
On the Latency of Multipath-QUIC in Real-time

Applications

Vu Anh Vu

Institute of Communications Technology

Leibniz University Hannover

vuanh.vu@ikt.uni-hannover.de

Brenton Walker

Institute of Communications Technology

Leibniz University Hannover

brenton.walker@ikt.uni-hannover.de

Abstract—Recently, the ubiquity of broadband wireless net-
works has encouraged the growth of real-time network appli-
cations. Their strict latency requirements present a challenge
for traditional Internet protocols which tend to be designed
to optimize mean performance. Two recent developments that
show promise for addressing the challenges of real-time applica-
tions are QUIC, a UDP-based protocol that has many features
of TCP, and multipath transmission, an extension allowing
transport layer protocols to transmit data simultaneously over
multiple network paths and interfaces. In this paper, we present
MAppLE (MPQUIC Application Latency Evaluation platform),
which provides the instrumentation needed to evaluate and
develop MPQUIC stream multiplexers, stream schedulers, and
multipath packet schedulers. We also present our NineTails
scheduler, a multipath MPQUIC scheduler that utilizes selective
multipath redundancy to control tail loss and near-tail loss
latencies. Our experimental results show that in a lossy asym-
metric heterogeneous wireless network, our proposed scheduler
reduces outlier latencies compared to other existing scheduling
algorithms, and improves Quality of Experience (QoE) in video
streaming by inducing fewer playback rebuffering events.

Index Terms—DASH, video streaming, multipath scheduling,
scheduler, multiplexer, multi-stream, transport layer protocol,
tail loss, application-level latency, evaluation platform

I. INTRODUCTION

Real-time network applications such as media streaming,

Virtual/Augmented Reality, Tele-Operated Driving, and Re-

mote Surgery, have demanding Quality of Service (QoS)

requirements. For example, Tele-Operated Driving requires

information exchange between user equipment (UE) and a

V2X Application Server with a data rate of 25Mbps, the

latency of 5ms, and reliability of 99.999% [1]. These require-

ments are difficult to meet using conventional protocols such

as TCP. Newer protocols designed for lower latency, even for

short flows, and multipath redundancy offer new possibilities

for meeting the requirements of real-time applications.

QUIC [2] is a general-purpose transport-layer network

protocol that supports multiple streams and a 0-RTT/1-RTT

handshake mechanism. It offers reliable connections with

flow and congestion control, similar to TCP, but unlike

TCP, QUIC improves support for real-time applications with

instant handshakes and faster loss detection and recovery [3].

QUIC is supported by the Google Chrome web browser

and YouTube video streaming service. By 2017, QUIC was

estimated to account for 7% of the world’s total Internet

traffic. However Bhat et al. [4] found that QUIC does not

improve the performance of DASH video streaming, and

Internet

Cellular Basestation

Media Server

Wireless Access Point

 UE

Chunk 1

Chunk 2

Chunk n

MPQUIC

...

 UE

MPQUIC

MPQUIC
Chunk

2

Chunk

1

Chunk

n
...

Fig. 1. Video-on-demand and peer-to-peer live streaming using MPQUIC
with mobile cellular and WiFi networks simultaneously

actually leads to degradation in some aspects. Therefore,

further research and development are needed to make QUIC

an acceptable transport protocol for real-time applications.

Nowadays heterogeneous wireless networks have become

ubiquitous, with most UEs having multiple wireless in-

terfaces (802.11x WiFi, cellular, mmWave, VLC). Several

transport protocols have recently been extended to support

multiple network paths while appearing as a single logical

connection to the application layer, for example, CMT-

SCTP [5], MPTCP [6], and MPQUIC [7, 8]. Multipath redun-

dancy is one popular and promising solution for controlling

data delivery latency, particularly in mobile and wireless-

capable devices. Multipath protocols have some drawbacks,

however, such as Head-of-Line (HoL) blocking and poor

path scheduling. In this area, MPQUIC can offer more with

stream-aware scheduling [9] and stream multiplexing.

Figure 1 illustrates scenarios where MPQUIC could be

used to boost video streaming performance. On-demand

video servers can benefit from QUIC multi-streaming by

queueing their stored video chunks into multiple streams. If

one stream is blocked due to HoL-blocking or packet loss,

the other streams can still use the available link capacity, thus

increasing bandwidth utilization. In live video streaming be-

tween UEs, where video chunks are continuously produced,

MPQUIC can aggregate throughput and reduce transmission

interruptions to provide smoother video playback.

