
An Intelligent Malware Detection and Classification
System Using Apps-to-Images Transformations and

Convolutional Neural Networks
Farid Naït-Abdesselam†∗, Asim Darwaish∗ and Chafiq Titouna∗

∗University of Paris, France
†University of Missouri Kansas City, USA

Abstract—With the proliferation of Mobile Internet,
handheld devices are facing continuous threats from
apps that contain malicious intents. These malicious
apps, or malware, have the capability of dynamically
changing their intended code as they spread. Moreover,
the diversity and volume of their variants severely
undermine the effectiveness of traditional defenses,
which typically use signature-based techniques, and
make them unable to detect the previously unknown
malware. However, the variants of malware families
share typical behavioral patterns reflecting their origin
and purpose. The behavioral patterns, obtained either
statically or dynamically, can be exploited to detect
and classify unknownmalware into their known families
using machine learning techniques. In this paper, we
propose a new approach for detecting and analyzing
a malware. Mainly focused on android apps, our ap-
proach adopts the two following steps: (1) performs a
transformation of an APK file into a lightweight RGB
image using a predefined dictionary and intelligent
mapping, and (2) trains a convolutional neural network
on the obtained images for the purpose of signature
detection and malware family classification. The results
obtained using the Androzoo dataset show that our
system classifies both legacy and new malware apps
with high accuracy, low false-negative rate (FNR), and
low false-positive rate (FPR).
Keywords: Android malware, Deep learning, Classifi-

cation.

I. Introduction

The proliferation of handheld devices, endowed with
numerous sensors (such as barometer, gyroscope, and
positioning sensors), has unlocked a new era of smart-apps
development for end-users, contributing in the generation
of highly sensitive information, which need paramount
attention to protect from malicious activities. Therefore,
it is imperative to establish a robust defense line against
malware apps for handheld devices. The detection and
isolation of malware is challenging due to the nature,
diversity, obfuscation, and other sophisticated ways of
malicious code. Moreover, with the exponential growth of
mobile apps, it is notably very challenging to examine each
application manually for malicious behaviors.

Malware detection techniques follow mainly two ap-
proaches: (1) a static analysis, where an analysis is done
before the execution of the malware, or (2) a dynamic

analysis, where an analysis is done during the execution
of the malware. Following a static analysis approach, we
propose in this paper a novel malware detection system
which transforms first any Android APK file into an
RGB image, independently from feature engineering and
source code analysis. Using the resulted RGB images from
transformation, we train a convolutional neural network
(CNN) for signature detection and classification of differ-
ent malware in their respective families. To set a combat
force against an android malware challenge, we aim to
build a lightweight, robust, and scalable malware detector
without using feature engineering techniques, parameter
configuration and zero code analysis. The main contribu-
tions of this research work are:
Novel Transformation of an APK file to an RGB Image:
Following the principle of static analysis, we opted for a
reverse engineering tool, called Androguard [1], to analyze
the android application packaging file and collect all the
permissions, activities, services, receivers, providers, and
their intents, as well as strategically map the android
manifest.xml to the green channel of an image. Secondly,
we collect and map all the API calls and opcode sequences
into the red channel of an image. Lastly, we devise the
exhaustive predefined dictionary [2] for suspected API
calls, permissions, activities, services, and receivers to map
them to a blue channel, along with protected strings with-
out redundant information. We have used interpolation
techniques to keep the image size consistent for training
the classifier.
Scalable and robust solution: The proposed system is scal-
able and capable of detecting malware ranges from 2009
to date. The system can also detect evolving, varying,
sophisticated, and polymorphic malware apps without
source code analysis and fingerprint features. A lightweight
reverse engineering tool Andaguard expedites the static
analysis of large APK samples. We have evaluated the
performance of the system on AndroZoo repository over
various balance datasets. In addition to signatures de-
tection, the system also performs image-based malware
family classification. We have evaluated our approach for
the top 10 malware families provided in the AndroZoo
dataset.
The rest of the paper is organized as follows: Section II

provides the related research work. Section III articulates
our proposed system for APK transformation and android
malware detection. Section IV contains the experimental
setup and performance of the system. Finally, section V
summarizes the contributions and opens future directions.

