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Abstract—Situation awareness in the transport system has
been significant for understanding the cause of traffic congestion,
potential risks of accidents, and so on, and many efforts have been
made to recognize surrounding situations by vehicle onboard
cameras for low-cost sensing. These methods use computer
vision technologies to recognize objects in the vicinity of the
vehicle in the video image. However, to correctly recognize
the positional relationship between the surrounding objects and
the vehicle, lane detection, particularly multiple lane detection,
should robustly be performed. In this paper, we propose a
method for detecting multiple lanes from video images taken by
onboard cameras. Since frame-by-frame spatial lane detection
does not often work in a severe environment on multi-lane
roads, the proposed method leverages temporal change detection,
which enables complementing such lanes that are not detected
in a frame and eliminating wrongly-detected ones for robust
detection and tracking. In the experimental using the video
images, we have achieved an accuracy of more than 90% in
multi-lane environments with different conditions such as lane
boundary occlusion by other vehicles, nighttime, rain, side road
junctions.Besides, we achieved 96.47% accuracy to detect lanes
on which vehicles are driving, while 88.70% in the comparative
method.

Index Terms—Lane detection, Dashcam, Spatiotemporal image

[. INTRODUCTION

In recent years, the number of vehicles equipped with in-
vehicle cameras has been increasing, and it is expected that the
video images taken by these cameras will help, in a crowdsens-
ing manner, to detect obstacles on roads, to analyze regular
traffic patterns for city planning and to recognize abnormal
traffic situations such as local traffic congestion and potential
risks of accidents. In particular, with the recent advance and
enhancement of deep neural network-based image processing
techniques, it has become possible to accurately recognize
moving objects in a video image such as surrounding vehicles,
bikes, and pedestrians in the vicinity of a vehicle. Furthermore,
knowing the positions of those moving objects enables us to
recognize the context in the scene. For example, in Japan, we
have a serious social problem caused by aggressive drivers.
They often drive with high speed and frequently change
the lanes. Even worse, some malicious drivers do tailgating
to intensively threaten others. Fortunately, as more vehicles
have in-vehicle cameras for their safety and digital forensic
purposes, such behavior is often recorded by some vehicles
there and shared with others if necessary. On the other hand,
since analyzing several high-volume videos is not realistic,

automatic detection of the intended context is expected [1].
Specifically, to recognize the context in the in-vehicle camera
views correctly and automatically, the positional relation be-
tween the ego-vehicle and each of the surrounding vehicles,
bikes, and pedestrians is required, and lane information is most
significant to identify their locations — in which lanes vehicles
and bikes are, and where pedestrians are, either on sidewalks
or crossing.

There has been a lot of vision-based lane detection and
tracking methods so far. However, autonomous driving cars
with powerful processors and multiple cameras on their roofs
and corners use very different algorithms — they can use
rich information taken from different angles, and no detection
failure is allowed. Meanwhile, ego-lane detection using only
a single camera has been investigated mainly for safe driving
assistance purposes such as lane departure warning (LDW).
Nevertheless, multi-lane analysis has not been investigated so
far as it is more difficult to recognize the existence of other
lanes. Without detailed road map information, it is not easy
to know how many lanes are there and in which lane the ego-
vehicle is. Therefore it is more challenging to detect and track
not only the ego-lane but also other lanes only from in-vehicle
camera vision.

In this paper, we propose a vision-based method for de-
tecting and tracking multiple lanes. Most of the existing
vision-based methods for lane detection and tracking have
the issues perform lane detection for each captured frame.
However, the detection often fails when lanes in frames are not
photographed, particularly when a lane is drawn as a dotted
line, the lane is blurred, or a strong edge exists temporarily due
to the presence of light or shadow of sunlight. To tackle this
challenge, our method leverages temporal change detection as
well as frame-by-frame spatial detection of lanes and develop
a novel technique to combine both detections. Notably, we
focus on the fact that inter-frame features where the number of
lanes and their positions do not change significantly in a short
period, and the detection result in a frame has to be similar
to the previous frame. Therefore, by inheriting the detection
results in the previous frames, we may supplement missing
lanes in some frames and eliminate falsely detected ones.

Through the experiment using the video images (12,000
frames as a total) taken in different situations and annotated
by Amazon Mechanical Turk, we have achieved an accuracy
of more than 90% in multi-lane environments with different



conditions such as lane boundary occlusion by other vehicles,
nighttime, rain, side road junctions. Besides, we achieved
96.47% accuracy to detect lanes on which vehicles are driving,
while 88.70% in the comparative method.

