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Abstract—Low-cost access points have proliferated wireless
local area networks (WLAN) providing main wireless access in
many unmanaged networks. The majority of these APs rely on re-
ceived signal strength indication (RSSI), known to be unreliable,
as a measure of the wireless link quality. However, an accurate
link measurement is a precursor to channel selection which in
turn allows more efficient use of the wireless resources, especially
in a crowded and dense wireless environment. In this paper, we
present CSI-EWCA, an entropy-based WLAN channel allocation
model using channel state information to combat the unreliability
in RSSI. To develop a self-reliant system that is independent of
CSI data for devices with low computational power, we develop
a machine learning model to predict channel spectral entropy
from physical layer network information extracted from the
Linux kernel. Our experimental results show that CSI-EWCA
can consistently select a channel with high throughput and low
jitters and fewer retries.

Index Terms—Channel Selection, Channel State Information,
Entropy, Machine Learning

I. INTRODUCTION

Wireless local area networks (WLAN) or WiFi have become
increasingly pervasive over the past decade. The increasing
popularity is as a result of the ubiquity of mobile devices with
demand for Internet services. This has led to a corresponding
growth in the production and deployment of low-cost WiFi
routers providing connectivity for these devices. The vast
and dense deployment of these APs in places like residential
apartments and crowded public hot-spots often has a negative
impact on congestion in the unlicensed spectrum. The conges-
tion is exacerbated because many of the APs are installed by
users with limited knowledge on how to effectively configure
the devices to have a better utilization of the unlicensed
spectrum, and thereby, relying on the manufacturer’s default
configurations. The sheer numbers of these scenarios have
made the unlicensed band more congested and call for efficient
channel allocation techniques.

The problem of channel allocation has been reasonably
explored in literature and there are still many open research
areas. In classic channel allocation techniques [21], a station
(STA) actively scans all the available channels and then selects
a channel with least STAs. The idea is to select a channel that
has fewest co-channel interferers. However, having the least
number of STAs does not guarantee a less chaotic channel.
Other techniques like [30] uses a combination of channel
traffic information and RSSI to predict the quality of a channel.
It is important to note that RSSI and traffic volume are not the
only determinants of channel quality. Factors like presence of

STAs in the same channel (co-channel) or neighboring channel
(adjacent channel) interferers, the transmission power of co-
channel and adjacent channel interferer and noise from non-
802.11 devices such as microwave ovens are also major causes
of interference.

Several schemes have been proposed to minimize interfer-
ence using different approaches like optimization techniques in
[22]–[24], game theory in [29], and graph coloring techniques
in [26], [27]. However, the majority of these schemes use RSSI
as an indicator of the quality of a wireless link while in practice
the RSSI is known to be a weak indicator of performance as
it fails to capture the frequency selective fading of a wireless
channel. On the other hand, the channel state information
(CSI) has received more attention as a better measure of
channel quality because it reflects both the time variation
and frequency selectivity of a wireless link. The channel
frequency selectivity property is the driver for several studies
on CSI’s applications toward wireless human activity detection
[7]–[9], smart health monitoring systems [5], [6], dangerous
driving detection, and intelligent driving assistance [10], [11].
These studies pay little attention to the wireless issue like
channel allocation that affects performance. With advancement
towards IEEE 802.11ax for enhanced spectrum efficiency in
WLAN, the need for a robust and effective scheme for channel
allocation becomes more important, especially for extremely
high throughput multi-user MIMO systems.

In this work, we present CSI-EWCA, an entropy-based
WLAN channel allocation scheme using CSI. In contrast to
existing approaches using RSSI, the CSI-EWCA uses an in-
phase (I) and a quadrature (Q) information of the channel. The
entropy of the I/Q data is then used to make channel allocation
due to its ability to perform well in dynamic and multi-fractal
systems. For the rest of this paper, the I/Q information and
CSI are used interchangeably. Our contributions in this paper
can be summarized as below.

• We propose CSI-EWCA, a model based on spectral
entropy using channel state information and utilize the
model to analyze a given 802.11 channel.

• We benchmark the performance of CSI-EWCA with a
channel allocation model using both RSSI and traffic
volume.

• We present a machine learning model on how physical
layer information from the Linux kernel can be used
to facilitate easy prediction of channel spectral entropy
without the Q/I data.



This remaining part of this paper is organized as following.
In section II, related work on CSI and some of its applications
in WiFi system as well as entropy and channel allocation
are discussed. Section III presents our implementation and
Section IV explains setup for the experiment. The evaluation
and results for our model is presented in Section V. Finally,
in Section VI, we conclude the paper.