II. Related Work

This section circumvents the related research work for
android malware detection using machine learning and
deep learning approaches following static or dynamic anal-
ysis track.

Malware apps are continuously emerging, and new vari-
ants are being introduced daily, traditional approaches like
signature-based and handcrafted feature selection have
limitations to cope with this challenge and struggles to
detect new malware and their corresponding families.
Rule-based and various machine learning techniques have
been in practice for a decade to detect both static [3]–
[6] and dynamic [7], [8] malware detection. These static
approaches heavily rely on handcrafted feature selection,
such as intents, API calls, permissions, etc. using machine
learning techniques, for instance, Naive-bayesian and K-
nearest neighbor [9], Support Vector Machine (SVM) [3].
Moreover, n-gram based malware detection systems also
used to distinguish between benign and malware by in-
corporating low-level opcodes [10]. A traditional ML ap-
proach (SVM) is used for malware detection [4], which uses
permissions mining to determine the most contributing
and significant permission for the classification of malware.
Their goal was to use the minimum number of permissions
to analyze the malicious behavior of an app and ended up
with 22 relevant permissions. Their accuracy is not very
high as compared to other deep learning-based approaches
and nor identifying the malware family.

With the advancement of deep learning, Neural Net-
works are widely acceptable in Computer Vision and
Natural Language Processing domains. Similarly, [11] used
the Recurrent Neural Network (RNN) for malware classi-
fication using the hybrid approach, including static and
dynamic features. An alternative of n-gram based mal-
ware detection approach, [12], used a convolutional neural
network to process the raw Dalvik bytecode and detect
malware by capitalizing the raw opcode sequence by elim-
inating the feature engineering. However, this approach is
blind in terms of static and dynamic analysis and did not
explain the type of malware and have no clue about apps
permissions. Another Neural network-based approach [13]
has been proposed for malware detection via sequences
mining. This approach uses the raw sequences of API
calls that appear in disassembled code (DEX file). The
purposed approach has limitations for code obfuscation
and ignoring other critical contributing features.

Existing malware techniques are not robust to detect
new malware families and struggling on the automatic
extraction of fine-grained features. We have designed a

system that is independent of feature engineering tech-
nique, generalized, lightweight, scalable, and converts an
APK file to RGB image by intelligently mapping the dex
file and manifest file on a different channel for malware
detection and family classification.

III. Proposed Approach
This section explains our proposed approach for RGB-

based malware detection. The section starts with APK file
structure, conversion of APK file components to different
channels, normalization of obtained images, and training
of the convolutional neural network. The source code of
complete system is available at [2].

A. Transformation of Android Application Packaging
(APK) file
Java is the language choice for all android applications

and compiled into Dalvik bytecode wrapped in a .dex
file. APK is the Zip format used by Android OS for the
distribution and installation of android application on any
smartphone. The main structure of APK is mentioned as:
• META-INF/: manifest file, exhibit Java jar file informa-
tion
• lib/: compiled code in .so format from NDK (Android
Native Kit)
• res/: non compiled resources.
• AndroidManifest.xml/: posses configuration file for ac-
cess control, authorization, version, and services.
• classes.dex/: Android exe file, java code compiled in
Dalivk bytedcode.
Our approach starts with the AndroidManifest.xml file

and collects all the permissions and app components (ac-
tivities, services, receivers, providers, and their intents) us-
ing the reverse engineering tool Androguard. Androguard
is lightweight and has fast extraction time as compared
to NinjaDroid [14] and other tools. We convert all de-
clared permission and app component into pixel values
and place them on the green channel, excluding suspected
permissions and app components found in predefined
directory (exhaustive dictionary of suspected API calls,
permissions, and app components formulated based on
previous studies). The conversion is straightforward; we
take the ASCI code of each character from permissions
and app components. We arrange them in a specific order
to generate a pattern in the resultant green channel, as
depicted in Figure 1.