II. RELATED WORK

Lane detection and tracking have been well investigated so
far in different contexts and with different configurations. We
survey these in the following.

Several methods have used line segment detection tech-
niques along with edge detection. For example, the work in [2]
emphasizes the boundaries of while/yellow lanes and applies
the Hough transform. However, edge detection is primarily
affected by extremely high or low illuminance regions in the
image and is not robust to such images that include white
guardrails (there are many of them in Japan) and shade of
large buildings.

Some methods leverage vanishing points in the images,
considering the properties that parallel lines converge to the
vanishing point in a projected 2-D image. For example, the
methods in [3] and [4] both use Gabor filters to compute
the directions of scene texture and estimate vanishing points
from them. Notably, [4] also calculates the likelihood of the
directions of scene texture, where the likelihood in the areas
apart from the vanishing point becomes low to determine
the reliability of calculated vanishing points. However, it is
known that scene texture directions do not often work in a
city environment where scenes do not have apparent features
of textures. The work in [5] estimates vanishing points by an
edge detection technique and finds line segments that have
certain overlapping with lines converging to the vanishing
points. This method achieves high accuracy by limiting the
angles of detected lanes in the images and taking the edges’
length and width into account. The work in [6] focuses on
mitigating lane detection processing overhead. It applies the
stochastic Hough transform for lane detection and a particle
filter for lane tracking to reduce the computational overhead
of per-frame lane detection.

One drawback of line segment detection-based methods is
that curved lanes cannot be detected. To tackle this challenge,
the work in [7] modifies the target images that include detected
edges using predefined nine different curvature radiuses and
finds the curves that fit with them. This method also applies
an improved line segment detection that combines region
detection using colors of lanes to avoid uncertainty. However,
color information is usually expensive for real-time processing
of frames. The work in [8] extracts horizontal scan lines with
a constant height in the sequence of frames and aligns them
along time so that the boundaries of lanes at the height can be
detected. Since this method is not dependant on line segment
detection, it can be applied to the curved lanes.

On the contrary, there have been lane detection and tracking
methodologies for autonomous driving cars. The work in
[9] applies the inverse perspective mapping (IPM) [10] to
generate top-view images, and lanes are detected by unifying
those images using the vehicle’s speed. The curved lanes

can be identified from the fused images by a least-squares
fitting algorithm. The work also mentions how to track the
detected lanes by a Kalman filter. The work in [11] presents
a lane departure warning system by using IPM-based lane
detection. Although IPM needs angles and other parameters
of cameras, it can eliminate the effect of perspective. Hence
this is useful for such a vehicle like an autonomous driving
car where cameras are mounted, adjusted, and calibrated with
predetermined parameters.

A. Our Contributions

Most of the existing lane detection and tracking methods
have been focusing on lane departure warning systems. To
this end, most of the methods are for detecting lanes on which
vehicles are driving, called ego-lane detection. On the other
hand, the proposed method tackles the issue of identifying
multiple lanes in urban areas for situational awareness via
each in-vehicle camera (dash-cam). The multi-lane detection
only by a video from a single, non-calibrated camera is not
straightforward since there are two significant challenges; (i)
non-ego-lanes are likely to be obscured by other vehicles,
and (ii)) no information about the presence of other lanes
is assumed. As for the first issue, we strongly need spatial
complementing to recover the lost lanes by other vehicles (or
by some other reasons such as weather and sunlight). For
the second issue, we need a quick adaptation to lane changes
performed by the recording vehicles and to the change of the
number of lanes on the roads. As far as we investigate, this is
the first approach that tackles multi-lane detection and tracking
to solve these issues.

III. LANE DETECTION METHOD

In our method, firstly, in the pre-processing step, we extract
the area where lanes may be visible and create a spatiotem-
poral image that is used to extract the trajectory of a lane
boundary position at a certain height in each frame. Following
these processes, the lane detection uses the spatiotemporal
image created in the pre-processing stage to estimate the
positions of the lane boundaries at multiple heights on the
frame and obtains a group of points indicating the lane
boundary positions. Subsequently, lane detection is performed
by clustering these point groups for each lane boundary line.
Besides, to improve the accuracy of lane detection, a lane
boundary-completing process that uses time-series information
is performed to remove false detections and recover the lost
detections by comparing them with past detection results.

