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Abstract—Smart cities integrate data collection and communi-
cation technologies to operate more efficiently in order to provide
better services to citizens, improved road traffic situation, better
economic development, etc. However, safety still a main concern
of road traffic as road crashes pose serious threats to road
users causing death and injury all over the world. Road traffic
safety is the process of implementing measures to reduce the
number of crashes, death and severe injuries. In this paper, using
Machine Learning (ML) algorithms, Off-line, we train and test
the Intelligent and Dynamic Adaptation Model (IDAM) on the
road traffic data collected for 14 years of car crashes in United
Kingdom (UK). IDAM then on-line determines the optimal speed
limit for each road segment based on many predictors such as
weather, road type, light condition, and many others, stated later.
We train and test IDAM using three different machine learning
algorithms: Artificial Neural Network (ANN), Decision Tree (DT),
and Linear Regression (LR) with Stochastic Gradient Descent
(SGD). Using the testing dataset, IDAM achieves prediction
accuracy of around 96%. Implemented in an operation algorithm,
IDAM can continuously adapt the road speed limit to an optimal
value as the predictors change on-line.

Index Terms—Intelligent Speed Adaptation, Road Speed Man-
agement, Speed Limits, Smart Cities, Road Safety.

I. INTRODUCTION

The rapid development of road transportation systems have
resulted in a substantial increase in the number of fatal road
crashes. Every year, many people are killed or injured in car
accidents and collisions [1]. In 2016, more than 1.2 million
people died in road crashes [2].

There are many reasons for road accidents including weath-
er condition, visibility, road type, speed limits, road conditions,
etc. Speeding has been identified as a key risk factor in
road traffic crashes and has been demonstrated in several
studies over the years. According to Finch et al. [3], the
number of accidents resulting in injury can be decreased 3%
when reducing the speed by 1 km/h. Nilsson [4], stated that
decreasing the speed of a vehicle from 55 km/h to 50 km/h,
can decrease the number of fatal and serious-injury accidents
by almost 25%. Warner and Aberg [5] declared that almost
one-fifth of road crash deaths would have survived if drivers
did not exceed the speed limits.

Traditional road speed control systems such as, police
enforcement and speed cameras, seek to prevent speeding by
punishing violating drivers using fines or through license point
system. However, these types of enforcement are not effective
and tend to be quite inefficient. For example, drivers tend to
reduce speed only near the enforcement area [6].

Recent and ongoing development systems provide possible
opportunities in assisting drivers to adhere to speed limits. One
system that is increasingly gaining attention is the Intelligent
Speed Adaptation (ISA) system that can warn the driver when
the vehicle exceeds the recommended speed limit. In addition,
several advanced solutions relying on wireless communication
standards have been proposed to provide Intelligent Trans-
portation Systems (ITS) in smart cities. To the best of our
knowledge, few of them focused on optimizing and solving
the speed limits impact problem on roads and road segments.

Therefore, an advanced speed adaptation system where a
speed limit of a road segment is set according to the current
conditions such as weather, traffic, and road types is required.
Such a system can improve safety and significantly, decrease
road crashes levels.

In this paper, we propose an Intelligent Dynamic Adaptation
Model (IDAM) that continuously assigns an optimal speed
limit for road segments as response to the change of many
car crash related attributes. Using Machine Learning (ML),
IDAM is trained and tested, off-line, on real dataset collected
by the Department of transportation (DoT) in United Kingdom
(UK) which covers many Road Safety Data (RSD). DoT data
collection covers 14 years of car crashes, for each car crash
it records 33 information, in total, it contains 1.6 million
records. To consolidate the prediction accuracy of IDAM, we
use three different ML algorithms: Artificial Neural Network
(ANN) regression, Decision Tree (DT) regression, and Linear
Regression (LR) with Stochastic Gradient Descent (SGD).
Using simple operation process, IDAM can, on-line, assigns
an optimal speed limit for road sectors.

The rest of the paper is organized as follows. Section II
summarizes related work. In section III, we introduce prelimi-
naries that are used in the rest of this paper. In Section IV, we
discuss and present the proposed speed adaptation model in



details. Section V presents IDAM performance analysis with
an on-line implementation example. Finally, conclusion and
future work are presented in Section VI.

II. RELATED WORK

Several speed management algorithms have been proposed
for smart city applications to ensure road traffic safety. As our
IDAM method is used to find road speed limits based on the
surrounding environmental conditions and the corresponding
road segments, works related to these two problems are
considered.

