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Abstract—Inter-cell interference remains to be a bottleneck
for conventional cellular networks as cell-edge users continue
to suffer from poor performance. Cell-free massive MIMO is a
novel network architecture that suppresses inter-cell interference
by eliminating cell boundaries. It promises uniform performance
throughout the coverage area, enabled by the coherent joint
transmission from multiple distributed antennas. To make the
network scalable, a user-centric approach is adopted where each
user is served by a cluster of nearby access points (APs). In
this work, we study the impact of cluster formation on the total
fronthaul requirement, which is a limiting factor in practical
coordinated distributed systems. We also investigate its effect on
the guaranteed quality of service (QoS) of the network. Using
our proposed algorithms, we look into the optimal cluster sizes
for a given scenario and show that good performance can be
achieved even with relatively small user-centric clusters, which
then translates to fronthaul savings.

Index Terms—cell-free massive MIMO, user-centric, clustering,
fronthaul, max-min SINR, quality of service

I. INTRODUCTION

The continuous growth of data traffic has been a driving
force behind the technological advancements in wireless com-
munications. To cope with the traffic demand, the capacity of
a mobile network is increased by allocating more bandwidth,
utilizing the spectrum more efficiently and deploying smaller
cells (network densification). A key technology for higher
spectral efficiency is massive multiple-input multiple-output
(MIMO) [1], where a base station is equipped with an antenna
array for spatially multiplexing a small number of users on the
same time-frequency resources.

One implication of network densification is the increased
inter-cell interference that degrades performance. To combat
this, several mitigation and cooperation techniques have been
proposed, including coordinated multipoint beamforming [2]
and joint transmission (CoMP-JT) [3]. In CoMP-JT, the cellular
network is virtually divided into disjoint clusters of cooperating
base stations that jointly transmit to users. In fact, CoMP-
JT and concepts such as network MIMO [4] and distributed
antenna system (DAS) [5] are examples of distributed massive
MIMO [6] (i.e., spatially distributed antenna arrays). In [7], we
have introduced dynamic DAS (dDAS) that enables dynamic
allocation of remote radio units (RRUs) among the base stations
to support changing traffic load conditions. These coordinated
distributed architectures improve spectral efficiency and provide
higher coverage probability, which enhances reliability for
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Fig. 1. Canonical cell-free massive MIMO network.

dependable wireless communications [8]. However, despite the
performance gains, inter-cell interference still persists that is
inherent in the cell-centric design of conventional networks [9].

Cell-free massive MIMO is a novel concept introduced in
[10] that suppresses inter-cell interference by removing the cell
boundaries. It consists of a large number of geographically
distributed access points (APs) simultaneously serving a smaller
number of users (UEs) using the same resources. Fig. 1
illustrates its canonical form where each user is served by all
the APs, and each AP is connected via the fronthaul link to a
single centralized processing unit (CPU) that is mainly used for
coordination and data processing. Following the assumptions in
massive MIMO, the coherent joint transmission from multiple
antennas enables good performance even with simple linear
processing techniques (such as Maximum Ratio Transmission
(MRT)) [1]. By bringing the APs closer to the users, the cell-
free network can provide uniform performance throughout the
coverage area [10]. This is particularly beneficial to cell-edge
users who suffer from high levels of interference in a conven-
tional cellular network. In [11], a performance comparison of
centralized and distributed implementations is presented.

In this paper, we first discuss the scalability problem [9]
to motivate the shift from canonical to user-centric [12] cell-
free networks. In the latter architecture, user-centric clusters
are formed such that only a subset of APs serves each user.
Compared to prior studies [12] [13], we focus on the impact of
cluster formation on practical aspects of the network, including
fronthaul requirements and guaranteed quality of service (QoS)
level by formulating corresponding optimization problems.



II. USER-CENTRIC CELL-FREE MASSIVE MIMO

The canonical form of cell-free massive MIMO assumes
that all APs are connected to a single CPU. The number
of fronthaul connections therefore increases proportionally as
more APs are added to the network. Furthermore, with each AP
serving all users, the overall fronthaul capacity requirement also
increases. These factors give rise to scalability issues and thus,
the canonical form is impractical and hardly feasible given the
large number of APs ideally deployed in a cell-free network.

The scalability problem is addressed by forming what are
known as user-centric clusters [12]. The idea is to have each
user select the APs that give the best performance. That is, each
user is jointly served by only a subset of nearby APs, depicted
in Fig. 2. This is reasonable as the APs far away from the user
have little or negligible impact on its performance. Such a user-
centric approach directly translates to fronthaul savings since
with fewer users being served by each AP, less information
needs to be exchanged over the fronthaul links.

