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Abstract—Medical institutions are increasingly adopting IoT
platforms to share data, communicate rapidly and improve
healthcare treatment abilities. However, this trend is also raising
the risk of potential data manipulation attacks. In decentralized
networks, defense mechanisms against external entities have been
widely enabled while protection against insider attackers is still
the weakest link of the chain. Most of the platforms are based
on the assumption that all the insider nodes are trustworthy.
However, these nodes are exploiting of this assumption to lead
manipulation attacks and violate data integrity and reliability
without being detected. To address this problem, we propose a
secure decentralized management system able to detect insider
malicious nodes. Our proposal is based on a three layer archi-
tecture: storage layer, blockchain based network layer and IoT
devices layer. In this paper, we mainly focus on the network
layer where we propose to integrate a decentralized trust based
authorization module. This latter allows updating dynamically
the nodes access rights by observing and evaluating their be-
havior. To this aim, we combine probabilistic modelling and
stochastic modelling to classify and predict the nodes behavior.
Conducted performance evaluation and security analysis show
that our proposition provides efficient detection of malicious
nodes compared to other trust based management approaches.

Index Terms—Security, trust, authorization, On-Off attack,
blockchain, smart contract, Markov chain.

I. INTRODUCTION

With the emergence of innovative technologies such as
Medical Internet of Things (MIoT) and Mobile Health (MH),
healthcare industry is witnessing significant changes. Plat-
forms dedicated to healthcare are playing a more and more
important role in improving the health, safety, and care of
billions of people [1]. However, these platforms among others
are confronted to various security threats. Recent research pre-
sented that 24% of data loss incidents were caused by insiders
including accidental and malicious acts and 55% of root causes
of data breaches occurred as a result of unintentional employee
action [2]. Recently, fundamental security requirements such
as integrity and non-repudiation motivated several works to
consider blockchain networks to promote medical services.
Explications behind the choice of blockchain come down to
the nature of its infrastructure. Blockchain [3] provides a
decentralized, secure, tamper-proof technology. It is one of the
most promising technologies to meet security requirements of
IoT networks. Blockchain confirms integrity and validity of
networks through computational-intensive tasks like Proof-of-
Work (POW) or Proof-of-Stake (POS) [4]. However, providing

tamper-proof interactions is a necessary but insufficient ele-
ment to provide trust in medical IoT environments. Malicious
insider participants may still intentionally provide erroneous
data for their own benefit. Typically, they are either motivated
by financial profit or aim to hide errors they made. For
example, a malicious node may manipulate medical records to
steal equipment. On-Off attack is one of the most dangerous
attacks that healthcare institutions are facing. A malicious
node may hide his intentions by performing alternatively bad
and good behavior to make the system consider his bad
behavior as an error. To defend against this type of attack,
trust models based on authorization mechanisms are consid-
ered as the first line of defense. Conventional authorization
approaches envisage static planned patterns [5]. However, the
IoT environment is characterized by continuous change to
which the authorization schemes are required to dynamically
respond. Thus, healthcare providers behavior evolution have
to be considered as an essential component to ensure security
in decentralized networks. In this paper, we propose a fully
decentralized trust based authorization mechanism combining
probabilistic classification and stochastic modelling to manage
the network nodes access rights and limit efficiently insider
attacks. We believe that our approach allows detecting insider
malicious nodes aiming to perform On-Off attack. To the
best of our knowledge, our work is one of the first attempts
to design distributed trust in medical blockchain systems
using stochastic models. The contributions of our paper are
summarized as follows:

1) We propose a three layer architecture based on a blockchain
network to secure data from its creation to its final use.

2) We propose a trust based authorization mechanism with
dynamic access rights using the combination of probabilistic
Bayesian modelling and a stochastic Markov modelling.

3) We conduct simulations on the top of Ethereum Testnet
Platform and Solidity smart contracts to evaluate the perfor-
mance and analyze the security metrics of our approach. Ex-
perimental results show that our proposition provides efficient
detection of malicious participants compared to other trust
based management approaches.