MPQUIC has many features that should help it support

real-time applications. However, because QUIC is a new

protocol and has not been standardized, it lacks a unified

platform to evaluate its latency performance. Well-known

full-featured traffic generators such as D-ITG [10] do not sup-

port QUIC. qperf [11] is a QUIC-compatible greedy payload

generator, but lacks many features of a traffic generator such

as arriving rate control and end-to-end latency logging. Video

streaming measurements with QUIC have been done in [4],

but the measuring setup is not portable to other experiments.

Wireless networks are prone to packet loss due to radio

signal fading, shadowing, and interference. Reliable transport

protocols, such as TCP and QUIC, have two main methods

for recovering lost data segments. (1) Fast retransmit of a

lost segment is triggered when the sender receives a number

of duplicate acknowledgments (ACKs), which could be a

constant value or be adaptive as in Early Retransmission [12].

(2) When a segment is lost, but the trigger conditions are

not met, the protocol waits for the Retransmission Timeout

(RTO) before it retransmits the segment. This usually occurs

when the lost segments are the end of the flow (tail loss). To

avoid this case, [13] proposes a Tail Loss Probe algorithm to

recover more quickly from tail losses. However, the timeout

delay can be as long as 2 ∗ RTT . Another approach to

mitigating packet losses is to transmit multiple copies of data

segments (multipath redundancy); if only one copy is lost,

the sender does not need to retransmit it. This idea works

quite well in combination with multipath transmissions with

multiple copies of segments sent in multiple paths and has

been used in several MPTCP schedulers [14, 15, 16, 17].

However, MPTCP does not know which segment is at the

tail; therefore, it cannot reliably guarantee tailed segment

duplication to avoid tail loss. MPQUIC with the stream-aware

feature has the potential to solve this issue.

In this paper, we introduce a unified MPQUIC Application

Latency Evaluation platform (MAppLE) to evaluate and

develop MPQUIC with modular multiplexers, stream sched-

ulers, and packet schedulers. We present the NineTails

multipath scheduler - a stream-aware scheduler that reduces

tail loss or near-tail loss latencies by selectively transmitting

duplicate data at the end of a stream. Our results show

reductions in latency outliers compared to other multipath

schedulers. NineTails also induces smaller rebuffering

frequency when evaluated in DASH video streaming.

II. APPLICATION LATENCY IN MPQUIC

Application end-to-end latency is one of the most impor-

tant metrics for real-time applications. It is the time between

when the source application sends a unit of data (a message)

to its network socket(s), to the moment the destination appli-

cation receives the message from its corresponding network

socket(s). There are many potential sources of delay, which

can be addressed in different ways [18]. In this paper, we

focus on delays originating at the transport layer.

Fig. 2 shows a histogram of latencies of 40kB messages

transmitted by MPQUIC over the emulated network de-

scribed in section V. The latencies have a minimum value

of ≈ 70ms, consistent with an OWD of ≈ 50ms and the

transmission delay. However, a large fraction of the messages

arrives much later for a variety of reasons. We will elaborate

on the factors that can increase end-to-end latency in the

following sections.

0 20 40 60 80 100 120 140 160 180 200 220

Message Latency (ms)

10
-3

10
-2

10
-1

10
0

Single stream

Multi-streams

Max(Ωp)

Max(Ωp)

Stream
Initialization

delay

Packet loss and/or

blocked stream

Fig. 2. Message latency histogram comparison between Single-stream and
Multi-stream with RoundRobin stream scheduler.

A. HoL Blocking

In order to be network-friendly, QUIC has flow control

and congestion controls that keep the bytes in flight be-

low min(receive window, congestion window), accord-

ingly control the data transmission rate. Head-of-Line Block-

ing (HoL) occurs when the congestion window, which indi-

cates the network capacity, still has enough space to send

more data, but the sliding window does not allow it to send

further until some preceding segments (potentially lost) are

ACKed. This blocks the data flow until it receives the ACK

for the lost segment, which could take at least 2RTT after

the segment was first transmitted, plus reordering time. Mul-

timedia applications using TCP can mitigate Head-of-Line

Blocking by opening multiple parallel TCP connections [19],

but this must be implemented in the application.