To make the cell-free network truly scalable, multiple inter-
connected CPUs may be employed [9]. Each CPU is assigned
a number of APs, resulting in disjoint AP-clusters. This is
illustrated in Fig. 2 where each color represents fronthaul con-
nections to a particular CPU. Moreover, a user-centric cluster
may consist of APs controlled by different CPUs. In this case,
the CPUs must coordinate with each other via the backhaul link
for the joint processing and transmission/reception to/from the
user. Different degrees of interconnectivity among the CPUs
are studied in [14].

A. System Model

We consider a downlink cell-free massive MIMO network
with M APs, each having N, antennas, and K single-antenna
UEs (M N; > K).

For the channel model, the macroscopic channel gain gy ,,
between AP m and UE £k follows a distance-dependent path
loss model with shadow fading as:
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where ). denotes the wavelength of the carrier frequency,
dy,m is the distance between UE %k and AP m, n. denotes
the path loss exponent and sg ., ~ LN(0,02) is the ran-
dom lognormally distributed shadow fading. We consider an
independent and identically distributed (iid) Rayleigh fading
channel between AP m and UE £k as:

hkm’n = vV 9km Flkr,m € CN?Xl, )

with flk’m ~ CN(0,1y,) denoting the small-scale fading.

In the downlink data transmissions, we assume that each AP
knows the channels to the UEs perfectly (i.e., uplink training for
channel estimation is not considered in this work) and performs
MRT, with F,,, € CV+*X being the precoder matrix of AP m
and column £}, ,,, € CN¢*! corresponding to the beamforming
vector of UE k.

Fig. 2. User-centric cell-free network with multiple interconnected CPUs.

The input-output relationship of UE £ is given by:

M
Yk = Z \Y Pk,mhllimFmSm(Sk,m + 2k, (3)

m=1

where P ., denotes the power allocated to UE k£ by AP m,
0k,m is a binary variable indicating whether an AP serves a
user or not (i.e., 6, = 1 if UE k is served by AP m and
Ok,m =0 otherwise)!, s,, € CX*1 includes the data symbols
for the users such that E(s,,sZ) = Ix and z; denotes the
receiver noise with variance o2.

The signal to interference and noise ratio (SINR) of UE £ is
expressed as:
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We calculate the signal power by coherently adding the con-

tributions from the APs forming the user-centric cluster. The

only sources of interference are the other users in the cell-free
network. Finally, the spectral efficiency (SE) of UE k is:

SEj, = log,(1 + SINRy,). 5)

SINR;, =

" 5.
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B. Canonical versus User-centric

User-centric clustering is key to the realization of scalable
cell-free massive MIMO networks. Here, we present a simple
example to get an initial insight on the impact of such clustering
on performance.

We consider a downlink scenario with 50 APs, each having
10 antennas, and 10 single-antenna UEs, uniformly distributed
in a square area of 100x100 m2. In Fig. 3, we compare the
achievable spectral efficiency per user for the canonical and
user-centric cases. We also employ different cluster sizes for
the latter. We form the clusters by having each UE select X
APs with the strongest channel. For instance, UC 25% implies
that each cluster consists of 25% of the total number of APs in

"When UE k is not served by AP m, the corresponding power Py and
beamforming vector fy, ., are set to 0.



the network. Note that a different criterion may be used in the
cluster formation. However, for our purpose, the AP selection
is solely based on the macroscopic channel gain.

In this section, we specifically assume equal power allocation
among the UEs served by an AP (i.e., power is only shared
among the UEs with 6, = 1). The sum of UE powers is
equal to the maximum transmit power per AP as:

K
Z Pk,m(sk,m = PTx,m» (6)
k=1

with Pr, ,, being the total transmit power of AP m. More
sophisticated power allocation schemes exist that may result to
different performance plots. However, the goal of this example
is to show that we can get comparable performance even when
each user is served by only a subset of APs and thus, further
motivate us to adopt the user-centric approach.

In Fig. 3, we show the empirical cumulative distribution
function (ECDF) of the per-user spectral efficiency and observe
that user-centric clustering outperforms the canonical case. In
fact, as we make the clusters smaller, we see further improve-
ment on performance. A smaller cluster size means that fewer
APs make up the individual clusters and therefore, each AP is
likely to serve a smaller number of UEs. Assuming equal power
allocation, this implies that the total transmit power per AP is
shared among fewer UEs, which contributes to the increase in
signal power and SINR improvement for those users. However,
using optimized power allocation strategies, the canonical form
is more likely to perform better than the user-centric approach.