II. RELATED WORK

A. Channel State Information

CSI has attracted extensive attention from both the research
and industrial community due to its ability to reliably capture
the state of a communication channel in terms of decay,
scattering, fading and other important channel properties that
affect the performance of a multi-input multi-output (MIMO)
systems. The procedure for its applications is also defined
in communication standards for 802.11, LTE and LTE-A [2],
[12].

The recent CSI extraction tools for WiFi [3], [4] have ex-
tended viability of CSI to several consumer-grade applications
such as smart health [5], [6], human activity detection [7]–
[9] and intelligent driving assistance [10], [11]. While these
works show several applications of CSI in real-life systems,
most of them fail to address the fundamental wireless network
task of determining the quality of wireless channels which
may significantly affect the performance of such applications.
Moreover, the trend in future wireless technology like WiFi-
6 requires appropriate channel estimation for interference
mitigation and load balancing of multiple users. It is worthy to
note that CSI is heavily relied on and exploited in current and
future telecommunication systems for channel allocation and
selection to achieve high throughput and spectrum efficiency
[12]. However, the majority of channel allocation models for
802.11 networks are yet to take full benefits of CSI for their
channel selection but rely predominantly on RSSI.

B. Entropy

The entropy [13] is an average bit of information required to
efficiently represent the outcome from an information source
and has found applications in a wide range of domains. In
wireless systems, entropy has been employed for scheduling
[14], developing a framework to represent the uncertainty in
mobile network [15], measuring changes in network topology
[16] and predicting Distributed Denial of Service (DDoS)
attacks and link key updates in sensor networks [17]–[19].
The wide range of applications are due to its ability to
represent information-theoretical characteristics of these multi-
fractal systems by examining the underlying spectral power
distributions and their probabilities. Although entropy has been
applied to various aspects of the wireless systems to evaluate
performance with proven successes, models for channel alloca-
tion in 802.11 networks using entropy are largely unavailable
to the best of our knowledge. The closest work in the wireless
network is [20] where the spectrum entropy prediction is used
to assist in selecting a channel for secondary users in 433MHz
and GSM networks. Our work presents a model using spectral

entropy of CSI that is capable of modelling the WiFi system’s
information and its uncertainty for channel allocation.

C. Channel Allocation
Channel allocation (CA) is undoubtedly one of the major

issues in a wireless network and a key determinant of its
performance. The CA thereby involves designing an efficient
mechanism to mitigate interference that usually results in low
throughput. The issues relating to CA in WLAN have been
well investigated in the literature and several techniques have
been proposed. In the classic CA algorithm [21], a least
congested channel with the least traffics or fewest number
of associated clients is assigned to APs. Other schemes like
[22]–[24] employ a diverse set of optimization approaches
like linear and non-linear programming with the objective
to minimize interference and maximize channel utilization.
Many of these algorithms show the problem to be NP-
complete and solutions are only heuristic with no guaranteed
optimal solution. The algorithms in [25]–[27] address the
problem as graphs using graph-coloring techniques. Schemes
in [28], [29] use game theory by modeling their proposed
solutions to the CA problem as game strategies. While many
of these approaches present different perspectives to model the
problem, most of the solutions are complex without practical
feasibility. Only a few of these techniques consider CA in an
uncoordinated WLAN.

The authors in [30], [31] examine CA in an uncoordinated
WLAN. Similar to [21], they also focus on traffic volume and
RSSI. Unlike these systems using RSSI, we show that using
spectral entropy of CSI offers an effective way for CA with
less complexity and suitable for practical implementation in
low-cost equipment commonly used as APs in many uncoor-
dinated WLAN.

III. ENTROPY BASED WLAN CHANNEL ALLOCATION

The goal of CSI-EWCA is to develop a model that can
efficiently allocate a channel to an 802.11 AP based on max-
imum spectral entropy with minimal overhead while taking
into cognizance of its specific wireless environment. The CA
is only possible after determining accurate information about
each channel. We simplify the design and applicability of
our model to consider only the CSI captured on an AP in a
crowded 2.4 GHz ISM sub-band of the wireless spectrum. We
believe the scope is adequate to cover most channel allocation
problem experienced in an uncoordinated or non-enterprise
WiFi network.