HoL blocking occurs even more frequently in multipath

transmission in networks with asymmetric paths, where the

RTTs and capacities of the paths are very different. In this

case, segments often arrive out of order due to the difference

in the paths’ delays. The paths with shorter delays might need

to wait for the segments transmitted by the high-latency paths

to arrive (or worse, to be retransmitted). MPTCP’s original

solution for this issue is Opportunistic Retransmission [14],

which allows a path with a free congestion window to

retransmit segments already sent on other paths. However,

this solution causes a lot of unnecessary redundancy in light

traffic and does not have any effects with greedy sources.

Ferlin et al. [20] proposed a blocking estimation scheduler

to minimize HoL blocking and increase goodput.

MPQUIC mitigates HoL Blocking by using multiplexed

streams. Messages can be queued on multiple streams, so if

one stream is blocked, the others can still transmit their data.

This is similar to SCTP’s multi-streaming, but QUIC has

more flexible stream establishment, as well as better handling

of packet loss due to its two-level numbering [21].

B. Loss Recovery

QUIC’s loss detection and recovery mechanisms are simi-

lar to those of TCP, but with a few differences. QUIC avoids

TCP’s “retransmission ambiguity” by separating the packet

numbers from the data sequence number. QUIC’s packet

number increases monotonically and implies transmission

order. When a packet is detected lost, QUIC encapsulates

the lost data frame in a new packet with a new packet

number; hence it knows exactly which packet is ACKed when

receiving an ACK. This design offers more accurate RTT

measurements and improves loss detection.

With Fast Retransmission, QUIC takes at least 3

2
RTT to

correct a lost segment. MPQUIC has the ability to further

reduce loss recovery time by retransmitting segments lost on

a high-latency path over a lower-latency path. This reduces

the loss recovery time to RTTlosspath + min(OWDi) How-

ever, in some cases, a loss event will not be detected by Fast

Retransmission.

• Tail Loss: Packet loss at the end of a flow.

• Large mid-flow loss: Loss of an entire window of data

or ACKs during transmission.

• Fast Retrans. duplicated ACK threshold is too high.

• Long RTT that exceeds Retransmission Timeout (RTO).

In these cases, the lost packet must wait for the RTO

(200ms in the MPQUIC implementation) to be retransmitted.

Meanwhile, the whole stream is blocked. Tail Loss is the

most common of these cases because it can be caused by a

single lost packet. Tail Loss Probe [13] mitigates this issue

and reduces the blocking time to less than the RTO, typically

to max(2 × RTT, 10ms) if there are multiple outstanding

packets, or max(2 × RTT, 1.5 × RTT + RTO/2) if there

is only one. In any case, the blocking time is non-trivial and

contributes significantly to the latency outliers.

C. Packet scheduling

In MPQUIC the packet scheduling algorithm decides how

to use the available paths most efficiently. For example,

packet scheduling can be used to actively reduce loss recov-

ery time by injecting redundant data into paths. The data can

be identical (such as in the Redundant schedulers [14]) or

encoded (forward error correction). However, it is not always

advantageous to transmit a message on all paths. If one path

has high OWD and low capacity, transmitting even a small

piece of data on it may delay message completion.

D. Multi-streaming and Stream scheduling

QUIC multi-streaming can help mitigate flow blocking

and under-utilized bandwidth, but it does not necessarily

reduce message latency. For example, establishing a stream

for each message would eventually increase the average

waiting time of messages in the stream. Moreover, since each

QUIC stream has its own receive window, it is possible that

an “initialization delay”, which is the time for the receive

window to scale, may occur. This stream initialization delay

in MPQUIC is approximately the largest RTT of the paths.

Fig. 2 compares the message latency of multi-streaming to

single-stream. In the single-stream case, only the first mes-

sage suffers from an increased initialization delay. Therefore

the minimum and average latencies are lower then multi-

streaming, where all messages have an additional delay of

≈ 50ms. On the other hand, sometimes, the single stream is

blocked by HoL or packet loss, adding extra latency.

MAppLE

Packet

scheduler

......

Data

Streams

Retransmission

Packet History

Queue

Stream
Multiplexer

Stream

Scheduler

App domain MPQUIC domain

Traffic
Generator

Logger

NIC

NIC

NIC

Receive Pkt
Handler

Incoming packet

Fig. 3. MPQUIC Application Latency Evaluation (MAppLE) platform

III. THE MAPPLE EVALUATION PLATFORM

We have developed the modular MPQUIC Application

Latency Evaluation (MAppLE) platform, which provides the

instrumentation and modularity needed to design and evaluate

scheduling and multiplexing algorithms in MPQUIC. The

platform includes the core MPQUIC components, along with

a pluggable multiplexer, stream scheduler, and packet sched-

uler modules. Fig. 3 illustrates the architecture of MAppLE.