A. Preprocessing

1) Region of Interest Selection in Frame: To reduce the
overhead to scan unnecessary regions in each frame where
lanes do not usually appear, we first identify the regions of
interest (Rol) that contain the lanes. For this purpose, we
identify regions with flares (due to sunlight reflections on
the windshield) and hoods. For flare detection, we find those
regions with high illuminance over multiple frames. To realize
this, we convert the frames into gray-scale images and inspect



Fig. 1. Region of Interest Selection Examples

Spatiotemporal Image {y = y;)

Fig. 2. Lane Boundaries on Scan Lines

the illuminance. The sky region can also be identified in this
way. The hood regions can be identified as those without
a specific change of colors over multiple frames. Then we
identify Rol as a rectangle near the center of the frame that
is not included in the above non-Rols. Figure 1 shows Rols
examples as red rectangles, which are automatically detected
by our methods.

2) Spatiotemporal Image Creation: The method of creating
spatiotemporal images and detecting lane boundary positions
at a certain height is based on the technique in [12]. Since
vehicles generally follow lanes most of the time, it is assumed
that the horizontal position of the lane boundary that appears
on a horizontal line, called scan line, at a constant height
in the video image, does not change significantly over time
(Fig. 2). By aligning the scan lines at a certain height in
chronological order, we can obtain the locus of the positions
of the lane boundaries in the spatiotemporal image. Then each
scan line in the spatiotemporal image is shifted horizontally to
minimize the sum of the difference of the boundaries on the
two subsequent scan lines at heights y and y + 1. Specifically,
for the horizontal line at height y + 1, we cut off both edges
for C pixels (C' = 30 in our experiment) and calculate such an
integer § that minimizes SAD (Sum of Absolute Difference)
of illuminance:
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where [(z,y) is the illuminace at coordinates (x,y) and X is
the width of the image. This process produces a spatiotemporal
image in which the lane boundary positions are aligned.

We note that scan lines should be contained in Rol, and
multiple scan lines are used for the robust detection of lanes.
In our experiment, we have used eight scan lines.

B. Lane Detection

1) Estimation of Lane Boundary Position: To estimate the
lane boundary positions, for each scan line in a frame, we
use a spatiotemporal image created using the sequence of
scan lines in the last k frames (that is, the height of the
image is k) as explained in the previous section. In [12],

which we refer to for the creation of spatiotemporal images
using scan lines, each spatiotemporal image is binarized, and
the Hough transform is applied to detect lane boundaries.
On the other hand, the proposed method detects, for each
horizontal line in a spatiotemporal image, such X-locations
with a significant change of illuminance against their next X-
locations. Then, from the detected X-locations, it identifies
those with such significant changes at different heights as lane
boundary positions. It is worth mentioning that the binarization
of the entire spatiotemporal image does not often emphasize
the boundaries of other lanes, which are apart from the
camera, as those lines tend to appear thin due to the distance.
Furthermore, binarization is not robust to temporary changes
in lighting conditions, which frequently happen in driving.

Figure 3 illustrates how the lane boundary estimation using
spatiotemporal images is performed. We let u denote this
frame of interest (i.e., the current target frame) in which we
want to detect lane boundary positions. In this example, eight
scan lines, #1 — #38 are set on the image where the height of
j-th (#j) scan line is denoted as y;, and for each scan line,
we have a corresponding spatiotemporal image denoted as st;,
which is a collection of the scan lines of the last k£ frames.
By obtaining the frame u, for each scan line #j, we extract
the line from u and add the line to st; at height k by shifting
the image down by one pixel and apply SAD as explained in
Section III-A2. Then at height y; in the updated image st;,
we detect a set X; of X-locations with significant changes of
illuminance, that is,

Xj={ 2| [l(z+1,y) —l(z,y;)| > o} 2)

where « is a detection threshold. Then, we further filter X; to
obtain X j’ so that only X-locations where significant changes
were also detected in some of the last & frames. That is,
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where (3 is a threshold. Finally, for each pair of j-th scan line
and = € X}, we regard (z,y;) as the lane boundary position.

Figure 3 shows two spatiotemporal images sto and sts that
correspond to the scan lines #2 and #5, respectively (red lines
highlight these lines while others are yellow ones). Yellow
circles highlight the detected lane boundary positions.

