More specifically, γ specifies the importance given to
the future rewards and its estimates. When γ is set to 0, the
system only considers the current reward and acts in such a
way to maximize the reward in a short term perspective. When
γ is set to 1, the system will try to achieve a long term relevant
reward. A balance between these two opposite trends leads to
a choice of γ in the range

[
0.5, 0.99

]
.

A. Calculation of the reward function

In underwater scenarios, in spite of the unreliability and
time-variability of the link conditions, it is important to deliver
data to the destination, in addition to maximizing network life-
time. This can be obtained by considering a reward function,
which appropriately weights both the energy consumption at
each individual node and the average consumption across all
one hop neighbor nodes in such a way that a fair energy
consumption distribution is supported in the network, hence,
preserving network connectivity. More specifically, all nodes
have an initial energy, which is assigned and spent to forward
packets. Accordingly, residual energy keeps decreasing at each
node n every time it is used as a relay. In order to account
for this energy consumption, two terms, c(n) and d(n), can
be defined, which have to be included in the reward function.
In particular,

• c(n) is the cost function related to the residual energy at
a node n, i.e., c(n) = 1− Eres(n)

Einit(n)

• d(n) is the reward for energy distribution of a
whole group of one hop sensor nodes, i.e., d(n) =
Eres(n)−Eavg(n)

Einit(n)
,

where, Eavg(n) is the average energy of the group.
A reward function Ram

n,m can thus be defined, which appro-
priately weights the costs in the one hop transmission from a



node n to a neighbor m1. In particular, if the transmission is
successful, the reward function will be defined as:

Ram
n,m = −g − α1[c(n) + c(m)] + α2[d(n) + d(m)], (5)

while in case of failure in transmission from node n to m,
the reward function will be:

Ram
n,n = −g − β1c(n) + β2d(n). (6)

In both equations, g is a constant cost incurred when a node
attempts to forward a packet independently of the outcome of
the packet transmission. Terms α1 and α2 should be chosen
in such a way to appropriately weight the cost function, thus
trading off reduction in the number of hops to the destination
while also selecting nodes with higher residual energy. Similar
considerations apply to β1 and β2. Equations (5) and (6) can
thus be substituted in (3) to calculate rt

2. However, note
that, Ra

st,st+1
is always negative and, thus, all the Q(s, a)

values for the non destination nodes are negative. The Q value
of the destination node, will be set to zero, because it has
to be the largest among all Q values. Based on the above
described model, each packet forwarding attempt consumes
energy, channel bandwidth, and contributes to the number of
hops to the destination (i.e., delay). Based on the weights
assigned to the cost terms, it is possible to balance between
opposite targets: on the one hand trying to minimize the delay
and, thus, the number of hops; on the other hand trying to
balance the network energy consumption across the network,
possibly increasing the hop counter, but with the advantage of
improving network lifetime, because nodes remain alive for
a longer time and the network gets more chances to remain
connected.

In the next section, we will detail how the underwater
channel status can be modeled in such a way to determine the
values of the state transition matrix P needed to completely
describe the Q-learning model.

V. MARKOV CHANNEL MODEL

In this section, we present the Markov model used to char-
acterize the behavior of the underwater channel. In underwater
scenarios, an acoustic signal propagation from a sender to a
receiver is impacted by seabed and sea surface effects resulting
in a multitude of paths. As a consequence, waves traveling
across different paths can lead to in phase or out of phase
contributions. The propagation loss at different frequencies is
also impacted by vertical temperature and pressure variations,
as well as by salinity of water and pH. Sound waves will
be impacted as well by ambient noise sources such as noise
related to environmental features in proximity of the surface
(e.g., wind, rain, etc.,) or exogenous sources, such as ship
activity of cargoes and thermal noise or turbulence.

1In this work we identify the state st = n with the condition when a
packet at time t is held by node n and we identify action am as the action
to forward a packet to node m.