The core element of the platform is the MPQUIC implemen-

tation [7], with our modifications to enable modular sched-

ulers and multiplexers. This design respects the IETF’s QUIC

specification with support for multipath transmission. The

components in the application domain are out of MPQUIC’s

scope. The primary components that we contribute are:

• Traffic Generator generates payloads in the form of

messages - pieces of pseudo data, tagged with an ID

that can be tracked at the receiver. This allows us to

measure per-message latency statistics. The generated

inter-arrival times and message sizes can be configured

from a list of common random distributions (Constant,

Uniform, Exponential, Pareto, Poisson, etc.). Generated

messages are placed into an intermediate queue. This

queue has two purposes: first, it allows the Traffic gen-

erator to mimic the application’s blocked/non-blocked

socket options. Second, it emulates the TCP send queue,

facilitating comparisons with MPTCP.

• Stream Multiplexer applies multiplexing policies, such

as single stream and multiple parallel streams. More

complex policies can be easily defined.

• Stream Scheduler selects which stream’s data to trans-

mit. Weighted-RoundRobin is a general-purpose sched-

uler that works well. Given specific requirements and

use cases, more tailored schedulers can also be defined.

• Multipath Scheduler encapsulates the data given by the

stream scheduler and distributes it amongst the available

network paths. The Lowest-RTT-path first (LowRTT)

and RoundRobin are two simple general-purpose mul-

tipath scheduling algorithms that offer fair all-around

performance in many situations.

One advantage of QUIC, compared to other transport layer

protocols, is that it is implemented in user-space. Therefore,

QUIC can share cross-layer information with applications

without any special API. The MAppLE platform establishes

a shared channel where its components exchange their state

and cooperate with each other. Instead of executing their

algorithms independently, schedulers can work together to

create more sophisticated strategies.

In order to measure latencies at the message, frame, and

packet level, data is time-stamped at each encapsulation level

of both the sender and receiver. Clocks are synchronized via

the Precision Time Protocol (PTP).

IV. THE NINETAILS MULTIPATH SCHEDULER

Based on our MAppLE evaluation and development plat-

form, we built a multipath packet scheduler that aims to re-

duce message latency outliers in lossy heterogeneous wireless

networks with asymmetric paths.

The majority of current consumer mobile devices have two

wireless interfaces: one mobile cellular (3G, LTE) interface,

which provides decent throughput and latency, and one WiFi

(802.11x) interface, which provides relatively lower latency

and smaller throughput. Both of them can be lossy due to

radio interference or overflow in middle-boxes. ACK-based

loss recovery needs at least 1 RTT, which could be as high

as hundreds of milliseconds, to recover a lost data segment.

Furthermore, a lost segment can block the path from sending

data, degrade its throughput, and increase the waiting time

of data in higher-level queues at both senders and receivers.

The result is long-tailed latency probability distributions. For

real-time applications, such high latencies are unacceptable.

The premise of multipath redundancy is to replicate data

segments over multiple paths so that if one replica is lost, the

other can still arrive. Thus, it reduces tail latency and path

blocking. Redundancy is a proactive loss recovery approach,

in that it can correct a loss even before it is detected. Many

redundant multipath variants have been proposed for MPTCP,

however, due to design differences, redundant schedulers for

MPQUIC must be implemented differently.

A. Multipath Redundant Scheduling in MPQUIC

Unlike MPTCP, where each connection has a single queue

of undelivered segments, in MPQUIC there are potentially

multiple streams being fed by the application. The data

from the streams is encapsulated into data frames by the

stream scheduler according to its own priorities. There is no

single chronology of data frames. To illustrate the differences

this causes, consider the implementation of the Redundant

scheduler. In MPTCP’s implementation, when space is avail-

able in the congestion window of a path, the Redundant

scheduler queues the oldest un-ACKed segment that has not

yet been sent on that path. In this way, almost every segment

is sent on every path. In MPQUIC the notion of “oldest”

data is not well defined, and not easily accessible to the path

scheduler. However, since there are multiple paths, at any

given time there is always a leading path that has transmitted

the most recent data frame. The trailing path(s) will most

likely transmit redundant frames already sent by the leading

path. Instead of looking for data to transmit from a shared

queue, the scheduler must identify the leading path and check

its packet history to find the oldest outstanding data frame

that has not yet been duplicated on a trailing path.