Fig. 1: Green Channel: Conversion of Permissions and app
components from AndroidManifest.XML

After the manifest file, the system preforms the static
analysis of a dex file and extract all API calls and opcode

sequences from Dalvik bytecode. Excluding suspected API
calls, we convert all other API calls to a decimal number
by summing every ASCII character represented as (C) and
take the modulus by 255 in order to normalize in a pixel
range [0-255] as per equation 1, where C represents the
ASCI character value in each API call.

APIP ixelV alue = (
n∑

i=1
Ci) mod 256 (1)

For instance, Landroid/telephony/TelephonyManager-
getDeviceId is and API call and conversion is given as
under: Decimal values = [76, 97, 110, 100, 114, 111, 105,
100, 47, 116, 101, 108, 101, 112, 104, 111, 110, 121, 47,
84, 101, 108, 101, 112, 104, 111, 110, 121, 77, 97, 110, 97,
103, 101, 114, 59, 45, 62, 103, 101, 116, 68, 101, 118, 105,
99, 101, 73, 100]
Sum = 4793 Pixel-value = 4793 mod 255 = 203
Besides API mapping, there are millions of opcodes

(operation code) in the dex file used in combination with
different class-methods to execute various instructions at
low level and few specific opcode sequences are used in
malware. We have only used unique opcode sequences from
the dex file and map on red channel. Because using all
opcode makes the image noisy and can make the classi-
fication process cumbersome. Every opcode has a prede-
fined value range from [0-255]. For example: invoke-super
parameter, method-to-call: Invokes the virtual method of
the immediate parent class. The opcode ‘invoke-super’ has
hexa value of ‘6F’ and the decimal value of ‘111’. Mapping
of red channel can be visualized from the Figure 2

Fig. 2: Red Channel: Conversion of API calls and unique opcode
sequences from Dex file

Finally, we collect all the suspected malicious permission
and app components from the manifest file, suspected API
calls, opcodes from dex, and protected strings and map
their predefined pixel value on the blue channel, as shown
in Figure 3. The system measures the similarity index
of suspected malicious behavior with an exhaustive pre-
defined dictionary formulated based on different malware
studies [9], [15]–[17]. Moreover, if any suspected API call
or permission is not listed in the exhaustive predefined
dictionary, it is still being incorporated in the red and
green channels and participates in the classification pro-
cess. It is essential to highlight that Androguard does not
only return protected strings which help in classification
but also return rough strings which lead to noisy image.
Therefore, we are only interested in malicious properties
encapsulated in protected strings, which may be API call,
permission, or any app component.

Fig. 3: Blue Channel: Conversion of protected strings,suspected
permissions, app components and API calls

B. Consistent Image Size
Different Android applications have different APK size,

the resultant image may have inconsistent channel size
based on dex and manifest file. We need an RGB image
with consistent channel size to feed our CNN classifier,
we fix the image into 64x64 (height x width). If the size
of the channel is less/greater than the specified threshold,
we elongate or shrink the channel size by using interlinear
interpolation. The complete transformation process of con-
verting the APK into RGB image is shown in Algorithm 1.

Algorithm 1 Transformation of Android Application
Packaging (APK) file to an RGB Image
1: Predefined_Dictionary suspicious properties from

literature with assigned pixel values
2: Begin
3: a, d, dx⇐ Androguard(path/to/sha256.apk)
4: green_channel, manifestsusp ⇐manifest2Pixel(a)
5: Interpolation(green_channel,size= (64× 64))
6: Convert Dex2Pixel(d, dx)
7: red_channel, api_callssusp ⇐api_calls2Pixel(dx)
8: Interpolation(red_channel,size= (64× 64))
9: opcodes_pixel⇐opcodes2Pixel(dx)
10: suspicious_strings⇐strings2Pixel(d)
11: blue_channel⇐ manifestsusp+api_callssusp

+suspicious_strings+opcodes_pixel

12: Interpolation(blue_channel,size= (64× 64))
13: RGB ⇐ merge(red_channel, green_channel,

blue_channel)
14: End

C. Convolutional Neural Network for Image-based Android
Malware detection
Due to the inherent properties of images, Convolutional