A. Spectral Entropy
To measure channel quality, we capture the CSI as it is

indicative of the current channel condition. The information
is necessary to determine the channel spectral entropy across
the subcarriers. For a given sample period, we collect CSI
across all antenna streams. If nt represents the number of
transmission antenna and nr represents the number of receiv-
ing antenna, then the received signal can be expressed by the
following equation

y = Hx+ n, (1)



where x ∈ Cnt and y ∈ Cnr represent transmitted signal and
received signal complex vector respectively, n ∼ NC(0, σ) is
white Gaussian channel noise. The CSI, H ∈ Cnt×nr , is the
channel matrix between the transmitter and receiver.

The CSI values between the transmit-receive antenna pair
contain the channel response for all the subcarriers. In our
case, this represents nt × nr × Nsc CSI values. Hence, the
CSI for a single spatial link can be represented as

H = [h1, h2, . . . , hNsc
] (2)

where the number of subcarriers Nsc is 56 and each subcarrier
CSI hs, s ∈ [1, . . . , Nsc], in equation (2) is a complex
value containing both amplitude and phase information. The
subcarrier information can be expressed as

h = |h| eiφ

= |h| (cos(φ) + i sin(φ)) (3)

where |h| is the amplitude, the cos(φ) and i sin(φ) represent
I(φ) and Q(φ) component respectively.

We calculate the channel singular value decomposition
(SVD) for H according to [1] to obtain the non-negative real
value across the transmit-receive antenna pair. The SVD for
H is represented as

H = U Σ V ∗ (4)

where U ∈ Cnr×nr and V ∈ Cnt×nt are unitary matrices,
and Σ ∈ Rnr×nt is a diagonal matrix whose elements are the
singular values of matrix H. The singular values σ1 ≥ σ2 ≥
. . . ≥ σm such that m = min(nr, nt) are used to calculate
the spectral entropy according to the following equation

E = −
Nsc∑
i=1

p(σi) log p(σi) (5)

where σi = {σ1, . . . , σNsc} is a set singular values repre-
senting the channel gains for the subcarriers and p(σi) is the
probability of each channel gain..

We employ two transmit and receive antennas for transmis-
sion between the transmitter and receiver using both [3] and
[4] to obtain the spectral entropy for a link. Consequently, we
get the spectral entropy of overall wireless environment by
placing the station’s network interface card (NIC) in monitor
mode to passively scan all the channels and extract I/Q data
in equation (3) from the spectral scan available in Atheros
chipsets. The absolute value of the I/Q data for each of the 56
subcarriers is used to calculate spectral entropy according to
equation (5).

The procedure used by CSI-EWCA to achieve our objective
of selecting a channel with maximum spectral entropy is
described in Algorithm 1. In a given measurement period, the
AP scans all the available channels to obtain the subcarriers’
CSI in the frequency domain and preforms measurement
updates in equation (5) following each step from the previous
paragraph.

Algorithm 1: CSI-EWCA procedure
Result: selected channel, ci
Required;
CSI = {hs ∈ H , ∀s ∈ Nsc}
channel, ci : i ∈ {1, . . . , len(C)}
for i← 1 to len(C) do

Σi = svd(Hi); p(σs) = σs/
∑
σs

E = −
∑Nsc

s=1 p(σs) log p(σs)
ci(E)← max(E)

end
return ci

B. Machine Learning Model

To obviate the task of collecting CSI data on memory-
constrained wireless equipment and devices with low com-
putational power, we develop a machine learning model for
predicting spectral entropy by utilizing the basic WiFi physical
layer information available in the Linux kernel. This is con-
sequent upon the intrinsic relationship between the physical
layer information and channel quality.

The choice of features in our sample is influenced by [2]
and channel utilization for the QoS enhanced basic service set
(QBSS) information element in IEEE 802.11e used by an AP
to inform the QoS wireless clients about channel usage. The
feature vector includes the following elements.

(a) channel busy: CHCCA = tbusy/ttotal is measured as a
ratio of time the scanning station’s NIC detects the channel
as busy as a result of channel assessment for carrier sensing
or energy detection, and the total time spent by the station on
the channel.

(b) channel transmit: CHTX = ttransmit/ttotal is calcu-
lated from the ratio of the time used by scanning AP for
transmitting data on the channel and the total time spent by
the scanning AP on the channel.

(c) channel receive: CHRX = treceive/ttotal is the ratio
of the time used by the station’s NIC for receiving data on
the monitored channel and the total time it has spent on the
channel.

(d) co-channel interferer signal strength: computes the total
power of other APs sharing the same channel from the
standpoint of the current AP using the equation in (6).
The other elements are average data rate for transmissions
on the channel, percentage of retries, and average bytes per
packets during scanning.