We have implemented the Redundant packet sched-

uler in MPQUIC. As with many redundant schedulers, this

Algorithm 1 NineTails Scheduling Algorithm

1: function NINETAILSSCHEDULER(
availablePathsList, highestRatePath, lowestRTTPath)

2: highestRate ← highestRatePath.rate
⊲ Select leading and redundant paths

3: bool shouldRedundant ← messageRemainData/highestRate
< min(3*highestRate/2, minRTOTimeout + highes-

tRate/2)
4: if shouldRedundant then
5: selectedPath ← highestRatePath
6: redundantPathList← availablePathsList - selectedPath
7: else
8: selectedPath ← lowestRTTPath

⊲ Select Data Frame to transmit
9: newFrame ← StreamScheduler.SelectStreamFrame()

10: newPacket ← packPacket(newFrame)
11: sendPacket(newPacket, selectedPath)
12: for all redundantPath ∈ redundantPathList do
13: duplicatedFrame ← findUnsent-

Frame(selectedPath.PacketHistory)
14: dupPacket ← packPacket(duplicatedFrame)
15: sendPacket(dupPacket, redundantPath)

scheduler provides lower goodput than the default LowRTT

scheduler, but for lightly-loaded applications, it offers the

best control over packet latency outliers. However, it is not

necessarily the best at controlling latency outliers at the

application level.

B. Near-tail Redundancy

The problem with the plain Redundant algorithm is that,

while it reduces latencies at the packet and frame level, its

reduced throughput increases the transmission time of the

whole message. We can best reduce message latency by being

selective about when to employ redundancy.

When a frame in the middle of a message is lost, the

succeeding frames can still be transmitted until the sliding

windows are full, congestion windows are full, or fast-

retransmit is triggered. Generally, the lost frame will only

cause negligible extra message latency as long as it is recov-

ered before the recipient of the last frame of the message. On

the other hand, when the loss occurs in the last few frames

of the message it causes significant extra latency on the order

of the RTO. Moreover, when a loss occurs near the end of

the message, it does not matter how high the aggregated

throughput is, because all the received frames have to wait

for the lost one so they can be delivered in order.

We propose the NineTails scheduler, named after the

mythological nine-tailed fox with one head and multiple tails,

based on the idea of only using redundancy near the ends of

messages. Through most of a message, NineTails selects

the available path with the lowest RTT to transmit each new

frame, just like LowRTT. When it gets near the tail of the

message, NineTails switches to REDUNDANT MODE,

transmitting the frames via all available paths. In this way, it

benefits from aggregated throughput through the bulk of the

message, while still avoid additional latency caused by near

tail loss recovery and tail loss RTO. REDUNDANT MODE

is triggered by looking at the length of the remaining data in

the message, estimating the time needed to transmit it with

Multimedia Server/
Traffic Generator

ClientRouter Node

50Mbps, 50ms latency 0.1% loss

2Mbps, 2ms latency, 0.1% loss

Fig. 4. Emulated network testbed with two paths

full redundancy, and comparing it to the additional recovery

time non-redundant transmission would suffer if the frame

were lost. The scheduler switches to REDUNDANT MODE

when the loss recovery time is greater than the transmission

time with full redundancy.

messageRemainData

highestRate
< min

(

3

2
∗ highestRate,

minRTOTimeout+
1

2
∗ highestRate

) (1)

This concept utilizes the stream-aware feature of QUIC to

get the messageRemainData. Other path statistic parame-

ters are collected during the transmission.

In our implementation, due to the fluctuation in the es-

timated data sending rate, we repeat the tail determination

at every path selection step. Algorithm 1 describes our

algorithm for selecting redundant paths and data frames.

V. EVALUATION

A. Setup

The proposed schedulers are evaluated in an Emulab [22]

emulated network. Fig.4 illustrates the evaluated topology

with two MoonGen-based [23] emulated links representing

cellular and WiFi paths. The ”Mobile network” path with

a capacity of 50Mbps, delay of 50 ms, and a Bernoulli

packet loss rate of 0.1%, taken from an LTE measurement

in [24]. The ”WiFi” path emulates an IEEE 802.11p link in

vehicular networks, which is defined to have different data

rates between 3 and 27 Mbps. However, considering that the

bandwidth is shared with road safety applications and control

signals, and the practical throughput can be influenced by

distance and fading, we chose emulated link with 2 Mbps

capacity, 2 ms delay, and 0.1% loss rate (the actual end-to-

end loss rate could be higher due to congestion). We used

the uncoupled CUBIC congestion control algorithm, which

means each path has an independent congestion window. The

reason we did not use multipath coupled congestion control,

such as OLIA and BALIA, is that with them, the congestion

window of the higher latency lossy path would shrink over

time, which would make our experimental results inconsistent

and dependent on the length of each experiment.