Neural Networks are widely used for images and contin-
uous data. As now APKs are transformed into images
and applying the CNN seems a smart choice for signature
detection and family classification. The architecture of
CNN for malware detection is depicted in Figure 4
From our experience and literature review, it is well

known that sigmoid and hyperbolic tangent (tanh) results
in gradient vanishing in back-propagation. Therefore, as
depicted in figure 4 we have used rectified linear unit
(ReLu) as an activation function. we uses ‘sigmoid’ activa-
tion in the output layer and for signature detection we use

Fig. 4: Complete architecture of Deep Malware Detection System

‘binary cross entropy’ as a loss function given in equation 2
where, y stands for actual true label and ŷ represents
the predicted label. We have used the adaptive learning
rate, Adam, with an initial learning rate set to 0.001,
which decayed to 10−5 after each epoch. The rationale
behind using Adam is its popularity for training the deep
learning model with fast speed, plus it enables the power
of Adagrad (Adaptive Gradient Algorithm) and RMSprop
(Root Mean Square Propagation).

L(y, ŷ) = − 1
N

N∑
i=0

(y ∗ log ˆ(yi) + (1− y) ∗ log(1− ˆ(yi))

(2)
Figure 4 states that appetite to our system is the converted
APK into RGB image with three channels and a size
of 64 x 64. We start with a kernel size of 3 x 3 and
filter number 32 at the first convolution layer. We use
architecture consisting of two convolutional layers with
Relu activation function followed by max pooling (2,2) and
dropout with rate 0.25. After flattening the output of the
dropout passes it through another dropout layer with a
rate 0.5. The dropout layer is followed by a dense layer
with glorot uniform and the output layer with sigmoid
activation as depicted in Figure 4. We initialize the kernel
with glorat also called xavier uniform [18] which draws
samples from uniform distribution within the limit, where
limit is defined as per equation 3.

limit =
√

6
fanin + fanout

(3)

where fanin and fanout shows the number of input and
output in weight tensor respectively.

IV. Experiments and Discussion
This section describes the details of dataset, exper-

imental setup, segregation of data, selection of hyper-
parameters and results followed by discussion and future
steps.

A. Details of Dataset
We are using AndroZoo [19] for evaluating our approach

because it is a continuous growing repository and has more
than 10 million android applications. These applications
are labeled as malware and benign with multiple Anti
Virus (AV) Engines. A total of 7.3 million applications

marked as benign by gauging their Total Virus detection
(VT) = 0. For our evaluation, we only choose malware
apps; where VT detection is ≥ 15 and select apps from
2009 to 2020. AndroZoo provide SHA256 to access appli-
cations along with creation date which we use to segregate
different datasets. The details of the dataset are given in
Table I

TABLE I: Yearly view of Malware Samples in AndroZoo Dataset
Year #APKs VT ≥15 Year #APKs VT ≥15
2020 9978 3 2014 1762714 87400
2019 181825 1562 2013 772918 47925
2018 428725 5153 2012 566549 139169
2017 383406 5754 2011 219627 36900
2016 1425425 22781 2010 61122 1235
2015 866759 49280 2009 12075 61

B. Results for Signature Detection & Family Classification

We have segregated the datasets based on year and VT
detection (Virus detection). For the first experiment, we
have used the VT detection ≥ 35 and randomly collected
4K Malware and 4K Benign APKs from [2009-2011] using
the SHA256 file provided by AndroZoo [19]. Similarly,
the second experiment comprises of a dataset belongs to
[2012-2014] and contains 12k malware and benign samples
with VT detection ≥ 35. The third experiment, dataset
pertinent to year range [2015-2016] with VT detection
≥ 15 and comprises 30K samples for both malware and
benign. The final experiment contains data from the year
range[2017-2020] with VT detection ≥15 and contains 11k
latest malware and benign samples. As per our approach
discussed in section III performs the novel transformation
of APKs to RGB images. On top of these transformed
images, we have trained a CNN and achieve remarkable
results, as depicted in table II.
Malware family classification is important for security