The paper is organized as follows: Section II presents the
related works. We detail our proposed system in Section III.
Evaluation results are presented in Section IV. Section V
draws some conclusions and presents the future works.
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Figure 1: System architecture

II. RELATED WORKS
A. Blockchain based authorization

Several domains such as Industry 4.0, Smart Grid, Vehicular
networks, Energy trading or Healthcare made use of the
blockchain for data management. Others, focused on enhanc-
ing the security of IoT applications using blockchain networks.
Lin et al. [6] gave a full survey on blockchain security issues
and challenges. Novo et al. [7] proposed a distributed access
control system for IoT based on a blockchain and studied its
performance on large-scale networks. Dorri et al. [8] proposed
an authorization approach to manage smart home IoT devices
where the gateways are the blockchain miners.

B. Trust-based mechanisms

Duma et al. [9] presented a peer to peer overlay for intrusion
detection against insider threats. However, they created a
single point of failure by using only one event manager.
MENG et al. [10] introduced a blockchain based schema
to defend medical smartphones against insider attacks us-
ing a lightweight IDS system and relying only on Naive
Bayesian classification. In this latter work, authors limited
their judgment criteria to users feedback which may lead
to subjective decisions. In the vehicular domain, Lu et al.
[11] proposed to establish trust using a reputation evaluation
algorithm relying on interactions and opinion history. Evalu-
ations rely on the honesty level of the owners. Consequently,
most of the recent studied works proposed to limit insider
attacks through authorization mechanisms are either relying on
centralized architectures or try to adapt centralized approaches
to decentralized architectures. Some rare works are taking into
consideration the decentralized nature of the IoT, yet they
do not consider either the dynamicity of the environment or
relations between the stakeholders.

III. PROPOSED SYSTEM
A. Problem formulation

Our main purpose is to build an authorization module able
to protect distributed healthcare environments against insider

manipulation attacks and more precisely On-Off attack. In
general, these attackers, obtain authorizations, remain trust-
worthy for a period of time and then change their behavior
to act maliciously for short periods without being detected.
We propose to integrate a trust based authorization module
on the top of a blockchain network. This latter aims to
detect efficiently malicious nodes behavior and limit their
access rights. Our authorization consists of the main following
steps. First, nodes activities are observed to learn about their
behavior. Next, a stochastic approach is used to classify them
according to their trustworthiness and predict the evolution of
their behavior in the future. Finally, accorded authorization
permissions are updated dynamically using ABAC protocol.
Even though ABAC model have been widely used to manage
access control, the novelty of our proposition compared to
existing approaches is combining probabilistic classification
and stochastic modelling to manage ABAC access control
rules in a fully decentralized way.

B. System Architecture

As shown in Figure 1, the proposed system architecture
consists of three layers namely: storage layer, network layer
and IoT devices layer. Storage layer consists of an intercon-
nected collection of cloud servers that provide long-term or
heavy storage. The network layer contains the blockchain
main components: (1) The Healthcare providers, denoted
N = {N;y, N3, ..., N,,}, represent the blockchain miners. They
are expected to interact and exchange data such as updating
patients profiles or monitoring the medical equipment using
the authorization mechanism module. (2) The medical institute
owner is at the same time the blockchain owner and an active
node. This latter is a highly trusted authority and the only node
allowed to deploy smart contacts in the blockchain and (3) The
trust based authorization mechanism module is deployed in a
smart contract to ensure its autonomous and secure execution.
Finally, the IoT devices layer contains external entities such as
patients devices. We consider them as lightweight nodes. Since
they are often resource constrained, they do not contribute to
validating transactions.

C. Authorization mechanism modelling

We propose a decentralized authorization mechanism based
on ABAC model where the nodes’ of the blockchain behavior
are periodically observed, then malicious nodes are detected
and classified. Finally an update to their access permissions
is easily performed since ABAC allows changing access
decisions by simply changing its attribute values.

1) Initialization phase: The blockchain owner initiates the
access control mechanism with temporary elements (object
entities, resources, access permissions and rules) that will
be updated later as illustrated in Figure 2. He defines: the
blockchain nodes as object entities, a set of medical files (F)
and a set of clinical equipment (C) as resources and three
access permissions: read (r), write (w) and delete (d). dby;gn¢s
is the data base that handles the access rights rules as follows:

o Allow Ng to ([r,w,d] in f;) if { Ni is author of f;}.
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e Allow Ny to ([r,w,d] in F) if { N} is blockchain owner}.
e Allow Ny to ([r,w,d] in C) if { N} is blockchain owner}.
e Allow N to ([r] in C).