We also investigate the single-AP case where each UE only
connects to the best AP in the network. The effect of random
positions is more pronounced in this case since the performance
highly depends on the distance between the UE and the selected
AP. In contrast, the achievable spectral efficiency for the other
cases does not vary that much, which suggests that different
users experience a more uniform performance. This is not true
for the single-AP case, where some users experience good or
bad service depending on their position. This highlights the
benefits of coherent joint transmission from multiple APs when
compared to being served by only the AP with the best channel
[10].

III. PRACTICAL ASPECTS OF A CELL-FREE NETWORK

We previously saw that applying the principle of user-centric
clustering can lead to uniformly good performance. In this
section, we focus on understanding how the cluster formation
relates to other aspects of the cell-free massive MIMO network,
namely the overall fronthaul requirement and the guaranteed
QoS level.

A. Fronthaul Optimization

One of the limiting factors in the realization of coordinated
distributed systems is the fronthaul capacity. As such, we

Canonical versus User-centric
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Fig. 3. ECDF of the per-user spectral efficiency for the canonical and user-
centric cases assuming equal power allocation.

want to minimize the total fronthaul requirement in a cell-free
network by formulating the following optimization problem:

K M
min Z Z Ok,m (7

k=1m=1
wrt. O, € {0,1}
Pim >0
K
st Y PemOrm < Prom,Yme{1,...,M}
k=1

SINRy, > SINR,pin, ¥k € {1,...,K}.

The goal is to minimize the sum of the elements of a matrix
consisting of the indicator variables 6y, which in effect,
minimizes the fronthaul requirements. Note that in this formu-
lation, we consider neither the number of bits nor the type of
information communicated via the fronthaul links, but rather,
we count the number of AP-UE connections. This is reasonable
as the fronthaul requirement increases with the number of data
streams that needs to be transmitted using the same resources.
Moreover, this relates to the cluster formation since with fewer
AP-UE connections, smaller clusters are formed and therefore,
less information needs to be exchanged by the APs and the
CPU over the fronthaul links.

In a downlink scenario, each AP divides its power among
the UEs it serves. The per-AP power constraint ensures that
the sum of the non-negative UE powers does not exceed the
maximum transmit power of the AP, which we assume to be
the same for all APs for simplicity. Furthermore, we impose a
per-UE SINR constraint where we define a threshold SINR,,,;, .
This constraint allows us to check if all users in the network
experience good performance as defined by the threshold.

The SINR constraint in Problem (7) can be reformulated
following a similar approach as in [7]. We can therefore solve
it using the CVX framework [15] and solvers such as MOSEK
[16]. However, this problem formulation does not scale well
with the number of APs and users. As the network gets larger,



the optimization problem becomes more difficult to solve. The
original mixed-integer linear programming (MILP) problem is
in fact NP-hard and thus, we apply linear programming (LP)
relaxation to make the problem solvable in polynomial time. We
remove the integer requirement for the binary variable dy, ,, and
allow continuous values such that dy ,,, € [0, 1]. The resulting
convex problem is readily solvable even for a large scenario
with hundreds of APs and users.

We relate the LP relaxation solution back to the original
MILP problem by utilizing a threshold « € [0, 1] as:

LP
FMILP _ 1 Ofm = @
" 0  otherwise.

®)

)

We obtain 6/ by solving the relaxed problem. Applying (8)
gives 6p"TEP that we use to derive a suboptimal solution to
the original problem. When 5,%; is at least o, we decide that
UE £ is served by AP m and set 624/LF to 1. Otherwise, we
set it to O implying that no connection between UE k and AP
m is established. Note that for a minimization problem, the
relaxation solution gives a lower bound on the solution to the
original problem.

When interpreting 657, it is possible to get an infeasible
solution to the original problem, which means one or all
constraints are violated. It may also be the case that we get
a feasible solution but not the optimal one. Thus, we want
the « that gives us not only a feasible solution but also the
smallest value for the objective function. One way to determine
the best « is to sweep over its possible values [17]. We initially
set o to 0, then we iterate over its possible values, each time
incrementing it by a predefined step size until we reach « equals
1. For every iteration, we interpret the LP relaxation solution
based on the current o following (8). The resulting &,/
is used to compute the corresponding value of the objective
function and check if the SINR constraint is satisfied for all
users. After all iterations, we know which « values result to
a feasible solution. From these, we select the one that gives
the optimal value for the objective function (or the smallest
fronthaul requirement). Algorithm 1 summarizes the steps to
approximately solve Problem (7).

