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Abstract—In this work, we investigate the potential of deep
feedforward neural networks for user position estimation for
a multi-path directional channel model in presence as well as
absence of the line of sight path. Furthermore, we take advantage
of a triplet network architecture combined with a triplet loss
function, which allows us to exploit intrinsic properties of channel
state information. We show that despite the high-dimensional
nature of CSI, the proposed network can be trained to learn
from the low-dimensional space and with less amount of training
samples compared to the long-established approaches in the
literature for fingerprinting localization. Finally, in order to
investigate the performance and emphasize the benefits of triplet
loss, we compare it to another network based on classification.

Index Terms—Localization, Machine Learning, Deep Learning,
Massive MIMO.

I. INTRODUCTION

With an ever increasing demand for high accuracy and

precision location based services, wireless positioning of a

transmitter is an important research direction for the fifth

generation (5G) networks. Location information enables com-

mercially, as well as non-commercially motivated context-

aware services. For example, improvements in efficiency for

asset and freight tracking in the railway sector highly depend

on a position-related information infrastructure [1]. Moreover,

location information can be harnessed by the wireless network

infrastructure itself, in order to improve availability of the

services and adapt allocation of the resources based on a short-

term demand [2].

High-quality positioning methods that are based on global

navigation satellite systems (GNSS) continue to be subjected

to two disadvantages. First, such methods do not provide

reliable position estimates when the target is not in line-of-

sight with the orbiting satellites. In addition, they require

battery-hungry sensors to be active on the target devices. As

the trend of communication systems moves towards network

densification, propagation conditions will likely become even

more challenging and channel characteristics will significantly

vary between different locations.

On the other hand, 5G systems will heavily rely on massive

multiple-input multiple-output (MIMO) technology, in order

to improve spectral efficiency [3]. They operate with a higher

density of directionally aware antennas at the base station

(BS), which opens up new opportunities for different sensing

applications, as well as complement GNSS based methods

for position estimation of user equipments (UEs) [4], [5].

Furthermore, due to a large number of antenna elements at

the BS, a considerable amount of channel state information

(CSI) can be obtained. This information can be harnessed by

machine learning (ML) techniques for position estimation of

the transmitter.

Unlike long-established localization methods that rely on

the received signal strength indicator (RSSI), CSI is able to

distinguish multipath characteristics, and thus has encouraged

active research towards more robust and higher accuracy local-

isation schemes [6]. Obtained high-dimensional CSI at a large-

antenna BS provides finer granularity of UE signatures and can

reveal spatiotemporal information about the transmitter itself,

as well as its surrounding.

Several approaches that make use of CSI fingerprinting

with machine learning and, in particular deep learning, have

been proposed recently [7]–[11]. All of these methods utilize

a neural network to learn a function that maps the input

CSI to a position. Albeit these approaches report to achieve

high accuracy, they also heavily rely on a large amount of

samples collected at high-spatial resolution. Acquisition of

such a large database of CSI fingerprints can be reasoned by

the practical potential of the crowdsourcing paradigm [12].

However, taking into consideration the temporal aspects of

propagation conditions, the amount of available training data

for (re-)training the network at smaller time intervals is a

limiting factor for practical implementations.

Motivated by the success of few-shots learning in different

applications such as vision recognition [13], object detection

[14], object similarity [15], to name a few, we propose and

investigate a similar approach to a so called triplet network,

which is inspired by Siamese networks [16]. A Siamese

network has been recently proposed in wireless positioning

for channel charting technique [17] too. However, the goal

of [17] is to maintain the distance between transmitters by

minimizing the squared distance error. In contrast, we strive to

learn the low-dimensional representation of CSI in a way that

we employ a triplet loss objective function, which has shown

outstanding performance in face recognition and clustering

[18]. In Section II, the proposed architecture is described

in detail so that recognizing the differences from traditional

designs are easy to perceive.

In order to investigate the performance and emphasize the

benefits of a triplet loss, we develop another network that is

based on a conventional formulation of the problem, i.e., a



classification task. We refer to this as the base network.