2) Ego Lane Detection: We detect ego lanes and other lanes
in this order for lightweight detection of ego lanes and other
lanes. For ego lane detection, we attempt to exclude such
points that are falsely-detected ones or that correspond to the
other lanes. We employ the following heuristics; firstly, for
each scan line, we leave the three points closest to the center
of the frame, and the others are eliminated from this detection
process. Furthermore, because curved lanes that appear in the
upper region of the frame are usually hard to detect by line
approximation, we may also eliminate those at a certain height
in the frame. Finally, the remaining points are bisected into
left and right based on the center of the frame. The left and
right boundaries of the ego lane can be estimated from those
points on the left and right sides, respectively.
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Fig. 3. Scan Lines in Frame and Spatiotemporal Images
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Fig. 4. Case of Removing False Positives Based on Lane Width

Specifically, the estimation is done by line approximation
over the set of points at each side. According to the investiga-
tion in [13], the angles of the left and right boundaries of ego
lane are usually in [30°,55°] and [125°,150°], respectively,
and we follow this insight. We let N r; and N4, denote
the number of points at the left and right sides, respectively.
Basically, we conduct an exhaustive search (2Niest and 2Nrign
) but take a greedy selection policy where the search is stopped
if the coefficient of determination of the examined approximate
line is close to one to avoid computational overhead.

3) Ego Lane Detection Temporal Assessment: For this pur-
pose, we observe the significant change between the detection
in the current frame and that in the last few frames, and
reject the result in the current frame as erroneous if there
is inconsistency. Specifically, we focus on the difference of
the lane width in the current frame and the average width in
the last few frames. If this difference is higher than a specific
threshold value, the detection result in the previous frame is
used instead of that in the current frame. We note that the
possibility of actual lane width change on the road should be
considered, and to cope with this, we update the average width
even though the change is above the threshold, and the result
is replaced by the last result. This enables us to adapt to the
width change in the real world only with a few frames delay.
Figure 4 shows example cases of acceptance and rejection of
the estimated boundaries.

4) Detection of Other lanes: To detect other lanes, the
estimated ego lane is used. Firstly, the vanishing point is
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Fig. 5. Detecting Other Lanes

calculated by finding the intersection of the boundaries of the
ego lane. Secondly, the width of the ego lane at a certain
height is calculated, and using this width, lanes on the left
and right of the ego lane are temporarily assumed (Fig. 5).
Thirdly, the distance from each assumed lane boundary to each
point detected in the previous section is calculated. The lane is
regarded to be present if multiple points are within a certain
distance from the assumed boundary. Fourthly, the assumed
boundary is best fitted to those points by rotating and shifting.
Finally, the lane detection is completed by completing the
boundaries of other lanes by using the time series information
described later.

C. Lane Boundary Completion Using Time Series Information

It is expected that the boundaries of ego and other lanes
do not change significantly in a short time. Therefore, the
time series information can be used to supplement the lane
boundary detection results. In this section, we describe the
completion of lane boundaries using time-series information.

1) Backward Lane Boundary Completion: 1If the lane
boundaries that were detected in the last few frames are not de-
tected, the backward lane boundary completion is performed.
To verify that the two boundaries in consecutive frames are
identical, the position and angle of the lane boundary in the
frame is compared with that in the last frames. Figure 6 shows
an example of the completion of the other lanes. The upper
left image of Figure 6 shows the detected boundaries in the
(N — 1)-th frame (say L1 to L3) , and the upper right shows
those in the N-th frame (say L4 and L5). Then the bottom
image shows the result of completion in the N-th frame using
the previous frame. The lane boundaries L4 and L5 correspond
to L1 and L2, respectively, but that corresponding to L3 is
not detected in the N-th frame. Therefore, L3 is used to
supplement the missing one in the N-th frame.

2) Forward Lane Boundary Completion: Besides the back-
ward completion, forward completion can be performed using
buffered frames. We let N denote the current frame. With the
buffer of size h, allowing the delay of h-frames to output the
final result, the result of (/N —h)-th frame can be complemented
using the detection results of (/N — h + 1)-th to N-th frames.



Fig. 6. Example of completion of a detected leakage lane

For such a scenario that does not need time-critical analysis,
this completion is effective to improve the accuracy.

We may consider different types of completions, but in
this paper, we develop an algorithm by majority vote in the
future frame set. Based on the vote’s decisions, the missing
boundaries are completed using the nearest frames that have
the boundaries, and the falsely-detected ones are eliminated.
This completion is particularly useful in situations such as
the just after the initialization of the detection (no buffered
frames for backward completion) or just after an intersection
(no boundaries are detected when an ego-vehicle passes an
intersection).