Logical and contextual rules are defined as follow:

o Deployed data have to be non-redundant.

o Deployed data must respect its fixed logical interval.

o Access or alteration requests for the for the same data
must respect a minimal fixed time interval.

The nodes use ABAC requests to ask for permissions using:
Is Permitted(Subject, Action, Object, Contextual attributes).

2) Behavioral observation of a node: Periodically, trans-
actions Tz = {tx1,txs..,tx,} of each node are mapped to
a set of behavioral vectors V' = {v1,vs..,v4} where each v;
corresponds to the behavior showed in tx;. In this proposal,
we define: v; = (el, e2) where el is set to 1 if the transaction
owner is authorized to access the data and to 0 otherwise
while e2 is set to 1 if the transaction is relevant according
to the defined rules and to O otherwise. To summarize, each
v; € {(0,0),(1,1),(1,0),(0,1)} and v; = (0,0) if the
transaction is legitimate, v; = (1,1) if the transaction is
malicious and v; = (1,0) or (0, 1) for uncertain transactions.

3) Probabilistic node classification: We classify the nodes
according to three classes of trustworthiness: honest (h), sus-
picious (s) and malicious (m) with: h € [0.6,1], s €]0.4,0.6],
m € [0,0.4] . We use the Bayesian classifier to compute
the probabilities of trustworthiness since it is based on the
frequency count of events. For this, we consider the set V' as
the set of events. Next, we use a membership function that
uses the obtained probabilities as input and returns the class
of trustworthiness as output.

4) Stochastic processing and behavior prediction: We
adopt probabilistic model based on a time homogeneous
Markov chain to study the network nodes behavior. We use
the classification states: S = {h, s, m} defined in the previous
section as the space states of all possible states a miner node
can reach. Since Markov chain is time independent, the future
state of a node N a time (t+1) depends only on its current
state at (t) and not on its previous states. Thus, if Ny is
currently in a state S;, then is moving to a next state .S; the
probability of transition is denoted by Py, ,, and relies only
on the current state .S;. To represent the evolution of a node
behavior, we use the transaction diagram or the probability
transition matrix P as shown in Figure 3. Where Py, ..
represents the probability that a miner node N makes a

transition from a current state s; to the next state s; in a
single step with Py, , . : 5
. , ij
PNy isyj :p(XNk:,f,+1 = ]|XNk,t = 7’) = 7 ()
1

Where 6;; is the number of times [N;, moved from state ¢ to
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Figure 3: State transition diagram of a node behavior

state 7 and + is the number of time IV, visited state . However,
the state m is an absorbing final state. Therefore, if a node
reaches the malicious state then returning to another state is
proibited and access rights are revoked. Algorithm 1 illustrates
how we obtain the first transition matrix using an initial vector
Vo and the observed behavior of a Nj. While Algorithm 2
shows the extensive computation we conducted to reach the
limit distribution of the Markov chain which corresponds to
the prediction of the node behavior.

Algorithm 1: First Probability Distribution Algorithm
Input: Space of states S, Node Ny, period of time T
Output: P

1 for t=1 to T do

2 for i=1 to |S| do

3 for j=1 to |S| do

4 if (s(Ni): = i) and (s(Ng)t+1 = j) then
5 //number of times N; moved from i to j
6 Counter;;= Counter;;+1

7 /mumber of times Ny visited i

3 Counter; = Counter; +1

9 //Complete the transaction probability matrix
10 for i=1 to |S| do

1 for j=1 t0 |S| do

12 L P;; = Counter;; | Counter;

13 return P

5) Updating system access rights: Once the prediction
probabilities obtained, permissions are updated using algo-
rithm 3. If the prediction shows the node as honest, it can
continue benefiting from his current permissions. While if it
is detected as malicious, it will be banned from the system.
However, if it is declared suspicious, its permissions are
limited to access until the next monitoring. Depending on the
discipline, a limited number of suspicious states is allowed
before exclusion.



