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Abstract—Interests in the exploration and use of Unmanned
Aerial Vehicles (UAVs) for service provision have risen in recent
years. However, the use of UAVs to extend or solely provide Fifth
Generation (5G) wireless network coverage in rural and low
income areas is one application area that is yet to be extensively
researched. To this end, this paper proposes a topological design
model for building an airborne network to provide coverage in
rural areas. The model uses a combination of Low Altitude
Platform (LAP) as a base station and a cluster of UAVs as
cellular access points to provide wireless access to ground users.
A combination of performance metrics including Signal-to-Noise
Ratio, communication range and residual energy of UAVs are
used as guide for designing a robust airborne network with
multiple sink nodes. Topology relaxation techniques are applied
to design these meshed airborne networks respectively called
Multi-Sink Airborne Network with Inter-Cluster Communication
through the LAP (MSLBACK) and Multi-Sink Airborne Network
with an Inter-Cluster Connection through UAV Gateways (MS-
GBACK). Compared to myopic approaches (that may lead to
isolated UAVs), these airborne networks have more economic
relevance as they ensure effective utilization of all UAVs in
providing 5G connectivity to ground users. Simulation results
reveal that MSLBACK and MSGBACK outperform the state-
ofthe-art algorithms.

Index Terms—Clustering, Energy Efficiency, Low Altitude
Platform, Unmanned Aerial Vehicles, Wireless Sensor Network

I. INTRODUCTION

The Arpanet experiment [1] laid the foundation upon which
the most powerful engine that drives social and economic
growth in the world was built. Access to this global engine
called the Internet can be achieved using either wired or
wireless networks. The introduction of mobile phones, laptops
and tablets have in recent times tipped the scale in favour of
wireless networks. It is however paramount that these wireless
network connections be secure, trustworthy and accessible to
anyone from anywhere [2]. Despite the widespread adaptation,
there are areas where people are disconnected from the Internet
due to the lack of or limited wireless network coverage. This
is possibly because these areas are perceived as low-income
and unprofitable to network service providers; hence little
investments are made in terms of deploying communication
equipment. The promise of fifth-generation (5G) networks
with reduced installation and maintenance costs [3] could
change this. 5G provisioning through Unmanned Aerial Ve-
hicles (UAVs) is a promising solution to limited wireless

networks coverage in rural areas. This can be achieved by
capitalising on the interaction between aerial and terrestrial
network links [4], [5]. Though UAVs have attracted substan-
tial interest for various applications in the context of smart
solutions and internet-of-things (IoT) [6]; 5G mobile wireless
is however still in its infancy. The advent of ubiquitous mobile
devices and IoT has resulted in an unprecedented growth in
the demand for wireless access. Similarly, recent improvement
in micro-embedded computing technologies and reduction in
costs have resulted in the proliferation of UAVs. This has
encouraged their use in extending mobile wireless network
coverage to make-shift emergency situations or peculiar areas
such as rural and low-income communities [3], [5]–[7]. Recent
literature has shown that clustering nodes in dense aerial-
terrestrial wireless network can minimise energy consumption
[4], [7]–[10]. The ability of UAVs to self-organise on-demand
makes them ideal for providing resilient aerial-to-terrestrial 5G
cellular network coverage. A clustered 5G network topology
provides benefits such as: eradication of single points of
failure, resource re-usability and inter-clusters traffic routing
across virtual backbones [3], [12]. The usage of UAVs to
provide wireless network coverage is not without challenges,
some of which are: optimal 3D placement, energy limita-
tion, node mobility, transmission interference management
and backhaul connectivity [12], [13]. With respect to energy,
attaching a base station to a UAV and powering it with
the UAV’s battery has been shown to reduce flight time by
about 16% [6], [13]. These challenges notwithstanding, UAVs
wireless access network has seen numerous applications in
various scenarios including but not limited to public safety
and remote healthcare supports [4], [6].