2Upon substituting the above equations in (3) note that Ra
st,st+1

= Ram
n,m

or Ra
st,st+1

= Ram
n,n depending on if the transmission was successful or not,

and provided that at time t the status was st = n and at time t+1 the state
is st+1 = m or n and the action is am.

In [9], traces simulated by considering the Mediterranean
sea parameters were considered to propose a Discrete Time
Markov Chain (DTMC) of the underwater channel. A DTMC
is a discrete-time stochastic process, where no memory is
assumed, thus the current state of the channel only depends
on the previous one and not on the history of previous
process states. As a consequence, we can identify a transition
probability matrix with generic element, pi,j representing the
probability that the process is in the state j at time t provided
that at time t − 1 it was in the state i. In the transition
probability matrix, the sum of the elements of each row is
always equal to 1, i.e.,

n∑
j=0

pi,j = 1 i = 0, 1, 2, ..., n. (7)

These transition probabilities give information about the effi-
ciency of the nodal links. Note, furthermore, that, the consid-
ered stochastic process describing the underwater channel state
can be modeled through a DTMC provided that its stationary
nature is proved. Accordingly, in [9], the authors used a
Reverse Arrangements Test [10] and calculated the distribution
of the sojourn time; in doing this, they assessed that it is
exponentially distributed with the aid of the Kolmogorov-
Smirnov test [11] and, subsequently derived the DTMC models
of order K with the aim of capturing different degradation
levels in the underwater channel. Similarly to what has been
proposed in [9], in this work too, we consider a DTMC channel
model of order K, where multiple channel states are possible.
Upon considering a set of real traces with a Doppler frequency
of 3 Hz, a BER of approximately 6% and assuming an OFDM
multiplexing, the K-order model (K=3, i.e. 8 states) can be
expressed as:

P =



0.54 0.15 0.04 0.04 0.12 0 0.07 0.04
0.31 0 0 0.4 0 0 0.19 0.1
0.97 0.02 0 0 0.01 0 0 0
0.9 0.09 0 0 0.01 0 0 0
0.6 0.01 0 0.27 0 0 0.09 0.03
0 0 0 0.2 0 0 0.4 0.4

0.95 0.03 0 0.0 0.01 0 0 0.01
0.7 0 0 0.19 0 0 0.09 0.02


(8)

The choice to consider K = 3 comes from a trade-off between
model complexity and accuracy. For worth of completeness,
we also considered the possibility to model the underwater
channel as K = 1, 2 state Gilbert-Elliott channel model [12],
[13]. In this case, only a good and a bad channel states
are considered and the transition probability matrix can be
simplified as:

P =

(
0.8718 0.1282
0.4659 0.5341

)
(9)

VI. PERFORMANCE ANALYSIS

In this section, we present some preliminary results to
assess the effectiveness of the proposed protocol solution as
compared to standard routing approach, which do not take



into account any learning based on previous transmission
history and consider only shortest path routing to deliver data
to the gateway device. In particular, we assumed a network
topology, where 10 underwater nodes are deployed at different
depths. Nodes are assumed to be in contact with each other
if their distance is lower than 300 m, provided that the
channel state is good and transmission can be successfully
supported. In our scenario, we assume that node 10 is located
on the sea surface and is the gateway device towards which
all transmitted packets have to be delivered. Packets can be
generated randomly by any network node. An initial energy
of 1 KJ is available at each network node and, for each
packet transmission being executed, 1 J of energy is spent.
Parameters for RL and reward function have been chosen as
α1 = β1 = 0.5, α = 0.5 g = 1 and γ = 0.5. Parameters
α2 = β2 vary in such a way to have α1/α2 = β1/β2.