Algorithm 1 Generic approach to solve Problem (7)
1: Solve the LP relaxation problem
2: for (a = 0;a < 1;a = a + step_size) do

3. if 6L > « then
SMILP 4

else
SMILP .
end if
Compute objective function using §7EF
Compute SINR(k) V& € {1,..., K} using §MILF
10: SINR heck < maxk(SINRmm — SINR)
11: end for
12: Find feasible points (SINR pecr < 0)
13: Select the point with smallest objective

D I AN

B. Max-min SINR Optimization with Cluster Size Constraint

The main selling point of the cell-free massive MIMO
concept is its claim of being able to provide uniformly good
service to everyone regardless of their geographical location.
Related to this, we are interested in finding the highest QoS
level that a cell-free network can guarantee to all users by
formulating the following maximization problem:

max mkin SINRy )

5k:,m S {O7 1}
Pkﬂn Z 0
K

s.t. Z Pi.nOkm < Prom,Ym € {1,..., M}
k=1
M
3" G < csizeman, Yk € {1,... K},

m=1

w.r.t.

The goal is to maximize the threshold SINR,,;,, which is
the worst SINR value for any user in the network. The larger
the value of this threshold, the higher is the guaranteed QoS.
For this problem, we also impose a constraint on the cluster
size. Specifically, csize,,q, 1S the maximum number of APs
available to each user. By doing so, we can study the impact
of cluster formation on the achievable SINR values. The
motivation for this is while we ideally want users to experience
the highest possible QoS level, we are often restricted by the
limited fronthaul capacity in practical deployments.
Problem (9) can be written as:

max  SINR,.in (10)
W.I.L. 6k,m S {07 1}
Pim >0
K
st Y PemOkm < Prom,Yme{l,...,M}
k=1

M
3" G < esizeman, k€ {1,..., K}
m=1

SINRy, > SINRynin,Vk € {1,..., K}

Problem (10) can be reformulated following a similar approach
as in [7]. We can then solve it using the bisection method, where
at each step, we solve a feasibility problem [17] as indicated
in lines 1 to 10 of Algorithm 2.

We again apply LP relaxation such that dj ,,, € [0,1]. The
solution to the convex relaxed problem gives §-F | interpreted
as the probability that AP m serves UE k. Thus, the larger
the value of §/% , the more likely an AP-UE connection is
established. Since the cluster size constraint dictates the number
of APs forming each user-centric cluster, we use this probability
as a mechanism to select which APs to activate when going
back to the original problem. This is done systematically by
sorting the 5,571; values in descending order for each user,
then activating one AP at a time starting from those with the
highest probabilities until the number of activated APs reaches



CS1Z€pmqy- The resulting 5%711LP is set to 1 to denote that AP
m is activated with respect to UE k. Otherwise, it is set to 0.
We then use the 6} """ values in determining the maximum
SINR level guaranteed to all users by the cell-free network.
This procedure corresponds to lines 11 to 21 of Algorithm 2.
We also note that for a maximization problem, the relaxation
solution gives an upper bound on the solution to the original

problem.

Algorithm 2 Generic approach to solve Problem (10)
1: Initialize t¢,,,;, and t,,4, (range of values for SINR,,;»)
and bisection tolerance ¢ > 0

- while ¢,,,00 — timin > € do
2

2

3

4:  Perform feasibility test
5 if feasible then
6: tmin < 1
7 else

8 tmaz < T

9 end if

10: end while

11: for k=1 to K do

122 Sort §%F(k,:) in descending order
13:  Store in [val, ap;qz]

14 form=1to M do

15: if sum(SMILP (k1)) < csizenmq, then
16: SMILP (| apige(m)) < 1

17: end if

18:  end for

19: end for

20: Compute SINR(k) Vk € {1,..., K} using §MILP
21: Max SINR i, < ming (SINR)

IV. SIMULATIONS

In our simulations, we consider a downlink cell-free massive
MIMO network with fixed number of M = 50 APs, each
having N; = 10 antennas. We vary the number of users
K € {2,...,15}. The APs and UEs are uniformly distributed
in a square area of 100x100 m?. We summarize the simulation
parameters in Table I and select the values to ensure the
feasibility of the optimization problems. We average the results
over 100 random realizations of AP and UE positions.