II. RELATED WORK

A. UAV in Wireless Networks.

There are numerous exciting use-cases and research work
in the applications of UAVs in wireless networking, some of
which are presented in [13]. Despite the growing interest in
UAVs, deploying UAVs for the purpose of providing network
cellular coverage in rural and low-income areas has not been
extensively researched. The possibility of mounting cellular
nodes on UAVs and have them periodically or permanently
provide network coverage is now being explored. Example



of which are Nokia’s Saving Lives initiative [14], Google’s
Project Loon [15] and Ericsson and China Mobile’s 5G
enabled drones [16]. The authors in [3] demonstrated the
feasibility of providing cellular connectivity in rural and low-
income areas by mounting Remote Radio Heads (RRHs)
on UAVs. The nodes were powered by battery and solar
energy enabling them operate all day long. In [12] multi-
hop communication was used to extend the reach of UAV
ad-hoc mesh network. Authors in [17] proposed an intelligent
deployment of UAVs in a 5G heterogeneous communication
environment to improve coverage using macro base station.
In [18] and [19] it was concluded that 3D deployment of
multiple UAVs can minimise transmission power, UAV altitude
and elevation angle can improve Line-of-Sight (LoS) links and
Signal-to-Noise Ratio (SNR) can be a measure of Quality of
Service (QoS).

B. Research on Clustering Techniques.

In [11], the authors discuss common clustering schemes for
mobile ad-hoc networks. Their work provided a descriptive
mechanism for evaluating the performance and costs of clus-
tering schemes. Ref. [6] and [20] proposed a clustering mech-
anism aimed at improving energy efficiency in aerial-based
access systems during disasters. The authors in [5] investigated
user and network-centric approaches to optimal 3D placement
of UAVs in 5G wireless networks. In [4] a clustering algorithm
was designed using density-aware, distance-aware and hybrid
selection policies; while in [4] and [21], the authors improved
energy efficiency by grouping nodes into clusters for data
gathering.

From a meta-heuristic perspective, researchers have used
Particle Swarm Optimization (PSO) to cluster nodes [22]–[25].
In [23], the focus was on maximising the lifetime of sensor
nodes by enhancing a basic PSO with energy optimisation
technique. Authors in [22] and [24] improved energy efficiency
through PSO load balancing during routing, while in [25]
a two-tier PSO was developed which used a novel particle
encoding scheme and fitness function to determine optimal
routes between cluster heads (CH) and base stations.

A number of works [23], [25]–[29] have focused on hier-
archical clustering, specifically improving the popular Low-
Energy Adaptive Clustering Hierarchy (LEACH) protocol. A
dual-phase approach was proposed in [26], [27], wherein CH
selection was done in the first phase and data transmission
mechanisms addressed at the second phase. Ref. [28] proposed
an extension to the LEACH by focusing on isolated nodes;
while in [29] the aim was extending the lifetime of node via
Super-Cluster Head (SCH). This SCH was selected from the
CHs using fuzzy logic and was designated to communicate
with the BS. The authors in [30] proposed a decentralised
hierarchical clustering scheme for hopping traffic across inter-
clusters.

C. Our Contribution.

The main contribution of this paper is to propose an efficient
clustering approach for 5G backhaul and fronthaul access for

the purpose of utilizing UAVs to provide wireless connections
in rural low-income and remote areas. Two types of airborne
were proposed to achieve this, namely: i) a Multi-Sink Air-
borne Network with Inter-Cluster Communication through the
LAP and ii) a Multi-Sink Airborne Network with Inter-Cluster
Communication through UAV gateways. Compared to [20], the
proposed airborne networks are fully meshed and leave few
or no UAV isolated, hence more economically relevant.

The outline of the rest of the paper is as follows: section
III describes the system and formalises the solution, section
IV discusses the proposed clustering mechanism. Section V
presents simulation results; while in section VI, concluding
remarks are given.

III. SYSTEM AND SOLUTION FORMALISATION

UAV wireless networks would allow the adaption of a
function virtualization, enabling network functionalities run
in software rather than on hardware [31], [32]. They would
also enhance mobile networks, providing support for Multiple-
User, Multiple-Input, Multiple Output technologies (MU-
MIMO) as well as increasing data rate achievable by end users.

Fig. 1. Coverage Model with logical connection lines. (A) RRH–Balloon, (B)
RRH-UAV, 1. Balloon Coverage Area, 2. UAV Coverage Area, 3. Backhaul
Radio Link, 4. Fronthaul Radio Link, 5. DTN, i) Free Space Path loss, ii)
Excessive Path loss, iii. UAV Coverage Radius, iv) UAV Height, v) UE Radius,
vi) UE distance to Access Point

Inline with these forthcoming trends, Figure 1 depicts our
envisioned rural and low-income area coverage model. The
system consists of Nc ∈ N unmanned aerial vehicles indexed
by i or j, where i 6= j and i, j ∈ 1, 2, 3, . . . , Nc. Index i, j = 0
represent the LAP. To calculate the number of 5G RRH-UAVs
Nc we use the expression given in (1).