LT = 10 log10

N∑
i=1

10pi/10 (6)

Each feature vector is matched with its corresponding CSI
spectral entropy target to form training data for machine
learning. The model training process is a regression supervised
learning using linear regression, support vector regression and
random forest regressor algorithms. The trained model is used
for predicting the CSI entropy. The influence of each feature on



the trained model and its importance to prediction is presented
in section V.
Linear Regression: model assumes linear relationship between
feature vector and its target value. If a training data set of size
m with n–dimensional feature vector and a target variable is
represented as S = {(xi, yi)}mi=1 where x ∈ Rn and y ∈ R,
then the linear relationship between x and y is defined as

y = f(x) = wTx+ b (7)

min

m∑
i=1

(yi − f(xi))
2 =

∑m
i=1 (yi − (wTx+ b))2 (8)

where w represents coefficients and b represents the bias
or intercept. The linear regression algorithm aims to fit the
training data to the linear function in equation (7) and finds a
function with the best fit by minimizing the sum of squared
errors according to equation (8).
Support Vector Regression: is an epsilon regression algorithm
to find a function with at most ε deviation from the target for
all data in the training set. The optimization problem is written
as

min
1

2
‖w‖2

s.t.

{
yi − (wTxi + b) ≤ ε
(wTxi + b)− yi ≤ ε

(9)

The discriminant function obtained from equation (9) is used
to predict the target variable from the test data.
Random Forest: the algorithm reduces high variance in training
data by generating decision trees. Each tree is formed by a
random sampling of training data and tree nodes are split based
on elements of the feature vector. The quality of a split is
determined by its mean squared error. The final model is the
averaging of decision trees produced by the sub-samples of
the dataset. The detailed process of model training and CSI
entropy prediction from each trained model is presented in
section V(B).

IV. EXPERIMENTAL SETUP

In this section, we give a brief description of our testbed as
well as the steps involved in our experiments. We performed
our experiments in several locations on a university campus
and a residential apartment indoor environment with a dense
AP deployment. Each environment has about 50 APs on
average. The experiments were performed during different
hours of the day to capture varied wireless channel utilization
during the “peak” and “off-peak” hours with different traffic
and number of users.

A. Testbed Description

The experiment for this work was performed in the 2.4
GHz band of the unlicensed spectrum. The bandwidth for
transmission is 20 MHz using 56 OFDM subcarriers. Our
testbed includes a TL-WR4300 AP and a laptop running
Ubuntu Linux 4.1.10 kernel. The TL-WR4300 is a dual-band
AP with Atheros wireless NIC Ar9344 and Ar9580. The

Ubuntu Linux machine is a 64-bit (x86 64 version) installation
on HP ProBook 4540s with Atheros wireless NIC Ar9462.
These NICs have 802.11n capabilities and support MIMO
technologies. The scanning station is put in a monitor mode to
passively scan all the available channels and extract I/Q data
from the spectral scan information on the Atheros NIC.

B. Measurement Tools and Setup

The hardware enables us to obtain channel conditions for
the 56 OFDM subcarriers from the scanning AP. We disable
network utility for automatic station connection management
on the AP and configure the NIC to scan all the 13 channels
in 2.4 GHz in turns. The control for the spectral scan facility
in the Atheros NIC is set to operate in chanscan mode. We
configure the spectral scan count to return 16 samples for
each channel when performing a scan. The physical layer
passes the captured frame to the media access control layer
every 64 µsec and a complete cycle for scan successive entry
point through all the channels is 2.87 × 1012 Hz. The I/Q
information obtained from the subcarriers is used to compute
spectral entropy according to equation (2). We only use a
subset of spectral entropy results since transmission is only
permitted in 11 channels in the United States. We evaluate
packet delivery performance on each channel by using iperf3
UDP traffic testing available in OpenWRT.

V. EVALUATION

In this section, we experimentally evaluate the proposed
CSI-EWCA model for channel allocation in our testbeds. The
evaluation is vital to determine whether the model is suitable
for the intended task and comparable in performance to an
existing model for channel allocation. We first perform a UDP
test on a channel to determine the achievable throughput and
jitter for transmission on the channel. Then we present the
results of the machine learning model which we develop using
the physical layer wireless information available in the Linux
kernel.

A. RSSI and CSI-EWCA

To evaluate our model with a model using the RSSI, we
perform a UDP test and obtain the result for Regression
Scoring (RS) in [30]. This serves as a benchmark for our
performance evaluation because several models for CA in
an uncoordinated WLAN rely on RSSI and traffic volume.
The RS is a suitable candidate because the model considers
both normalized RSSI and traffic volume. The result from the
UDP test for CSI-EWCA is then compared to the result from
RS. The evaluation is strictly restricted to non-overlapping
channels by making the inter-channel distance between APs
in [30] to be greater than 3.