The first experiment evaluated the schedulers within our

MAppLE platform implementation [25] with a generated

traffic rate of 6.4 Mbps, which is enough to get MPQUIC

to use both paths, but does not congest both of them

at a same time. We conducted experiments using several

message sizes and inter-arrival times with the targeted rate

(a) Message size 20kB

(b) Message size 400kB

Fig. 5. Message latency CCDF comparison between schedulers with small
message size (20kB) and large message size (400kB) on a log scale

(20kB-25ms, 40kB-50ms, 80kB-100ms, 160kB-200ms, 200kB-

250ms, 400kB-500ms, 800kB-1000ms). Each of them was

evaluated over 2 minutes × 50 runs. Our experimental

metrics are the q-quantiles at 99% and 99.9% of the message

latencies. We compared our proposed scheduler with the

LowRTT, RoundRobin, and Redundant schedulers, as

well as SinglePath.

In the second experiments, we used a MPQUIC-compatible

DASH video streaming application to stream a 1-minute

4k video (3840 × 2160) with a bitrate of 6592kbps (50

runs). Adaptive bitrate streaming was disabled to avoid the

transmission rate variation. The streamed video segment

duration is 200ms, and the maximum client playback buffer

size is two segments (400ms). We use this relatively small

segment and playback buffer size to see how the packet loss

causing retransmission latency of 500ms-1s affects the QoE

in delay-sensitive applications. Our performance metric is

video rebuffering frequency, which is an important metric

for measuring video playback QoE [26].

B. Message latency with generated traffic

Fig 5(a) shows the Complementary Cumulative Distribu-

tion Function (CCDF) of small message (20kB) latency. In

this case, the redundant-type schedulers are expected to have

lower latency overall, since the latency reduction offered by

bandwidth aggregation is less than the loss recovery time.

However, in the result we observed longer tail distribution

(a) Message latency at 1% quantiles

(b) Message latency at 0.1% quantiles

Fig. 6. Quantiles of message latency with multiple message sizes

at the Redundant scheduler, due to its lower aggregate

throughput compared to the other schedulers’. When a packet

loss occurs on the higher bandwidth path, the throughput

drops below the generated traffic rate, increasing the waiting

period of messages in the sender queue. This circumstance

usually happens when the paths have asymmetric bandwidth,

which leads to one path transmitting old data frames that

have been sent, but not ACKed, by the other subflow [16].

Therefore, the lower-bandwidth path cannot make up for the

throughput drop on the leading path. The similar tail dis-

tributions of SinglePath and the Redundant scheduler

supports this explanation because their total throughputs are

both equal to the leading path’s throughput. Most of the

time, NineTails behaves identically to the Redundant.

However, when the throughput drops, the amount of queued

data in the stream increases and triggers NineTails to

disable redundancy. For that reason, NineTails has the

lowest latency at the tail of the distribution.

With large message sizes (400kB), the schedulers with a

higher aggregate throughput gain a greater latency reduction,

whereas the tail and near-tail loss recovery time remains the

same. Therefore, the Redundant scheduler has the highest

latency overall. Fig. 5(b) shows that NineTails benefits

from having higher aggregate throughput at the beginning

of the message transmission and is still able to avoid the

latency penalties of the tail and near-tail loss at the end of

it. Hence it has an average latency in between the others and

much-reduced latency at after the 99th percentiles.

Fig. 7. Video playback rebuffering frequency

Fig. 6 shows the message latency at the 1% and 0.1%

quantiles of all message sizes. We can see that NineTails,

in general, has the lowest message latencies at both quantiles.

The latency reductions at the 1% quantile are not drastic. The

latencies at 0.1% quantile, however, highlight NineTails’s

improvement in the tail and near-tail loss recovery, cutting

down the outlier latencies with an advantage of up to 150ms.

C. The NineTails scheduler in video streaming

In experiments with a video streaming data source, Fig. 7

shows the average rebuffering frequency of each scheduler.