Nc = max(
2 ∗A

3
√

3 ∗Rc2
),
Nu ∗ α ∗ T

γ
) (1)

where Rc is the radius of the hexagonal cell coverage area,
A is the size of the prescribe area, NU is the total number
of users, α is the ratio of active users in the network, T is
the average throughput per subscribed user, and γ is the peak



capacity of the RRH-UAV network cell. The components of
the model are described as follows:

Remote Radio Head (RRH)–Balloon: This is labelled A
in Figure 1 and is a Low Altitude Platform (LAP) that act as
a Base Station (BS) to the UAVs. The LAP floats at about ten
kilometres above sea-level and can communicate with all the
UAV nodes. It has a processing unit and runs Software Defined
Networking (SDN) alongside Network Function Virtualiza-
tion (NFV) with support for multiple network slicing. The
LAP processes low-level network slices and allocates same
to network service providers, fog-computing and industries.
The RRH performs basic radio operations including digital
to analogue conversion, analogue to digital conversion, power
amplification and signal filtering.

Remote Radio Head – Unmanned Aerial Vehicle: labelled
B in Figure 1 and consist of a cluster of nodes. Only
the CHs communicates directly with the LAP. Other nodes
communicate with the LAP through the CHs. The UAVs are
mounted with low capacity processors with support for SDN
and NFV. The virtual network can be customised to meet
high-level slicing specifications with a focus on individual
end-users. Data is transmitted using millimetre waves with
frequencies between 30 and 300 GHz range; thus, able to
avoid interference from surrounding signals and pass through
physical barriers.

Balloon Coverage Area: labelled 1 in Figure 1. The
radio heads in the RRH-Balloon and UAVs operate with
communication frequencies of 100 GHz or higher, which helps
reduce latency and improve bandwidth utilization. UAVs have
3D positioning systems and must be high enough in altitude
to reduce the effect of free space path loss (labelled i in 1).

Unmanned Aerial Vehicle Coverage Area: depicted as
2 in Figure 1 is the coverage area within which end-users
have access to the network. UAVs use a combination of
network data, neural network and spatial clustering algorithms
to predict the best position to hover.

Backhaul Radio Link: This is labelled 3 in Figure 1 and
is the up/down communication link between UAVs and the
LAP. It is defined with properties represented in (2).

lb = ϕi0,Φi0, δi0, δξi0 (2)

where ϕi0 is the distance in meters between ith RRH-UAV
and the LAP and is defined in (3), Φi0 is the slow fading
random wireless channel envelope between ith RRH-UAV and
the LAP, δi0 is the path loss between ith RRH-UAV and the
LAP, δξi0 is the mean path loss between ith RRH-UAV and
the LAP.

ϕi0 =

√
(ri02 + hi0

2) (3)

where ri0 is the radius from the cell to the coverage centre
of the LAP and hi0 is the difference in altitude of RRH-UAV
and LAP.

Fronthaul Radio Link: Labelled 4 in Figure 1, is the
up/down communication link between ith and jth RRH-UAVs,
and has properties represented as shown in (4).

lc = ϕij ,Φij , δij , δξij , (4)

where parameters are similar to those described for Back-
haul Radio link in (2).

IV. CLUSTERING TECHNIQUE
Let us assume that all communication links are Air-to-

Ground and UAV nodes have autopilot feature. If we also
assume that all cellular nodes have similar characteristics and
each UAV can communicate telemetric information (such as
their Residual Energy (RE) and location) across the network.
The clustering algorithm for the air-to-ground network pro-
posed in [20] can therefore be borrowed and adapted to fit the
proposed 5G network.

In this work, we propose two models for communication
between the UAVs and the BS. In the first model called Multi-
Sink Airborne Network with Inter-Cluster Communication
through the LAP (MSLBACK), all backhaul communication
are directed to the LAP. In this model, the LAP acts as the
sole BS for all UAVs.