The plot in Fig. 1 and 2 show results for the UDP test for
both RS and CSI-EWCA. It is evident that the CA decision
by CSI-EWCA leads to a choice for a better channel that
achieves higher throughput than the RS model as shown in
Fig. 1. The average throughput for RS and CSI-EWCA is
21.73 Mbits/sec and 25.24 Mbits/sec respectively resulting



Fig. 1: Average throughput for UDP
test. Fig. 2: Average jitter for UDP test.

Fig. 3: Average channel transmission
retries.

Fig. 4: CSI Entropy Prediction.

in about 16.15% increase. This is as a result of CSI-EWCA
model’s ability to capture the channel’s underlying information
theoretic characteristics that may not be reflected by RSSI
and traffic volume. The plot of average variation in latency
(jitter) for the UDP test between RS and CSI-EWCA in Fig.
2 shows average jitter to be consistently less than 1% for
the majority of the CA decisions by CSI-EWCA making the
model suitable for low latency applications. The jitter shows a
44.87% decrease in overall average for CA decision from RS
to CSI-EWCA.

We analyze the traffic captured on the monitor station during
each channel scan and the result for channel retries for the
channel selected for RS and CSI-EWCA is presented in Fig
3. The average retries are 8.57% and 5.85% for RS and CSI-
EWCA respectively.

B. CSI Entropy Prediction

We collect sample data from different locations on the uni-
versity campus and apartment residence. The sample feature
is as described in Machine Learning Model in Section III.
We obtain the physical layer information and specific channel
characteristics for 30 seconds for each feature on the channel
during the scan. The spectral data for the frequency band is
stored during the scan and used to calculate channel spectral
entropy. Our sample set consists of 300 wireless information
observations from the Linux kernel and their corresponding
CSI entropy. We trained the dataset using machine learning
regression models. The summarized result of the coefficient

of determination (R2) for the trained model and prediction is
shown in Fig 4.

Fig. 5: Feature importance in
RFR model.

Fig. 6: Features contribution
to prediction.

The machine learning algorithms that we use are ordinary
least square regression (LS), support vector regression (SVR)
and random forest regressor (RFR). To start the training
process, we preprocess the data using a standard scaler to
normalize the features by removing the mean and bringing
the data to unit variance. Then, we engage in training the
model using each of the algorithms. The sample data is split
into 80% for training and 20% for testing. The results of
the regression model when we fit a polynomial curve with
different degrees on the training data set are shown in Table
1. We also obtain a coefficient of determination (R2) for the
SVR model. The SVR model is an epsilon regression model
with a radial basis function kernel. The R2 score for the
SVR is 88.79% and 82.34% for the model and prediction
data respectively. The result implies that the SVR model could
explain up to about 89% of the variability in the CSI entropy
from the training features. To mitigate bias, we employ a
random forest regressor model with ensemble properties.

We notice a slight improvement in testing and prediction
results when we use the ensemble model for training the data.
The decision tree for the RFR model has a depth of 4 and a
minimum split of 2. The results for the RFR model show
the R2 score for the model and prediction to be 92.73%
and 84.31% respectively. The perceived improvement can
be explained by the averaging of predictive power for each
estimator (decision tree) in the RFR model to control over-
fitting during training.

Finally, we examine the contribution of each component of
the feature vector to the CSI spectral entropy prediction and
present the results in Fig. 5 and Fig. 6. Here, we notice that
the channel busy, CHCCA has the largest impact and showing



a 48% contribution to the RFR prediction. As shown in Fig
6., only three components account for about 0.77 percent of
the overall R2 of 84.31 for the RFR model prediction.

VI. CONCLUSION

In this paper, we present a strategy for channel allocation
in a dense uncoordinated WLAN and propose an alternative
to RSSI for determining the best channel. The CSI-EWCA
utilizes spectral entropy of the I/Q information of the channel
to determine how a channel is used and its implementation is
on 802.11 NIC of a commodity AP. In essence, we consider
(i) selection of channel using CSI-EWCA and performance
of the selected channel and (ii) alleviating spectral scan on
devices with low computational power by predicting spectral
entropy from wireless information available in the Linux
kernel. We believe that using this strategy on a low-cost AP
can significantly improve decision about channel allocation in
a chaotic WLAN and help achieve a high-throughput required
by users in multi-user MIMO systems.
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