In 2010, Usman et al. [7], [8] have studied the important
role of winter maintenance operations on road safety using
a road surface condition index that depends on the level
of applied winter operations instead of the commonly used
method of friction measure. They found that road surface index
plays an important role influencing both traffic volume and
speeds on highways. In 2011, Yokota et al. [9] uses floating
car data from 300 trucks running in Osaka, Japan and provides
some information such as the average speeds for each route.
Floating car data are very useful for predicting future road
situations. However, authors did not consider the influence of
bad weather in details. In 2012, Donaher et al. [10] developed
two different models for speed on rural and urban highways
in Ontario using wind speed, visibility, snow, and temperature.
These two models were developed using linear regression
approach. They found that operating speeds are also quite
sensitive to adverse weather. In 2012, Lai et al. [11] present
a study to predict the impacts of various forms of ISA and
to assess whether ISA is viable in terms of benefit-to-cost
ratio. They found that ISA is predicted to lead to savings of
30% in fatal crashes and 25% in serious crashes. However,
several other factors need to be considered for precise speed
control such as road surface, road type, weather conditions,
etc. In 2015, Tanimura et al. [12] proposed a novel method to
predict the speed of vehicles on each road segment in snowy
cities by using multiple regression function. They classified
winter urban road segments into busy road segments with
frequent traffic jam, road segments with enough traffic amount,
and road segments without traffic jam. However, this research
provides only analysis on the vehicle speeds from 8:00 a.m.
to 8:00 p.m. and they do not consider road type conditions.
In 2017, Higashino [13] presented a method to predict the
speed of vehicle in snowy urban roads for each road segment
using the regression analysis technique. He considered weather
information and vehicular traffic data as the dominant factors
in the regression model equation. According to Higashino,
the proposed method cannot predict the speed for roads with
less than 10 floating cars, because the accurate average speed
cannot be calculated.

III. PRELIMINARIES

This section provides background details about technologies
and techniques used in this work. Our model creation goes
through three stages: data preprocessing, model building using

machine learning, and lastly quantifying the prediction accu-
racy. This section gives more details on the aforementioned
stage. The following are some defined notations used in this
work. We use (X,Y ) to refer to the used dataset. X is a matrix
with dimension (m× n), where m is the number of samples
and n is the number of features. Y is the class vector. We use
Xr
c to refer to the cth feature and the rth sample. Y r refers

to the class of rth sample.

A. Data Preprocessing
It is always known that real world data can contain du-

plicated data, missing target or class value, etc. Therefore,
data preprocessing is a very important stage to improve the
prediction accuracy. Next three preprocessing techniques are
used in this study:

1) Scaling: Real world data created models come with
different min-max ranges. Feeding data, as is, without scaling,
cause the ML algorithms to create models mostly affected
by big numbers assuming that they are the most important
features. There are many scaling techniques used in machine
learning, in this work a standard scaling is used, i.e., sXc =
(Xc − µc)

σ2
c

where sXc is the scaled feature, Xc is the feature

before scaling, µc is the mean of the feature and σ2
c is the

standard deviation of the feature column.
2) Outliers: Outliers are defined as a data point that lo-

cated far away from the mean. There are many mathematical
techniques, in this work, we used quantile() function which
brings outliers data points closer to data distribution.

3) Data Encoding: Real world data comes in different
types such as categorical or numerical. ML algorithms works
only on numerical data. Transforming data from categorical to
numerical is called Encoding. There are many techniques that
are used to transform data from categorical to numerical. In
this work we use Label Encoding (LE) technique.

B. Machine Learning (ML)
To consolidate our findings for the proposed model, we

use three different ML algorithms: Artificial Neural Network
(ANN) regression, Decision Tree (DT) regression, and Linear
Regression (LR) with Stochastic Gradient Descent (SGD).
Next a background for each of these algorithms is given.