In certain situations where the LAP is overwhelmed, UAV(s)
can be selected to act as pseudo-BS, offloading some of the
traffic from the LAP. This is our second model, which we
refer to it as Multi-Sink Airborne Network with Inter-Cluster
Communication through UAV Gateways (MSGBACK). The
process of selecting CHs and cluster members for both models
are as follows:

1) Cluster Head Selection - MSLBACK: Though the
LAP is the sole base station, UAVs do not communicate
directly with the LAP but instead go through CHs. CH
selection is based on P(i) and expressed by: (5)

P (i) = α ∗ ΓSNR(i) + β ∗ E(i) (5)

where ΓSNR(i) is the signal-to-noise-ratio of the LAP
link to node i, E(i) is the residual energy of node i
expressed by (6). α and β should be R such that α+β
must be 1.

E(i) = E− ERSD(i) (6)

where E and ERSD(i) are respectively the average
energy in the network and the residual energy of node
i and

2) Cluster Head Selection - MSGBACK: In this
model, CHs are selected in a similar manner as with
MSLBACK. However, with MSGBACK, a CH can be
”upgraded” to become pseudo-BS for other UAVs. The
selection of this pseudo-BS is based on (7)

P (i) = α ∗ CUAV (i) + β ∗ Cnodes + γ ∗ E(i) (7)

where CUAV (i) is the centrality measure for UAVs
relative to the LAP, Cnodes(i) is the centrality measure
relative to normal nodes and E(i) is the residual energy
of node i defined in (6). α, β, and γ should be R such
that α + β + γ = 1 .

3) Cluster Member Selection: For both models, once the
CHs have been determined, selection of cluster members



can be based on various metrics including: distance to
a CH or density (number of nodes in each cluster) or a
hybrid combination of both. Also, the models can have
as many clusters as possible, so long as each CH has
members.

For MSGBACK, once the backhaul clustering set (group of
CHs) has been obtained, optimal inter-cluster communication
links are obtained by: i.) calculating the average SNR value
of all links between the CHs; ii.) creating links between CHs
with highest SNR values (fronthauling links); iii.) obtaining
the pseudo-BS (the CH(s) with the best RE and SNR to the
LAP). Figures 2(a) and 2(b) show network topologies for both
MSGBACK and MSLBACK respectively.

In both figures, the thick black lines depict primary links
of CHs, which serve as backhauling communication links;
while the thin dash lines are secondary links or fronthauling
communication links. Figure 2(a) depicts MSGBACK, with
the pseudo-BS shown to be at a level higher than other UAVs.
For MSLBACK depicted in Figure 2(b) within each cluster,
all nodes connect to the LAP via the CHs.

(a) MSGBACK (b) MSLBACK

Fig. 2. MSGLACK vs MSLBACK Network Layout.

In the proposed mechanism, the backhauling connection are
formed by the LAP using telemetric information received from
the UAVs. Conversely, the inter-cluster and fronthaul links are
formed by the UAVs. By splitting the mechanism this way,
the complexity of managing clusters and routing traffic is
reduced. In addition, the clusters are reassigned periodically
using updated beacon packets received from UAVs reporting
their corresponding parameters in the network.

V. SIMULATION

In our models the backhauling links are used to access
the LAP while the fronthauling links are used for local
communication between UAVs. These are then combined with
clustering mechanisms (described in section IV). Monte-Carlo
simulations are carried out using random data and the proposed
multi-sink airborne network clustering algorithms are com-
pared with other myopic clustering algorithms in literature.
The simulation processes are described in the next sub-section.

A. Case Study.

Places with high human density were selected as UAV
positions from Mopani district municipality, Limpopo, South
Africa. These included Schools, Health Centres, Farms, Police
Stations, Shopping Centres, and Religious places. A total of
591 locations were selected using Google Maps.

(a) K-Means Cluster-
ing

(b) MSLBACK (c) MSGBACK

Fig. 3. Clustering Comparison.

B. Comparison of Clustering Techniques.

We compared the clustering mechanism of MSGBACK and
MSLBACK with the classic K-Means clustering algorithm.
We used the number of isolated nodes as a measure of
performance. Figures 3(a), 3(b), and 3(c), show the results
plotted on Google Map for the 591 locations. In the figures, the
red lines represent inter-cluster communication links between
CHs and CMs, while the yellow lines represent intra-cluster
links. Figure 3(a) shows that K-Means did not perform well as
many nodes were left isolated. This is in contrast to our models
where few or none was left isolated. Comparing MSLBACK
and MSGBACK, Figure 3(c) shows the effect of the Pseudo-
BS in MSGBACK with less red lines and more yellow lines
compared to MSLBACK (Figure 3(b)).