TABLE 1
SIMULATION PARAMETERS
Parameter | Value
Carrier frequency | 2 GHz
Transmit power per AP | 1 W

Path loss exponent | 2
Shadow fading variance | 6
Noise variance | 10~°

A. Total Fronthaul Requirement

In Fig. 4, we show the results of the fronthaul optimization,
where the dashed curve corresponds to the LP relaxation

Fronthaul Optimization (applying Algorithm 1)
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Fig. 4. Total fronthaul requirement with varying number of users and
guaranteed QoS level (applying Algorithm 1).

solution while the solid curve represents the solution to the
original problem (following Algorithm 1). We first study the
impact of SINR,,;,, to the total fronthaul requirement of the
network. Recall that SINR,,,;,, denotes the threshold value that
must be satisfied by every user. Increasing SINR,,,;,, leads to
a larger number of AP-UE connections as users may require
more APs to serve them in order to meet the stricter per-UE
QoS constraint. Consequently, with some APs now serving
more users, bigger clusters are formed and greater amount
of information needs to be transmitted over the fronthaul
links. Therefore, increasing SINR,,,;,, implies higher fronthaul
capacity requirement.

We also investigate the impact of the number of users
for a given value of SINR,,;,. In Fig. 4, we observe that
increasing the number of users naturally increases the fronthaul
requirement. For every user that enters the network, we add a
minimum of one AP-UE connection since at least one AP needs
to serve this newcomer. In fact, as the cell-free architecture
benefits from the coherent joint transmission of multiple APs,
in many cases, each user-centric cluster consists of more than
one AP. Moreover, the increase in the fronthaul requirement
depends on the size of the clusters formed by individual users.
We point out that the cluster size varies for different users.
Some require more APs to serve them to satisfy the per-
UE SINR constraint, while others need less to achieve the
same performance. Such variation is attributed to the distance
between the AP and the user that affects the macroscopic path
loss and SINR calculation.

B. Guaranteed Quality of Service

In Fig. 5, we present the results for the max-min SINR op-
timization. In particular, we study the impact of the maximum
cluster size ¢size,,q, (1.€., maximum number of APs available
to each user) on the maximum SINR,,,;,, which is the highest
achievable QoS guaranteed to all users.

The red dashed curve represents the LP relaxation solution
for a scenario of K = 10 users. We observe that increasing



Max-min SINR Optimization (applying Algorithm 2)
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Fig. 5. Maximum guaranteed QoS with varying number of users and cluster
size (applying Algorithm 2).

CSiz€mas leads to an increase in the maximum SINR,,;,. A
larger csizey,q, implies a higher number of allowable AP-UE
connections per user. Consequently, the coherent transmission
from possibly more APs leads to an improvement in UE per-
formance that explains the higher maximum SINR,,;,, values.
However, after some point, allowing more APs to join the user-
centric cluster does not improve the guaranteed QoS anymore.
When csizen,q, 18 at least 20, we observe a saturated (flat)
behavior. From this point on, the maximum SINR,,;, is just
above 15 dB regardless of csizey,q, value. In contrast, we do
not see the same trend with the red solid curve, corresponding
to our solution to the original problem (following Algorithm
2). However, notice when csize,,q.. is at least 20, the increase
in the maximum SINR,,;, is not that much compared when
cSi1zemar 18 below 20. In fact, when the cluster consists of
the first 10 APs, the network is able to guarantee almost 11 dB
SINR level for all users. Adding another 10 APs only improves
the performance by 2 dB. Furthermore, even in the extreme
case of each user being served by all 50 APs (canonical), the
gap is approximately 5 dB while the additional 400 AP-UE
connections (40 per user) results to a significant increase in the
overall fronthaul capacity requirement. This suggests that the
new APs joining the cluster are already too far from the user
that they have little impact on performance. In this scenario,
these new APs do not contribute as much as the first ~10
APs. In this sense, user-centric outperforms canonical, since our
results show that we do not need as much AP-UE connections
(and thus, lower fronthaul requirement) to achieve more or less
the same maximum guaranteed QoS.

We also investigate the impact of the number of users in
Fig. 5. Increasing the number of users to i = 15 decreases the
maximum achievable SINR,,;,,. This is because more users
need to satisfy the per-UE SINR constraint while maintaining
the same number of APs and transmit antennas. On the other
hand, with less users admitted to the network, it becomes
possible to guarantee higher QoS levels.

V. CONCLUSION

Cell-free massive MIMO is a key enabler for next-generation
mobile communications [18]. Scalable cell-free networks can
only be realized through user-centric clustering. Motivated by
this, we investigated how cluster formation impacts perfor-
mance. Using our proposed algorithms, we showed that good
QoS can be guaranteed even with relatively small cluster sizes
that require lower fronthaul capacity. The insights from this pa-
per can be used in future work to design an intelligent approach
to AP selection and dynamic cluster formation given varying

network load conditions and practical fronthaul limitations.
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