experts and anti-virus vendors to determine the threat
level and establishing an apt defense mechanism. It is
crucial for them to know about malware families and be-
haviors to educate and/or alert end users, how a particular
malware can affect his/her mobile device. In AndroZoo
dataset, there are total of 3305 different malware families
and labels are not available from 2017-20 , for simplicity
we have listed top 10 families and their counts in Table III.
We ran a series of experiments with different malware

samples and VT detection for Android malware family
classification. Using the SHA256 file, we have downloaded
the top 10 malware families for simplicity, and the number
of samples for each family is more than 5000. To the best
of our knowledge, we are the first to use a huge number
of family-wise samples for malware family classification.
Following the same methodology discussed in section III,
we have trained convolutional neural network (CNN) for
malware samples having family labels available in Andro-
Zoo dataset. The results are given in Table IV

TABLE II: RGB-based Malware Signature Detection Using CNN and ResNet

M/B VT Det Year FNR% FPR% F-1 AOC Acc%
CNN ResNet CNN ResNet CNN ResNet CNN ResNet CNN ResNet

4K Benign 0 [2009-2011] 1.7 0.62 1.5 0.25 0.98 0.99 0.997 1.0 98.21 99.414K Malware ≥ 35
12K Benign 0 [2012-2014] 1.2 1.39 1.9 1.48 0.98 0.984 0.997 0.99 98.39 98.1812K Malware ≥ 35
30K Benign 0 [2015-2016] 4.9 2.7 3.5 2.3 0.95 0.96 0.977 0.977 95.73 97.4230K Malware ≥ 15
11K Benign 0 [2017-2020] 1.72 0.85 0.72 0.39 0.98 0.99 0.999 1.0 98.77 99.3711K Malware ≥15

TABLE III: Top 10 Malware Families in AndroZoo Dataset
Rank Family Count Rank Family Count

1 dowgin 262057 6 artemis 38041
2 kuguo 107114 7 droidkungfu 37336
3 airpush 100471 8 leadbolt 31491
4 revmob 74419 9 adwo 28733
5 youmi 51762 10 jiagu 27526

TABLE IV: Results of CNN for Malware Family Classification
Families #Samples VT Det FPR% F1 Acc%

6 600/family ≥35 9.7 0.91 91.21
10 175/family ≥35 5.8 0.96 96
5 4100/family ≥15 10.8 0.92 92.3
6 2300/family ≥15 11.2 0.92 92.4

10 4100/family ≥15 15.84 0.88 88.91

C. Discussion
The proposed approach is independent of feature engi-

neering and extensive source code analysis. Moreover, it is
very lightweight in terms of signature detection and family
classification. The reason for being lightweight is the size of
an APK file, which mostly varies between 4MB to 80 MB.
As per the blog [20] an average app size for an android
mobile application is 15MB and it varies for different
mobile app categories. For example, an average size of a
game app is 68MB and a navigation app is 45MB. Our on-
device solution quickly converts an APK file into an RGB
image of size 2-3KB in less than a second based on APK
file size. Uploading an image of 3KB on the cloud for CNN
based Malware detector and family classification is way
cheaper and faster as compared to sending the whole or
partial APK file. It is also imperative to mention that our
approach is robust, practical, lightweight, and extremely
suitable for android devices to detect legacy and newly-
crafted malware compared to state-of-the-art approaches.
Table V circumvents the comparison with a few latest and
state of the art malware detection techniques.

Numerous other approaches have been proposed in the
literature for android malware detection similarly to few
given in the table V. Our approach is tested and validated
on the largest malware dataset for both legacy and new
malware without any feature engineering, as depicted in
Table II and also performs the family classification of
detected malware. [17], [21]–[23] used a total of 60K,
22K (2K malware only) , less than 4K malware, and 5.5k
malware apps respectively for their experiments. Aforesaid
approaches do not perform family classification; therefore,

we have compared our result to a few other state of
the art approaches for family classification. Comparison
of Table IV and Table VI clearly articulates that earlier
approaches are using old and very few malware samples
for a particular class.
During experiments we have applied both CNN and

ResNet (Residual Network) a flavour of Convolutional
Neural Network for image recognition. We have not seen
a substantial difference in results for malware signature
detection, as depicted in Table II. We have used three
different kinds of interpolation to normalize the resultant
image size of an APK. These interpolation methods are
Inter-area interpolation, inter-cubic interpolation and in-
terlinear interpolation for generating pixel for new posi-
tions. Inter linear interpolation yielded better results as
compared to other techniques due to the nature of the
resultant image while other techniques are recommended
for general objects within a scene.