We structure the remaining of the paper as follows. In

Section II, we introduce the system model considered for this

work. In Section III, we describe the details on the proposed

network architecture and localization methods. In Section IV,

we demonstrate the potential of the triplet loss for wireless

CSI based localisation by performing simulations for different

propagation conditions. Finally, in Section V we draw our

conclusions.

II. SYSTEM MODEL

We consider N single-antenna transmitters corresponding

to {xn ∈ R
2}Nn=1 locations; i.e., position coordinates of

the users. We assume that the user locations are distributed

based on a Poisson point process (PPP) with the density λn.

Hence, the probability of having N users in the plane is

P(N,A) = [λS(A)]ne−λS(A)/N ! [19], where S(A) is the

area of the bounded region of interest A (ROI). We consider

a single BS at a known position with NBS antenna elements.

The signal from each UE that is received at NBS antenna

elements contains NSC subcarriers. We assume that in addition

to a direct line-of-sight (LOS) link between the BS and UE,

there are P additional NLOS paths due to possible scatterers

or reflectors in the ROI. We assume that UEs, as well as

scatterers are static for the duration of a transmission. For

a single coherence bandwidth and P + 1 paths, the NBS × 1
multi-path channel vector for the subcarrier n is modelled as

[20]
h[n] = ABS[n]Γ[n], where (1)

ABS[n] = [aBS (ϕ0) , . . . ,aBS (ϕP )] (2)

is the BS steering vector matrix, which introduces the angle
of arrivals at the receiver ϕ� for each path � = 0, . . . , NP . If

the LOS exists, in addition to the NLOS paths, � = 0, we will

refer to this as NLOS case. In contrast, if the received signal

is obtained only by the NLOS paths, i.e., � = 1, . . . , P , we

will refer to this as the only non-line of sight (ONLOS) case.

In addition,

Γ[n] =
√
NBS ×

⎡
⎢⎢⎣

α0e
−j2πnτ0
NSCTs

...

αP e
−j2πnτP
NSCTs

⎤
⎥⎥⎦ , (3)

where αp = hp/
√
ρp, with hp, ρp and τp denoting the random

complex channel gain, path loss and the time of flight (TOF)

for the pth path, respectively. Finally, in this work we consider

a uniform linear array antenna (ULA) geometry with dan =
λc/2 equidistant elements

aBS(ϕ) =
1√
NBS

[
1 ej

2π
λc

dan sinϕ · · · ej(NBS−1) 2π
λc

dan sinϕ
]T

.

(4)

A. Reference Scenarios

In contrast to N unknown user locations and NP scatterers,

we assume that R locations {x(RP )
r ∈ R

2}Rr=1 are known

in advance. We will be referring to these locations as the

reference point locations (RPs). We will utilize the coordinates

of these RPs for our training purpose. Moreover, we consider

that RPs are distributed with certain density, λr, in the area

such that S(A) is partitioned into:

1) R squares. Each square denotes a quantized location and

determines the resolution, accuracy, as well as the overall

computational complexity of the system. Throughout this

paper, we will refer to this scenario as the grid scenario.

2) While the grid scenario allows us to control the number

of samples per each location for a more accurate investi-

gation of the performance of our schemes, it is obviously

impractical. In contrast to the first scenario, we consider

that RPs are distributed based on PPP and the S(A) is

a Voronoi tessellation. We refer to this scenario as the

Voronoi scenario.

Collecting a large number of CSI from R squares or cells

might be considered as challenging and time-consuming. How-

ever, with the widespread use of mobile devices, traditional

site surveying of the area, i.e., using specialized equipment

and experienced operators, can be replaced by crowdsourcing

approaches. In this case, users can participate to share their

accurate locations. Nevertheless, developing a system with

minimal requirements for ground-truth information for training

improves its overall availability and reliability. Next, we will

describe the proposed methods using neural networks.

III. TRIPLET NETWORK AND LOCALIZATION

In this section, we describe the model, techniques and

localisation algorithm to estimate the position of the unknown

transmitter. First, we will describe the details of deriving

the base network, which is depicted in Fig. 1a. Furthermore,

before feeding CSI into the network, we explicitly calculate the

average per antenna over all subcarriers. In addition, we handle

CSI complex values as two independent real numbers. Thus,

our input channel vector is ĥ ∈ R
M , where M = 1× 2NBS

is the original dimensionality.