NineTails has slightly lower (2-3 rebuffering events/min)

rebuffering frequency than the LowRTT and Redundant,

and only half and one third as many rebuffering events,

respectively, compared to RoundRobin and SinglePath.

The results tend to favor the redundant schedulers be-

cause the client’s playback buffer is tiny. Although the

NineTails scheduler does not consider messages’ dead-

line, it has better results in this experiment, because the

maximum deadline for the video segments (2 segments, ≈

400ms) and the video chunks are quite small, which is to the

advantage of the redundant schedulers. Also, the video bitrate

is low enough to avoid overloading the total transmission rate

(anyhow, in adaptive streaming, bitrate would be adjusted to

the transmission rate), so that a lower aggregated rates is not

a big disadvantage to the redundant schedulers. If the buffer

size is larger, the client can preload more frames to avoid

rebuffering, and a scheduler providing a higher goodput, such

as the LowRTT, would have more benefits.

VI. DISCUSSION

While evaluating application traffic on our platform, we

observed some issues that are worth investigating. The first

problem is scheduling a real-time message at both packet-

level and stream-level with a time deadline. As a transport

layer protocol, (MP)QUIC need not be aware of the deadline

of its application data. However, in many cases, fulfilling

the deadline is even more important than reducing average

latency or latency outliers. For example, in our video stream-

ing experiment in section V, the client’s maximum buffer

size is two video segments (2 ∗ 200ms). Rebuffering event

will definitely occur if a segment is not delivered within the

maximum time of 400ms. In this case, an important metric

is the quantile of latency below 400ms P (Lm ≤ 400ms).
This metric has been taken into account in [17]; however,

only packet-level deadlines in MPTCP were investigated.

The second issue, which we mentioned in section II, is

whether MPQUIC should use multiple streams for consecu-

tively arriving data from applications. The trade-off in Fig. 2

raises the questions: (1) What is the optimal number of

concurrent streams? And (2) which stream should we put

the messages to? Too many non-priority streams would dras-

tically increase messages’ wait duration the stream queues.

The stream initialization delay is also an important factor,

especially with multipath. This delay can be avoided with

a stream scheduling algorithm. Also, multi-streaming only

offers a benefit when the streams are blocked frequently,

which could be avoided or worsened by the packet scheduler.

VII. CONCLUSION

In this paper, we introduced MAppLE - an MPQUIC

Application Latency Evaluation platform providing the in-

strumentation to evaluate and build performance-critical

MPQUIC components: stream multiplexers, stream sched-

ulers, and multipath schedulers. MAppLE enables us to de-

velop those components with many types of network applica-

tion traffic without the burden of implementing and deploying

the protocol (and its components) into the applications.

The NineTails scheduler was built on MAppLE with

the goal of reducing latency outliers caused by losses near

the end and at the end of data messages. It uses multipath

scheduling with a selected redundancy algorithm, enjoying

the benefits of both redundant and non-redundant schedulers:

higher aggregate throughput and quick loss recovery. There-

fore, it offers reduced latencies outliers for varied message

sizes, by the offset of at least one longest RTT the paths.

The video streaming results confirms the QoE improvement

when using NineTails.

There are many open issues in MPQUIC regarding the

stream-multiplexing and latency deadline satisfaction to sup-

port real-time applications. In the future, we will attempt to

address these two issues in combination, to achieve an end-to-

end solution for application latency reduction with transport

layer multipath transmission.

ACKNOWLEDGMENT

Funded by the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) - 227198829 / GRK1931

SocialCars.

REFERENCES

[1] ETSI, “5g service requirements for enhanced v2x scenarios
(3gpp ts 22.186 version 15.3.0 release 15).”

[2] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic,
D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, and
et al., “The quic transport protocol: Design and internet-scale
deployment,” in SIGCOMM ’17. ACM, 2017.

[3] J. Iyengar and I. Swett, “QUIC Loss Detection and Conges-
tion Control,” IETF, Internet-Draft draft-ietf-quic-recovery-24,
Nov. 2019, work in Progress.

[4] D. Bhat, A. Rizk, and M. Zink, “Not so quic: A performance
study of dash over quic,” in NOSSDAV’17. ACM, 2017.

[5] J. R. Iyengar, P. D. Amer, and R. Stewart, “Concurrent
multipath transfer using sctp multihoming over independent
end-to-end paths,” IEEE/ACM Transactions on Networking,
vol. 14, no. 5, pp. 951–964, Oct 2006.