Algorithm 2: System resolution Algorithm

Input: Initial state vector Vj, P
Output: Stationary state V,,
1 Vi = Vi * P //define the first distribution
2 //increment i until V; 4, and V; are identical
3 while (Vi+1 7’é ‘/1) do
4 | Vin=VixP

5 Vn = V41 //limit distribution probabilities
6 return Vn

Algorithm 3: Access rights update Algorithm

Input: prediction, Ni,dbrights, Scounter
Output: db,ignts
if (prediction = 'h’) then

-

2 dbrights= dbrignts //Do not change permissions
else if (prediction = ’s’) then

w

//Limit permissions to access only MS resources

dbrights(Ny) = Allow [r] to MS

Scounter= Scounter +1 //Suspicious state counter

else if (prediction = 'm’) or (Scounter > Numberiimit)
then

8 L dbyights(Ny) = Deny All //Revoke all rights

9 return (dbrights)

NS s

IV. SYSTEM EVALUATION

1) An honest node and a malicious node behavior anal-
ysis: We consider two healthcare environments: (1) H1: A
trustworthy healthcare institution in which only 10% of the
nodes are malicious. This latter represents an honest medi-
cal environment. (2) H2: A corrupt healthcare institution in
which 40% of the nodes are malicious. We implemented the
aforementioned scenario using Ethereum and we deployed the
authorization module using Solidity. The main parameters of
implementation are defined in Table I. In the next sections, we
represent the distribution of honest nodes with blue dots as we
use red dots to represent the malicious nodes’ distribution.

Table I: Simulation parameters

Parameter Value
Number of nodes per network 30,50,100,200
Number of transactions 40pernode
Maliciousness levels H1:10%; H2 : 40%
Trustworthiness states s € h,s,m

Figure 4 represents a periodical observation of a malicious
and an honest node initialized under the same conditions
without our approach. In the beginning, we consider all the
nodes initially suspicious with a trust level equal to 0.5.
However, their state of trustworthiness will be defined based
on their behavior. As we can see, the honest node trust value
remain in constant increase until reaching the maximum value
after 11 transactions. However, the second node is a malicious
miner conducting an On-Off attack by asking periodically to
access unauthorized data. His trust value fluctuates between
the minimum value of suspicion 0.4 and high values of honesty
such as 0.9 after 20 transactions. With this uncertain behavior,
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Figure 4: Honest and malicious nodes behavior comparison
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Figure 5: Impact of varying the number of malicious nodes

he aims to make conventional security system consider his bad
acts as errors.

2) Impact of increasing the number of nodes on the pre-
diction performances of the system: Figure 5 shows the
execution of the Markov process in H1 and H2 environment
with 30 nodes. Figure 5a and Figure 5b represent the initial
distributions. In H1, all the malicious nodes are detected and
only one honest node is classified as malicious. In fact, we
can observe an honest class with almost all the honest nodes
grouped into a clear linear shape as shown in Figure Sc.
However, in Figure 5d, we remark that over 20% of the nodes
are misclassified. To identify the cause of the misclassified
nodes, we study one of the potential reasons. Figure 6 shows
the impact of varying the initial vector in the Markov chain
on the accuracy of the results during the several calculated
probability distributions. To this aim, we calculate the True
Positive Rate as follows: o+p

Accuracy = ————
p+p+p+P

Where ¢ and p represent honest and malicious nodes correctly
classified (true positives and true negatives) and @ and p
represent honest and malicious nodes wrongly classified (false
positives and false negatives). First, we remark that in average,
if suspicious is the initial vector of probabilities, the detection
rate is high in both environments. We note that in Figure 6a the
accuracy rate with suspicious as initial vector of probabilities
is 90%, however this rate increases to reach 100% in its limit
distribution. Thus, in Figure 6b we note that for the same input
configuration the rate decreases from 90% to 80%, yet, it is
the highest rate obtained in a dishonest environment.

2
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To conclude, varying the value of the initial vector has
no effect on the prediction results in honest environments.
However, declaring the initialization vector as suspicious is the
most accurate when ignoring the nature of the environment.