1) Artificial Neural Network (ANN) regression: ANN al-
gorithm is a network of connected Processing Units (PUs)
called Artificial Neurons (ANs). ANN goes through thou-
sands of feed-forward and back-propagation operations to
minimize the prediction error. Figure 1 shows the structure
of ANN . The first and last columns of the neural network
structure are called input and output layers, respectively.
Columns in between are called hidden layers. ANN can have
one or many hidden layers. The number of units of input layer
is determined by number of features (n). However, the number
of output units is determined by the problem domain under
consideration, i.e., classification versus regression. As stated,
the problem considered in this study is regression problem;
hence, the output layer is composed of one unit and has
identity function.
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Fig. 1. Artificial Neural Networks (ANN) Regression

2) Decision Tree (DT) regression: Using the training
dataset, the decision tree algorithm builds decision rules
following top-down tree like structure. The most important
feature is selected as the first branching node and is called the
root-node. In DT regression, the node with highest Standard
Deviation Reduction (SDV) value is selected as the root-node.
SDV is calculated using Equation 1,

SDV (T,Xc) = S(T )− S(T,Xc) (1)

where S(T ) is the standard deviation of the target attribute
and S(T,Xc) is equal to

S(T,Xc) =
∑
g∈Xc

P (g)S(g) (2)

Where, Xc is a specific feature in the dataset and P (g) is
the ratio of the sub-category with respect to the dataset, and
S(g) is the standard deviation with respect to the target/class.
The feature with the highest SDV (T,Xc) is selected as the
root-node. Using the root-node branches, the whole dataset
is splitted into sub-datasets. Similar to finding the root-node,
Equation 1 and 2 are then applied to the sub-dataset, at each
branch of the root-node, to find next branching feature. The
process of splitting and finding most important feature is
repeated until the whole tree structure is created.

3) Linear Regression (LR) using Stochastic Gradient De-
scent (SGD): Linear learning regression algorithms try to fit a
linear model, with least cost error, on the data points. Using the
learned model, then, the algorithm predicts the output given
multiples predictors. A regression model involving multiple
variables can be modelled as:

hθ(X
ri) = θ0 + θ1X

ri
1 + . . .+ θnX

ri
n (3)

Equation 3 is called hyperplane model. Equation 4 models the
cost function.

J(θ0, θ1, . . . , θn) =
1

2m

m∑
i=1

(
hθ(X

ri)− yi
)2

(4)

Given the hyperplane, Equation 3, and the cost function, E-
quation 4, the problem becomes minimizing J(θ0, θ1, . . . , θn).

Linear model uses Gradient Descent (GD), Equation 5, to
find the optimal model parameters that achieves the minimum
cost function.

θj := θj = α
δ

δθj
J(θ0, θ1, . . . , θn) (5)

Since this model uses stochastic GD, the algorithm takes k
random samples out of m samples as modelled in Equation 6.

θj := θj = α
δ

δθj

(
1

2k

k∑
i=1

(
hθ(X

ri)− yi
)2)

(6)

IV. INTELLIGENT AND DYNAMIC ADAPTATION MODEL
(IDAM)

The proposed intelligent and dynamic adaptation model
dynamically assigns an optimal speed limit for road-sectors
based on many on-line car crash attributes. This section gives
the details of all IDAM building stages.

A. Data set preparation

The data used to build IDAM is collected by the Department
of Transportation (DoT) in United Kingdom (UK) which
covers many Road Safety Data (RSD). DoT dataset covers
14 years of car crashes, for each car crash it records 33
information, in total, it contains 1.6 million car crash records.
To know the whole list of captured car crash information
please refer to DoT website [14]. Due to missing data, in this
work, we only use 446804 car crash samples to create IDAM
model. With regard to feature selection, we apply feature
completeness, being informative or not, and whether has an
impact or not on the speed limit as a selection criterion. Hence
out of 33, 11 information/features, per accident, are selected.
Table I lists the selected features. The column "value" of
Table I lists the possible values of that feature. For instance,
"Accident Severity" as a feature/attribute can be assigned a
value as: "Fatal, Serious, or Slight". For shorthand writing,
we refer to these features using codes, F1, F2,...F13, as shown
in Table I. Hence, (446804, 11) is the dataset matrix used to
build IDAM.

B. Target Creation

By observing the features listed in Table I, we can identify
that F1, F2, and F3, as an output or a result of an accident.
In other words, these three features cannot be identified as the
leading cause of an accident. Rather, it is obvious that each
feature describes the accident output conditions, i.e., Accident
Severity, Number of Vehicles, and Number of Casualties.
Hence, in this work, these three features are used to create
the target/class column. We refer to the target as risk level
of the accident. Based on the collected data, the min-max



TABLE I
USED FEATURES/PREDICTORS

Code Features Values

F1 Accident Severity Fatal, Serious, or Slight

F2 Number of Vehicles Represents the number of vehicles involved
in the accident

F3 Number of Casual-
ties

Number of deaths

F4 Time Time of the day when the accident happened

F5 Speed Limit The speed of road-sector where the accident
happened

F6 Day of Week The day when the accident happened. Val-
ues: Sun, Mon,..., or Sat.