[6] A. Ford, C. Raiciu, M. J. Handley, O. Bonaventure, and
C. Paasch, “TCP Extensions for Multipath Operation with
Multiple Addresses,” IETF, Internet-Draft draft-ietf-mptcp-
rfc6824bis-18, Jun. 2019, work in Progress.

[7] Q. De Coninck and O. Bonaventure, “Multipath quic: Design
and evaluation,” in CoNEXT ’17. ACM, 2017.

[8] T. Viernickel, A. Froemmgen, A. Rizk, B. Koldehofe, and
R. Steinmetz, “Multipath quic: A deployable multipath trans-
port protocol,” in IEEE ICC’18, 2018.

[9] A. Rabitsch, P. Hurtig, and A. Brunstrom, “A stream-
aware multipath quic scheduler for heterogeneous paths,” in
EPIQ’18. ACM, 2018.

[10] S. Avallone, S. Guadagno, D. Emma, A. Pescape, and G. Ven-
tre, “D-itg distributed internet traffic generator,” in QEST ’04.

[11] A performance measurement tool for quic similar to iperf.
[Online]. Available: https://github.com/rbruenig/qperf

[12] J. Blanton, P. Hurtig, U. Ayesta, K. Avrachenkov, and
M. Allman, “Early Retransmit for TCP and Stream Control
Transmission Protocol (SCTP),” RFC 5827, Apr. 2010.
[Online]. Available: https://rfc-editor.org/rfc/rfc5827.txt

[13] N. Dukkipati, N. Cardwell, Y. Cheng, and M. Mathis, “Tail
Loss Probe (TLP): An Algorithm for Fast Recovery of Tail
Losses,” IETF, Internet-Draft draft-dukkipati-tcpm-tcp-loss-
probe-01, Feb. 2013, work in Progress.

[14] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, “How hard can it be?
designing and implementing a deployable multipath tcp,” in
NSDI’12. USENIX Association, 2012.

[15] A. Frömmgen, T. Erbshäußer, and R. Steinmetz, “A Program-
ming Model for Application-defined Multipath TCP Schedul-
ing,” no. December, 2017.

[16] B. Walker, V. A. Vu, and M. Fidler, “Multi-headed mptcp
schedulers to control latency in long-fat / short-skinny het-
erogeneous networks,” in CHANTS ’18. ACM, 2018.

[17] V. A. Vu and B. Walker, “Redundant multipath-tcp scheduling
with desired packet latency,” in CHANTS ’19. ACM, 2019.

[18] B. Briscoe, A. Brunstrom, A. Petlund, D. Hayes, D. Ros, I. J.
Tsang, S. Gjessing, G. Fairhurst, C. Griwodz, and M. Welzl,
“Reducing Internet Latency: A Survey of Techniques and
Their Merits,” IEEE Communications Surveys and Tutorials,
vol. 18, no. 3, pp. 2149–2196, 2016.

[19] T. Nguyen and Sen-Ching S. Cheung, “Multimedia streaming
using multiple tcp connections,” in PCCC ’05, 2005.

[20] S. Ferlin, Ö. Alay, O. Mehani, and R. Boreli, “Blest: Block-
ing estimation-based mptcp scheduler for heterogeneous net-
works,” in IFIP Networking, 2016.

[21] A. Joseph, T. Li, Z. He, Y. Cui, and L. Zhang, “A Compar-
ison between SCTP and QUIC,” Internet Engineering Task
Force, Internet-Draft draft-joseph-quic-comparison-quic-sctp-
00, Mar. 2018, work in Progress.

[22] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad,
T. Stack, K. Webb, and J. Lepreau, “Large-scale virtualization
in the emulab network testbed,” in USENIX ATC’08, 2008.

[23] Moongen traffic shaping delay node. [Online]. Available:
https://github.com/brentondwalker/MoonGen

[24] N. Becker, A. Rizk, and M. Fidler, “A measurement study
on the application-level performance of lte,” in 2014 IFIP
Networking Conference, 2014, pp. 1–9.

[25] Mapple - mpquic application latency evaluation platform.
[Online]. Available: https://github.com/vuva/mpquic-latency

[26] R. K. P. Mok, E. W. W. Chan, and R. K. C. Chang, “Mea-
suring the quality of experience of http video streaming,” in
IFIP/IEEE International Symposium on Integrated Network
Management, 2011.