IV. EVALUATION
A. Experimental Settings

We used two vehicles with the commercial off-the-shelf car-
mounted cameras. We drove the vehicles on the roads where
the lane boundaries were drawn. To evaluate the performance
of lane detection, video images were taken on various road
conditions — on straight roads, on roads with side streets,
on roads with large curves, on roads with vehicles in the
vicinity, in rainy environments, in the nighttime, and with
road surface markings. The total number of frames used in
the evaluation was 12,000. For reference, the video images in
these conditions are shown in Figure 7 with lane boundary
detection results by our method.

B. Evaluation and Discussion of The Proposed Method

To evaluate the proposed method, we have obtained a de-
tection result every second, and assess the detection accuracy.
The results are shown in Tables I and II.

Table I shows the detection accuracy of ego lanes and
other lanes, without the forward completion, while Table II
shows that with the forward completion having 30 frames (one
second).

From these results, it is shown that sufficient accuracy is
achieved (96.47% and 90.76 on average for ego and other
lanes, respectively) even with severe conditions. The accuracy
in the nighttime is lower compared with other cases since
only several lane boundary positions were detected due to
insufficient lighting. Besides, the accuracy in the nighttime
for other lanes is almost 70% because the headlights did not
illuminate the lanes.

TABLE I
EXPERIMENTAL RESULT (W/O FORWARD COMPLETION)

Condition Ego [%]  Other [%]
Straight Roads 97.30 91.89
with Side Roads 94.20 89.86
with Large Curvature 94.12 87.06
with Surrounding Vehicles 95.16 88.71
Rain 94.41 88.11
Night 92.31 71.79
Average 94.55 86.64
TABLE 11
EXPERIMENTAL RESULT (W/ FORWARD COMPLETION)
Condition Ego [%]  Other [%]
Straight Roads 98.11 98.11
with Side Roads 97.10 85.51
with Large Curvature 95.23 91.67
with Surrounding Vehicles 96.72 93.44
Rain 95.77 91.55
Night 92.30 84.62
Average 96.47 90.76

The forward completion contributes to improving accuracy
by 1.92% and 4.12% in ego and other lanes, respectively,
but even without the completion, we can enjoy less delayed
detection with sufficient accuracy as shown in Table L.

As for comparison, the method in [12] from which we
exploit the concept of spatiotemporal image creation achieved
88.70%, while we achieved 96.46%. This is because we have
the following advantage and enhancement. Firstly, we use il-
luminance to detect boundaries in spatiotemporal images. This
significantly improves robustness. Secondly, we design a fully
new algorithm for boundary estimation considering temporal
dependencies. Fusing several techniques, our method could
achieve stable accuracy under different situations, including
severe cases such as rain, night, and with side roads (lane
boundaries disappear at the side road merging points, which
may often confuse detection algorithms).

Finally, our method estimated the boundaries with an av-
erage of 0.125 s in our current implementation. Since some
parts of the implementation can be parallelized, we expect that
our method can predict boundaries up to 30 frames in realtime
with a modern multi-core processor.

To demonstrate the detection results, we stored the
video in the following URL: https://www.dropbox.com/sh/
kadu7e3vmqlpjim/AACaRQMfe AUPYEJbDfbNO0Yua?dl=0.

V. CONCLUSION AND FUTURE WORKS

We have proposed a method for detecting and tracking
multiple lanes by effectively fusing both frame-by-frame lane
detection and temporal dependencies over the sequence of
frames, using a video taken by a single dash-cam. The
several techniques that leverage temporal dependencies and
illuminance-based lane detection in spatiotemporal images
enable us to robustly detect multiple lanes, under a variety
of situations in normal driving in urban areas (rain, curves,
with windshield shining, lane occlusion by other vehicles, side
roads, etc.). The experimental results using 12,000 frames in
the videos recorded by dash-cams in our daily commute, we



Fig. 7. Video Images Used for Evaluation

have shown that even with severe situations, more than 90%
accuracy is achieved only using a single camera video.

As part of our future work, we are working to leverage this
detection technique for situation awareness using vision, as
we have done using smartphones [14]. Our final goal is to
understand the traffic situations automatically — identifications
of objects (vehicles, pedestrians, and bikes) in the scenes using
the start-of-the-art object detection techniques, and localization
of those objects in terms of the traffic regulations — which
lanes the surrounding vehicles are driving, the pedestrians’
walking positions on narrow roads, etc. for collecting and
sharing the potential risks about accidents. These information
can be shared with other vehicles through connected cars,
which are expected to become increasingly popular. This may
allow the integration of information obtained from various
vehicle perspectives to generate new information. Our lane
detection is useful for this purpose, as well as other general
use cases.
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