A. Base network

We use a deep feedforward network, which is a commonly

used structure for neural networks. The structure of the net-

work has an input layer that corresponds to the CSI values that

are being evaluated, a number of intermediate computation

layers and finally an output layer. So, the goal of such a

network is to approximate some function that maps an input

to a category or another output type

f
(
ĥ;θ

)
: RM �→ R

ML . (5)

Each layer � = 1, . . . , L has the responsibility of mapping

from the previous to the next layer. The mapping depends on

the output of the previous layer, z� = f� (z�−1; θ�), and on a

set of parameters θ� = {W�,b�}, where W� and b� are the

weights and biases respectively. Furthermore, the � = 1 layer

maps the values from the input layer, z0 = ĥ.

Computations and mapping in each layer are done via nodes

(i.e., neurons), where each node is connected to every other

node of the neighbouring layers. In addition to summing up

the weighted inputs, each neuron also applies a non-linear



Dense ReLU Drop. Dense ReLU Drop. Dense ReLU Drop. Dense R
units

Soft.Dense ReLU Drop.

(a) Base network

Feedforward NN

shared
parameters

C
o

n
c
a

te
n

a
te

Feedforward NN

shared
parameters

Feedforward NN

(b) Triplet network

Model B'

CSI embedding

Model B

Collector

Embeddings

Similarity estimation / Location retrieval

k-NN algorithm

(c) System overview based on triplet network

Fig. 1: Proposed method using base network and triplet network for user position estimate

activation function, f� (z�−1; θ�) = σ (W�z�−1 + b�). The

modelling potential of a neural network also depends on the

choice of the activation function, σ(·).
Training a neural network describes the goal of finding

the set of optimal parameter values that minimize a given

loss function, L, over a given batch of dataset, St, and its

corresponding desired output,y,

J(θ) =
1

St

∑
i∈St

L (zL,i,yL,i) , (6)

where zL,i is the output of the last layer when z0,i is used in

the input layer. The set of parameters can be efficiently com-

puted with the stochastic gradient descent algorithm (SGD)

[21] implemented in many software libraries. The SGD em-

ploys backpropagation, which calculates the loss between

the predicted output and the actual output, and updates the

parameters iteratively

θt ← θt−1 − η∇J (θt−1) (7)

using an adaptive or a static learning step size, η. We used

Adam [22] implemented in Tensorflow [23] with static learn-

ing rate, η = 0.001.

The base network has L = 5 layers. To avoid the issue with

the vanishing gradient [24], σ (zi) = max (0, zi), is adopted as

the non-linear activation function for the layers l = {1, 2, 3, 4}.

For the output layer, we use a softmax activation function,

which maps the real-valued input into prediction probability

scores in the range of [0, 1]

σ(zi) =
ezi∑R
r=1 e

zr
, (8)

where each score is the desired prediction that corresponds

to the correct RP location. The number of nodes for each

intermediate layer is 650. Whereas the number of nodes for

the output layer is equivalent to the number of RP locations, R.

As we have not many hyperparameters, we utilize a grid search

[21] to choose values that yields best results. We employ cross-

entropy as loss function to train this classification network. In

order to avoid overfitting, we also adopt a squared Frobenious-

norm regularization on the weights for intermediate computa-

tion layers with a certain regularization strength, λS ,

L = −
R∑

r=1

y(RP )
r log(ŷr) + λS

4∑
�=1

∥∥∥W(�)
∥∥∥2
F
, (9)

where y
(RP )
r and ŷr are the desired and the predicted output

scores, respectively. Furthermore, we employ a dropout be-

tween the intermediate computation layers [25]. In our case,

we use p = 0.8, where p denotes the fraction of active node

connections.

Finally, for the purpose of localization, the system is divided

into two phases: offline and the operation phase. During the

offline phase, the network is trained using the collected CSI

samples at each R location. Then, the estimated position of

the unknown transmitter during the operation phase, x̂i, is a

weighted mean over the K highest predicted probability scores

that correspond to known reference point locations

x̂i =

∑K
k=1 ŷi,kx

(RP )
i,k∑K

k=1 ŷi,k
. (10)

The value of K depends on the overall classification accuracy

of the network. We consider K = 2 as most of the scores will



be zero and thus we can avoid computational complexity by

considering all the values for the weighted mean.