TABLE V: Comparison of Malware Detection: Feature Engineering
(FE) and Family Classification (FC)

Ref. FE FC Dataset Acc% FN%
[17] Yes No AMD+Drebin 97 3.16
[21] Yes No Google.P+Genome 89.03 -
[24] No No Google Play 93 9.0
[22] Yes No Genome+Drebin 97.2 -
[25] Yes No AndroZoo 97.65 -
[23] Yes No Drebin 98 7.0
Our No Yes AndroZoo 98.77 1.7

V. Conclusion

As Android is an open-source and malware samples
continue to grow, this research work aims to build a deep
learning-based malware detection system which can work
for both legacy and new malwares. We have analyzed
the android apps from 2009 to 2020 from the Andro-
Zoo data repository without any feature engineering and
source code analysis. The proposed approach performs
the intelligent transformation of an APK file to an RGB
image by mapping manifest file and dex file to correspond-
ing channels. A CNN based malware classifier is trained
and yielded excellent results as compared to previous
approaches. Moreover, it is a lightweight and scalable
solution for android devices. In the future, we are targeting

our system to expose to different adversarial attacks to
evaluate its robustness under different adversarial settings.

TABLE VI: Malware Family Classification Comparison
Ref. # Samples # Families F-1 Dataset
[26] 59-833 15 0.82-0.95 Drebin
[27] 43-925 14 90.67 Drebin
[28] 43-925 20 0.90 Drebin
[29] 2408(total) 20 0.71 AMD
[30] 643(total) 43 91.1 FalDroid-II

References
[1] “Reverse engineering malware and goodware analysis

of android applications, 6, 2017, [online] available:
https://code.google.com/ archive/p/androguard/.,” Last
visited February 2020.

[2] “A. darwaish: Source code and dictionay, rgb-
based-andorid-malware-detection [online] available:
https://github.com/asimswati553/.,” Last visited June 2020.

[3] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck,
and C. Siemens, “Drebin: Effective and explainable detection of
android malware in your pocket.,” in Ndss, vol. 14, pp. 23–26,
2014.

[4] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, “Significant
permission identification for machine-learning-based android
malware detection,” IEEE Transactions on Industrial Informat-
ics, vol. 14, no. 7, pp. 3216–3225, 2018.

[5] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, and M. Conti,
“Textdroid: Semantics-based detection of mobile malware us-
ing network flows,” in 2017 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pp. 18–
23, IEEE, 2017.

[6] K. Xu, Y. Li, R. H. Deng, and K. Chen, “Deeprefiner: Multi-
layer android malware detection system applying deep neural
networks,” in 2018 IEEE European Symposium on Security and
Privacy (EuroS&P), pp. 473–487, IEEE, 2018.

[7] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P.
Cox, J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an
information-flow tracking system for realtime privacy monitor-
ing on smartphones,” ACM Transactions on Computer Systems
(TOCS), vol. 32, no. 2, pp. 1–29, 2014.

[8] C. Jindal, C. Salls, H. Aghakhani, K. Long, C. Kruegel, and
G. Vigna, “Neurlux: dynamic malware analysis without feature
engineering,” in Proceedings of the 35th Annual Computer Se-
curity Applications Conference, pp. 444–455, 2019.

[9] A. Sharma and S. K. Dash, “Mining api calls and permissions
for android malware detection,” in International Conference on
Cryptology and Network Security, pp. 191–205, Springer, 2014.

[10] Q. Jerome, K. Allix, R. State, and T. Engel, “Using opcode-
sequences to detect malicious android applications,” in 2014
IEEE International Conference on Communications (ICC),
pp. 914–919, IEEE, 2014.