As discussed above, two Markov models for the underwater
channel characterization are employed, namely the one in (9)
and the one in (8) to consider a 2 states and an 8 states model,
respectively. For worth of comparison, we also consider a
shortest path (SP) approach, where a node, upon needing to
send a packet to the gateway, only looks for the shortest path
to this node. Furthermore, we consider that, when 2 nodes i
and j are in each other’s coverage range (i.e., their distance is
lower than 300 m), the link conditions are variable and, thus,
when considering the 2 states model, if the channel state is
good, transmission will be successful, otherwise it will not. In
case of an 8 states model, depending on the link status, Gi,
where i ∈ {1, 2, . . . 8}, transmission will be successful with
probability Πi given by the solution of the Markov conditions
[14], i.e., {

Π ·P = Π∑
i Πi = 1

(10)

In Fig. 2, we illustrate the average latency in the network
(intended as the average number of delay units from a sender
node to the gateway) as a function of the ratio α1/α2. Note
that, when the ratio α1/α2 is lower than 1, which implies that
α2 takes higher values, the system gives higher priority to
delay and thus the latency decreases. As soon as we increase
the ratio instead, the weight given to delivery delay decreases
as α1 becomes several times larger than α2, i.e., the value
of α2 decreases. As a result, the latency increases. However,
note that, for shortest path case, the average delivery delay
is not impacted by the ratio α1/α2 and the delivery delay
is significantly higher than that obtained by applying the Q-
learning approach. This is because the shortest path does not
consider the link status but only the distance. Furthermore,
from Fig. 2, we may observe that, the Q-learning approach
yields reduced average latency than SP. This is because, upon
choosing the path from the sender node towards the gateway,
in case of shortest path the link status is not accounted and,
thus, multiple retransmissions can be needed.

Fig. 3 shows the normalized network residual energy ob-
tained using the proposed approach, again as a function of the
ratio α1/α2. Note that, the average residual energy remains
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Fig. 2: Average Latency.

almost always constant in the range [85%, 86%]. Similarly, in
the shortest path case, the residual energy remains constant as
well and comparable values are achieved.

In Fig. 4, we report the standard deviation in the residual en-
ergy at nodes. Observe that, for low values of the ratio α1/α2,
we do not care much about energy consumption while we
are more concerned about delay. Accordingly, most nodes are
active although some of them are more stressed and congested
due to their positions, while others are not. Correspondingly,
different residual energy is obtained at different nodes and
thus, the standard deviation of the residual energy increases.
On the other side, upon increasing the ratio α1/α2, more
importance is given to energy consumption and, thus, less
nodes remain alive, while others go to sleep mode; so the
residual energy at these remaining alive nodes is the same,
thus resulting in lower standard deviation. Note also, how the
use of a Q-learning approach as compared to a standard SP
methodology allows us to achieve much better performance in
terms of equalization of energy consumption. The above three
figures refer to the case of 2 state Markov model.

In order to study the effect of using a more complex channel
state model that accounts for multiple states (i.e., 8 states), we
demonstrate in Fig. 5 and Fig. 6, the residual energy at each
network node as a function of the number of packets sent
across the network for two Markov models, i.e., 2 states and
8 states. From the results of Fig. 5 and Fig. 6, we may note
that, both models describe the channel in almost an identical
way. Based on this observation, we advocate that, the 2 states
model with K = 1 is preferred as it will result in reduced
complexity.

VII. CONCLUSIONS

In this paper, the problem of efficient transmission in
underwater networks is addressed. In particular, in order to
realize the vision of an internet of underwater things, it
is important to increase network lifetime and transmission
efficiency in spite of the undesirable time variability of the
underwater channel related to Doppler effect, serious multipath
and resulting variable impulse response. By remembering that
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Fig. 3: Normalized network residual energy.
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energy efficiency is a primary concern since nodes batteries
cannot be recharged or replaced, we presented a reinforcement
learning approach for communication in multihop underwater
networks. The proposed methodology employs a Markov
underwater channel model to characterize the link status and
allow the relay device to choose the most efficient next
hop node to forward data towards a remote gateway device
for connection to the terrestrial internet. Performance results
proved the effectiveness of the proposed methodology in terms
of fair energy consumption distribution inside the network and
improvement of network lifetime.
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