F7 Urban or Rural
Area

Urban, or Rural Area.

F8 Road Type Road-sector name. Values: Single
carriageway (SC), One way street (OWS),
’Roundabout (RA), Dual carriageway
(DC), or Slip road (SR).

F9 Pedestrian
Crossing-Human
Control

None within 50 meters, Control by other
authorized person, or Control by school
crossing patrol.

F10 Pedestrian
Crossing-Physical
Facilities

Pedestrian phase at traffic signal junction,
No physical crossing within 50 meters, non-
junction pedestrian crossing, Zebra cross-
ing, Central refuge, or Footbridge or sub-
way.

F11 Light Conditions Darkness: Street lights present and lit,
Daylight: Street light present, Darkness:
No street lighting, Darkness: Street lights
present but unlit, Darkness: Street lighting
unknown.

F12 Weather Conditions Fine without high winds (FWN ), Rain-
ing without high winds (RWN ), Snowing
without high winds (SWN ), Raining with
high winds (RW ), Fine with high winds
(FW ), Fog or mist (FM ), or Snowing with
high wind (SW ).

F13 Road Surface Con-
ditions

Dry, Wet/Damp, Frost/Ice, Snow, or Flood
(Over 3cm of water).

values of the three features range from small to large values.
Where small represent less sever and large represents high
sever. If linearly multiply these features with each other we
still have min-max range, where min represents less sever and
max represents high sever. Before we do the multiplication we
fix the outlier problem by applying the technique explained
in Section III-A. To fix the skew problem the target column
after multiplication, the result column is further transformed
to normal distribution by applying log(−) function. Next, the
result column is transformed to a percentage scale, i.e., from
0% to 100%, where 0% represents low car crash risk and 100%
represents high risk.

C. Feature Encoding

As shown in table I, the remaining 10 features, i.e., features
from F4 to F13, are considered model predictors. Features
F4 and F5 are of type numerical data, while the remaining
features, from F6 to F13, are of type nominal data. For nu-
merical data we apply standard scaling as explained in Section
III-A. For nominal data, we apply Label Encoding technique
explained in Section III-A, to transform it to numerical data.

Table II shows a randomly selected two rows after performing
data encoding, scaling, and the respected risk level mapping.

TABLE II
TWO SAMPLES RANDOMLY SELECTED FROM THE PREPROCESSED DATASET

F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 Risk (%)

-1.262 -0.598 7.0 1.0 0 2 2 4 1 0 33.2

1.223 -0.598 5.0 1.0 3 2 2 2 1 4 19.8

D. IDAM Model Building

After preparing the data, the dataset is divided to 70% for
training and 30% for testing the model prediction accuracy.
The training dataset is used to train the three ML algorithms:
ANN regression, DT regression, and LR with SGD. After
many trials of algorithms parameters changing, the following
algorithms parameters, shown in Table III, are proven to
produce the highest prediction accuracy.

TABLE III
ALGORITHMS PARAMETERS SETTINGS

ML Parameters values
ANN Hidden-layer-sizes=(10,10,10), activation=’relu’,

solver=’adam’, alpha=0.001,batch-size=’auto’, Learning-
rate=’constant’, learning-rate-init=0.01, max-iter=1000,
shuffle=True, Early-stopping=False.

DT criterion=’mse’, splitter=’best’, max-depth=5, min-samples-
split=3, and min-samples-leaf=1

LR loss=’squared-loss’, fit-intercept=True, max-iter=1000, shuf-
fle=True, early-stopping=False, and n-iter-no-change=5

E. Quality of Predictions Assessment

To assess the prediction accuracy of the created model, we
used 30% of the dataset to be used for performance evaluation.
Table IV shows the prediction accuracy for the three ML
algorithms. As ANN slightly has a higher prediction accuracy
compared with the other algorithms, we considered the model
generated from ANN as our model for this work to control
the speed limit over different road-sectors of the smart city.