[11] W. Jung, S. Kim, and S. Choi, “Poster: deep learning for zero-
day flash malware detection,” in 36th IEEE symposium on
security and privacy, vol. 10, pp. 2809695–2817880, 2015.

[12] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima,
P. Miller, S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, A. Doupé,
et al., “Deep android malware detection,” in Proceedings of the
Seventh ACM on Conference on Data and Application Security
and Privacy, pp. 301–308, 2017.

[15] X. Jiang, B. Mao, J. Guan, and X. Huang, “Android malware
detection using fine-grained features,” Scientific Programming,
vol. 2020, 2020.

[13] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “Mal-
dozer: Automatic framework for android malware detection
using deep learning,” Digital Investigation, vol. 24, pp. S48–S59,
2018.

[14] “Rovelli, p. ninja droid, [online] available:
https://github.com/rovellipaolo/ninjadroid/.,” Last visited
February 2020.

[16] N. V. Duc, P. T. Giang, and P. M. Vi, “Permission analysis
for android malware detection,” in The Proceedings of the 7th
VAST-AIST Workshop “Research Collaboration: Review and
perspective”, 2015.

[17] J. Jung, H. Kim, D. Shin, M. Lee, H. Lee, S.-j. Cho, and K. Suh,
“Android malware detection based on useful api calls and ma-
chine learning,” in 2018 IEEE First International Conference
on Artificial Intelligence and Knowledge Engineering (AIKE),
pp. 175–178, IEEE, 2018.

[18] X. Glorot and Y. Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” in Proceedings of
the thirteenth international conference on artificial intelligence
and statistics, pp. 249–256, 2010.

[19] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,”
in 2016 IEEE/ACM 13th Working Conference on Mining Soft-
ware Repositories (MSR), pp. 468–471, IEEE, 2016.

[20] “Average app size,2017 blog by brendon boshell,” Last visited
April 2020.

[21] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware
characterization and detection using deep learning,” Tsinghua
Science and Technology, vol. 21, no. 1, pp. 114–123, 2016.

[22] X. Su, D. Zhang, W. Li, and K. Zhao, “A deep learning approach
to android malware feature learning and detection,” in 2016
IEEE Trustcom/BigDataSE/ISPA, pp. 244–251, IEEE, 2016.

[23] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. Mc-
Daniel, “Adversarial perturbations against deep neural networks
for malware classification,” arXiv preprint arXiv:1606.04435,
2016.

[24] T. Hsien-De Huang and H.-Y. Kao, “R2-d2: Color-inspired
convolutional neural network (cnn)-based android malware de-
tections,” in 2018 IEEE International Conference on Big Data
(Big Data), pp. 2633–2642, IEEE, 2018.

[25] S. Jaiswal, Feature Engineering & Analysis Towards Temporally
Robust Detection of Android Malware. PhD thesis, Indian
Institute of Technology Kanpur, 2019.

[26] T. Chakraborty, F. Pierazzi, and V. Subrahmanian, “Ec2: En-
semble clustering and classification for predicting android mal-
ware families,” IEEE Transactions on Dependable and Secure
Computing, 2017.

[27] Y.-l. Zhao and Q. Qian, “Android malware identification
through visual exploration of disassembly files,” International
Journal of Network Security, vol. 20, no. 6, pp. 1061–1073, 2018.

[28] Y. Sun, Y. Chen, Y. Pan, and L. Wu, “Android malware family
classification based on deep learning of code images.,” IAENG
International Journal of Computer Science, vol. 46, no. 4, 2019.

[29] S. Türker and A. B. Can, “Andmfc: Android malware fam-
ily classification framework,” in 2019 IEEE 30th International
Symposium on Personal, Indoor and Mobile Radio Communi-
cations (PIMRC Workshops), pp. 1–6, IEEE, 2019.

[30] M. Fan, J. Liu, X. Luo, K. Chen, Z. Tian, Q. Zheng, and
T. Liu, “Android malware familial classification and represen-
tative sample selection via frequent subgraph analysis,” IEEE
Transactions on Information Forensics and Security, vol. 13,
no. 8, pp. 1890–1905, 2018.