C. Comparison of Backhauling Techniques.

Compared to the backhauling algorithm in [20], hereafter
referred to as ”Myopic”; both MSGBACK and MSLBACK
incorporate a mechanism that ensures no node is isolated.
Furthermore, multi-sink nodes [33], [34] are used to improve
the transmission of local packets. In contrast to having only
a direct backhauling link to the LAP, these models create
secondary links to through CHs to the LAP.

In the Myopic model, all communication go through the
LAP. Though this might be beneficial as it allows for moni-
toring and control, the design can shorten the battery life of
the LAP due to the large volume of traffic going through it. To
cater for this, MSGBACK and MSLBACK create clusters and
use fronthaul links to communicate between CHs and CMs.

To validate the effectiveness of our models with regards
CH and CM selection, we compared them with the following
backhauling techniques: i) Random Selection Backhauling,
where CHs are randomly selected; ii.) Energy-Aware Selec-
tion Backhauling, wherein nodes with Residual Energy (RE)
higher than the median are selected CHs; iii.) Ranked Energy-
Aware Selection Backhauling, where UAVs are sorted in
descending of RE and sequentially selected as CHs.

Figure 4 shows a comparison of our proposed models with
other backhauling models. In the figure, Model-Name CH
means the number of Cluster Heads utilized by the model
while Model-Name Unassigned represents the number of
nodes left isolated by the model. The figure shows that Myopic
and k-means left more nodes isolated and had considerably
higher number of CHs, while MSLBACK and MSGBACK
mostly left no node isolated.



Fig. 4. Comparison of Backhauling Models in Soweto Township

Fig. 5. Improved Backhauling Models in Soweto Township

D. Effect of Signal-to-Noise Ratio Distribution.

This sub-section discusses how distribution of signal-to-
noise ratio affects clustered network. We sample SNR and
RE with Gaussian, regular and uniform distribution to show
that our proposed models leave few or no node isolated.

Since MSLBACK and MSGBACK use similar criteria
for selecting CHs and CMs, we simply refer to them as
MSXBACK in this section. The results of simulations carried
out are depicted in Figures 4 and 5. Residual energy (RE) dis-
tributions were selected from a million random variables. The
normal probability density for the Gaussian distribution was
applied on both simulations, with the mean set to µ = −78dB
and variance set to σ2 = 16.59.

The grey coloured bars represent the bounds of SNR dis-
tribution in each simulation, with values on the right scale.
Lines with circle interludes represent the total number of nodes
assigned as CHs, while broken line with triangle interludes
represent total number of isolated nodes. Our backhauling

method used for MSLBACK and MSGBACK, depicted as
MSXBACK in Figure 5, outperformed the other techniques.
The figure also shows that both Energy aware selection
algorithms left the most number of nodes isolated, while
the Myopic had the highest number of CHs. The Random
Selection algorithm on the other hand, left no node isolated
except for two instances when SNR had the highest dB bound.
From the result shown in Figures 4 and 5, it can be concluded
that compared to the other algorithms, the backhauling model
proposed in this paper is most suited for UAV-based 5G
wireless networks; especially if the UAVs are in constant
motion. However, with perfect LoS and at similar height,
the UAVs would have a very similar SNR to the LAP; thus,
equally effective.

VI. CONCLUSION

Wireless connections are now the de facto method through
which mobile devices connect to the Internet. The Internet is



now a necessity as it indirectly powers industries, economies
and inter-societal lives. Great strides have been made in
Internet technologies and 5G network is one of such recent de-
velopments. Unfortunately, Internet facilities are not available
globally, particularly in remote and low-income areas. UAVs
have emerged as a potentially cheap way of providing wireless
coverage to these areas. In this paper, models for deploying
5G networks in remote areas were presented. The models
incorporates features that improve the backhaul connection to
the base station and fronthaul links interconnecting UAVs. It
also conserves energy and efficiently utilized UAVs in a cluster
leaving none isolated. The developed models called MSG-
BACK and MSLBACK use multi-sink clustering algorithm
and are backhaul aware. They were benchmarked against the
K-Means clustering algorithm as well as several backhauling
algorithms and simulation results showed that both performed
better than the other algorithms in terms of utilising the
highest Signal-to-Noise ratio as well as engaging all the
UAVs. Though positive results have been shown in this work,
deployment considerations such as ideal hovering altitudes,
effect of obstacles were not considered. These could make for
interesting future works. Furthermore, performance parameters
regarding network lifetime and bandwidth utilisation could
also be considered.
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