TABLE IV
ACCURACY COMPARISON

Machine Learning Algorithm Accuracy (%)
Artificial Neural Network (ANN) 96.95

Decision Tree (DT) 96.83
Linear Regression (LR) with SGD 96.88

V. IDAM PERFORMANCE ANALYSIS AND ON-LINE
IMPLEMENTATION ALGORITHM

As explained, the model takes 10 predictors/features, fea-
tures from F4 to F13, and predicts the risk percentage. Table
V shows how different values of the predictors can have
different risk level percentage values. For instance, the last
row, in table V, has higher risk than the first row. That
is because, from the learned knowledge during the training
phase, the feature values found in the last row tend to produce



higher risk level. Referring to Table I each feature can assume
different values, for example, F6, Day of the week, can be
Sunday, Monday, etc. If we consider all possible values
of all features in Table I, we can have 2.2 × 109 possible
combination at the input of the model. For each combination
we may have different risk level. Table V shows only 5
possible combinations and their respected risk levels.

TABLE V
DIFFERENT RANDOM VALUES OF PREDICTORS AND THEIR PREDICTED

RISK LEVEL

F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 Risk Level

0.35 -0.598 3 2 3 2 3 4 4 4 17.99368

1.854 -0.598 1 1 3 2 4 2 0 4 9.76121

-0.687 -0.598 1 1 3 2 5 4 1 0 0.000016

-0.073 -0.598 3 2 3 2 2 4 1 0 21.51778

0.063 1.572 6 2 3 2 2 4 4 4 46.24023

Further, to show the impact of individual feature on the
risk level, we generated random values for the nine features
(and we make them fixed during the prediction) and only
change feature under examination. Figure 2 (A) shows how
different speed limits impact the risk level. It is noticeable
that higher speed limit bring higher risk levels. These risk
level behavior characteristics may slightly change under any
other different combinations of the nine features. Similarly,
Figure 2 (B) shows the impact of different road types on
the risk level percentage. Figure 3 (A) depicts the impact
of different weather conditions on the risk level. Similarly,
under any other combination of the other features, IDAM may
produce different impact characteristics. Figure 3 (B) shows
how the risk level is changing under different values of the
minutes of the day. Due to the space limit we only showed
the impact of only 4 features, however, other features, not
shown in Figures 2 and 3, have their own impact on the risk
level as well. Hence, the created model ties the impact of all
features in one model, Equation. The Model then outputs the
risk level based on any input values.

Figure 4 shows the IDAM implementation algorithm to find
the optimal speed limit for different road sectors. As identified
in the dataset used to build IDAM, roads classified under
have 5 different road types: "Single carriageway", "One way
street", "Roundabout", "Dual Carriageway", or "Slip Road".
These road sector types, in general, can be considered as the
constituent components of real world roads. The algorithm
starts with a request to find an optimal speed limit for specific
road sector (e.g., for "One way Street") is initiated. Next,
the algorithm gets the current values for the features from
F4 to F13 except F5 (the optimal speed limit) which is the
output value in this case. Note that, current feature values mean
current time, weather, day, light, and etc, for the road sector
under consideration. Next, from speed limit set, the algorithm
then assigns a speed limit value to F5. The algorithm then calls
IDAM to predict the risk level. If the risk level is within the
accepted threshold then this speed limit is assigned to this road
sector. If not, the algorithm iterates through the set of other
speed limit values and for each speed limit value finds the risk
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level. The algorithm stops iterating when the risk level is at
the desired threshold. This speed limit value is then assigned
to the road sector. The smart city continuously monitors any
changes in the features and use IDAM accordingly to update
the speed limit.

VI. CONCLUSION

In this paper, we proposed an Intelligent Dynamic Adap-
tation Model (IDAM) for smart cities. To consolidate the
prediction accuracy of IDAM, we used three different M-
L algorithms: Artificial Neural Network (ANN) regression,
Decision Tree (DT) regression, and Linear Regression (LR)
with Stochastic Gradient Descent (SGD). Using these ML
algorithms, IDAM is trained and tested, off-line, on real dataset
collected by the Department of transportation (DoT) in United
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Kingdom (UK). DoT dataset covers 14 years of car crashes.
Evaluating on the testing dataset, IDAM achieved prediction
accuracy of around 96%. Finally, an implementation process of
IDAM is conducted. As a response to any on-line speed limit
predictors’ change, IDAM continuously computes the optimal
speed limit for road segments.
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