B. Triplet network

In contrast to the conventional formulation of the problem,

i.e., classification task for the base network, we propose

a new approach that is based on learning low-dimensional

representation of the CSI using the triplet network as depicted

in Fig. 1b. The network is composed of three branches of

deep feedforward networks. Each of these networks uses the

same hyperparameters as the base network for the intermediate

computation layers. For the output layer, we use the identity

function, σ(zi) = zi. Moreover, all the three branches share

the same parameters. Thus, the computation complexity, in

terms of the number of parameters, does not increase with

increasing number of RPs. This is another advantage compared

to other solutions that define the problem as a classification

task. The goal of the triplet network is to learn an embedding

in the way that the squared distance between entities that

are ”related” to each other is less than the square distances

of those that are ”unrelated” [18]. The term ”related” in our

case is interpreted with respect to the CSI that are obtained

from transmitters from the same R. Whereas ”unrelated”

corresponds to all pairs from other locations. Therefore, the

objective function encourages that a CSI embedding obtained

from a location within R to be more similar to another

embedding of the same location rather than that from any

other one.

To train the network, we sample similar and non-similar

CSI, i.e., if two CSI vectors correspond to the same square or

cell they are considered similar, otherwise they are not similar.

Thus, we need to sample triplets in such a way that for every

CSI inside the RP region, we choose one CSI feature vector

as the anchor node and the other one as the positive sample.

Then, for the negative (not similar CSI), we only need to

randomly select a feature vector that does not belong to the

same quantized location as the anchor node. For large scale

scenarios and/or very high density of RPs, it might not be

computationally efficient to sample all the possible triplets.

Therefore, one could sample only a portion of the triplets for

the sake of the training process.

By collecting all the possible triplets from the ROI under

investigation, we minimize the loss function:

L = max

(
0,
∥∥∥ŷ(a) − ŷ(p)

∥∥∥2
2
−
∥∥∥ŷ(a) − ŷ(n)

∥∥∥2
2
+ δ

)
(11)

where ŷ(a), ŷ(p) and, ŷ(n) denote the low-dimensional rep-

resentations of CSI for anchor node, positive sample and

negative sample, respectively. The dimensionality of respective

embeddings is M ′ < M . For the purpose of this study,

we have chosen M ′ = 4. The hyper parameter δ enforces

a margin between the similar and non-similar pairs. This

parameter is tuned during the training process and for most of

the experiments δ = 0.2 yields the best results.

Similar to the first method, we divide the system into offline
and operation phase. During the offline phase, the triplet

network is trained as described above. However, in contrast

to the first approach, during this phase we need to save the

derived embeddings in addition to the coordinates of the RPs

in an embedding collector. This can be observed as additional

overhead for the storage and computation parts of the system.

However, due to the capability of the network to be trained

using low-dimensional representations of the CSI, M ′, this can

be considered feasible for many modern systems, as well as

applications. During the operation phase, only one branch of

the network is required to estimate the embedding for the CSI

generated by an unknown transmitter. In this case, given that

a new UE appears in the ROI, we form the distance metric

for each RP as:

dr =‖ ŷq − ŷr ‖, (12)

where ŷq is the predicted embedding CSI of new UE. Then,

we choose rNN = argminr dr. Finally, the location of the

RP with minimum distance is selected as the position of the

transmitter, x̂q = x
(RP )
rNN . The process of training, as well as

operation is depicted in the Fig. 1c.

IV. SIMULATION RESULTS

In this section, we evaluate and compare the performance of

the aforementioned localisation algorithms due to the various

factors that influence their ability for position estimate of

the unknown transmitter. First, the performance is evaluated

for the positioning task for two different propagation cases,

i.e., when the line of sight path is present and absent, as

well as with respect to the impact of density of reference

point locations. Second, the influence of noisy measurements

and the number of antenna elements is further investigated.

Afterwards, the ability of the network to adapt in different

distribution scenarios of the RPs is studied. Finally, the amount

of samples required for training the triplet network in contrast

to base network is explored.