3) Scalability of the prediction algorithm: We study the
accuracy of our predictions in three dishonest environments
of 100 nodes, 200 nodes and 300 nodes respectively as shown
in Figure 7. Figure 7a, Figure 7b and Figure 7c represent
the initial distributions of the networks. All of the initial
distributions show a remarkable overlap between honest and
malicious nodes with an average 40% of misclassified nodes.
Figure 7d, Figure 7e and Figure 7f are the limit distributions
in which most of the malicious nodes misclassified in the
initial distribution are correctly classified in the predictions.
We increase the number of nodes and classify them into
correctly classified and misclassified nodes to quantify the
scalability of the approach. In Figure 8, we use an incomplete
version of our solution (without the prediction phase) denoted
"No-sec approach" to show the efficiency of our approach in
terms of correct classification despite the increase of nodes
number. On average, we manage to correctly classify more
than 75% of the nodes. Thus, we consider that our approach
is efficient for the early detection of dishonest nodes. However,
increasing the number of nodes may have a slight impact on
the prediction results for the nodes with suspicious behavior.

4) Evaluation of the energy consumption and the time exe-
cution cost : Figure 9a illustrates the required time to execute
several types of transactions in our approach. In Ethereum,
a new block of transactions is created approximately every
15 seconds. However, we calculated the total execution time
including the time to check the rights and display the response
and conclude that in all cases our approach is slightly slower.
Figure 9b illustrates the energy consumption evalution of our
approach. In this figure blue bars represent the necessary
energy cost to execute different types of transactions in our
approach. While orange bars represent the same transactions’
execution of our approach with only static authorization mech-
anism we denoted “no-sec approach”. To provide a compre-
hensive evaluation, we performed the same transactions we
used for the time execution analysis. Next, we analyzed their
related computational consumption. Transactions in Ethereum
are measured using the Gas metric and estimated in Ether
or Wei. As expected, our approach shows to be consuming
more gas compared to the" no-sec approach". The additional
computational effort introduced by our method is in average

0.04 MilliEther per storage and 0.1 MilliEther per retrieving
transaction. Even though the retrieving transaction cost is
higher than the storage transaction, it is still considered small,
since 0.1 MilliEther is equivalent to 0.052 dollars. However,
the consumption rise is due to the fact that the security
functions execution are considerably changing the state of the
smart contracts updating the access control permissions, and
the miners states. Consequently, the energy computing cost in
our operations are proportional to the changes in the states
of the smart contracts. In the same figure is illustrated the
authorization smart contract deployment costs in our approach
and in the "no-sec approach". The results show that we
consume in average between 30% and 40% more than the "no-
sec approach" deploying a smart contract.To conclude, high
fees and additional time execution are considered insignificant
compared to the security we guarantee, especially considering
that smart contracts are often deployed only once.

5) Comparison with other trust based approaches: Figure
10 illustrates a comparison of malicious nodes’ detection
between our proposal and the works of Duma et al. [9] and
Meng et al. [10] we mentioned earlier. We remark that the
trust values decreased under all the propositions to reach the
minimum threshold of each approach. However, we notice that
the curve in Meng et al. proposal goes down faster than ours,
this shift is due to the difference of the adopted trust models.
Overall, under the same conditions, our approach can achieve
better performance detecting first the malicious behavior.

6) Security evaluation: Table II summarizes the security
requirements to which our approach responds.

Table II: Security requirements evaluation

Security requirement | Employed safeguard

- Cryptography and hash mechanisms.

Integrity - Defined contextual and logic rules.
Availability - Blockchain decentralized topology.
Non-repudiation - Blockchain signature and time stamp.
Authorization - Probabilistic detection of malicious nodes.

- Stochastic prediction of malicious nodes.

V. CONCLUSION AND FUTURE WORKS

Attackers arer only external entities, they are now hiding
among the medical teams. In this paper, we proposed a
distributed trust management architecture based on a dynamic
authorization mechanism combining probabilistic classifica-
tion and stochastic modelling to manage the nodes access
rights in a fully decentralized way and limit efficiently insider
attacks. To evaluate the performance of our proposal, we
simulated the behavior of both honest and dishonest healthcare
institutions. Results showed that our approach can efficiently
detect the malicious nodes. In addition, compared to other
trust based models, our approach proves to be more reliable
in classification and faster in detection. In the future, we are
considering several directions: the first is to include a method
that determine dynamically appropriate trust intervals accord-
ing to the behavior of the group to avoid overlaps between the
states; the second is to consider integrating external parameters
in the evaluation process such as feedback.
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