The metric used to evaluate the overall performance of

predicted position is the root mean squared error:

RMSE =

√√√√ 1

Stest

Stest∑
n=1

‖x̂n − xn‖2, (13)

where Stest is the test dataset size, x̂n and xn are the

coordinates for predicted and actual position of the transmitter

respectively. For the simulations, the model with the lowest

validation loss from 100 epochs is selected. Furthermore, when

LoS is absent, the triplet loss margin during training is changed

to δ = 10. The dataset is split into 0.8 and 0.2 for training and

testing respectively. The scenario considered is a 40m× 40m
area, the BS at the origin (0, 0), and users distributed in the

far field at minimum distance of 20m from the BS. Number

of NLoS paths is P = 3, and the number of subcarriers is

NSC = 512.

A. Line of sight path and density of RPs

The density of reference point locations is the parameter that

determines the desired positioning accuracy. With the increase

of RPs, the ability of the system for higher accuracy increases



too. However, the presence or the absence of line of sight

path in a multi-path channel influences the accuracy of the

prediction and consequently limits the accuracy even when

high density of RPs is used.

In Fig. 2, we show the impact of line of sight with the

increase of density of RPs for both networks. When the line of

sight path is present, the increase in density of RPs increases

the overall prediction performance. Furthermore, the triplet
network outperforms the base network when the density of

RPs is λr > 0.05. However, when the line of sight path is

absent, the overall accuracy drops for higher density of RPs

compared to the case when line of sight path is present.
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Fig. 2: The influence of line of sight path and the density of

reference point locations for base network and triplet network.

B. Influence of noisy CSI and the number of antennas

The evaluation of the performance under noisy CSI mea-

surements and different number of antenna elements for the

triplet network is shown in Fig. 3. We can see that the

methods can provide acceptable accuracy for relatively low

SNR. Furthermore, the number of antenna elements in the BS

noticeably influences the position accuracy [26], which is also

observed in our simulation results. However, the advantage of

using higher density of antenna elements could become even

more evident in case of sampling at higher spatial resolution.

C. Distribution of reference point locations

As we discussed in the Section II, collecting ground truth

under the assumption of a grid scenario, where each square

is a quantized location and corresponds to one RP, is not

practical. Thus, in Fig. 4 we show that the networks, without

any hyperparameter changes, can be trained and provide

similar performance when a Voronoi scenario is taken into

consideration for investigation of accuracy. We can observe

that when the line of sight path is present and low density of

RPs, both models can provide an error of less than 10m for

grid, as well as Voronoi scenario. In contrast, increasing the

density of RPs to λr = 1.0, the triplet network outperforms

the base network for both types of scenarios.
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Fig. 3: The impact of noisy CSI measurements and the number

of antenna elements.
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Fig. 4: Triplet network outperforms base network for a high

density of RPs in grid and Voronoi scenarios.

D. Amount of training samples
Developing a machine learning algorithm that allows us to

train with as few groundtruth labels as possible is an important

factor for maintaining high availability. Obtained CSI from the

reference point locations in a dynamic scenario can become

outdated quickly. This requires for the ability of the network

to be trained at smaller times scales depending temporal

characteristics of the environment. In Fig. 5 we show the

investigation results for the amount of samples required for (re-

)training the networks. As we can observe, the triplet network
can provide satisfactory positioning accuracy even with very

low amount of samples, i.e., 3 samples /m2 corresponding to

a reference location. The triplet network outperforms the base
network at the 80th percentile even when the after-mentioned

network is trained with almost 10 times the amount of samples.

This is a remarkable potential of these types of networks

towards a high-accuracy practical localisation scheme in an

ever-changing environment.
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V. CONCLUSION

In this paper, we investigated the potential of feedforward

neural networks in a triplet network architecture towards a

high-accuracy localisation scheme depending on the density

of reference point locations. We showed that the proposed

scheme can provide higher accuracy with less amount of

samples for (re-)training, enabling the potential of neural

network based localisation for practical implementations in a

changing propagation environment. We also investigated the

impact of the presence and the absence of line of a sight path

in a multi-path channel model. We showed that we can learn a

low-dimensional representation of CSI acquired at a massive

MIMO base station, which is sufficient to capture multi-path

characteristics of the channel and still reveal spatial signature

of the unknown transmitter.
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