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Abstract—TFinite capacity of network resources and enormous
data generated by vehicles using safety and comfort applica-
tions, have made network congestion a challenge to manage in
Heterogeneous Vehicular Network (HetVNET). In this paper,
we propose a reliable network congestion model based on
a Multiple Linear Regression (MLR), which is a supervised
machine learning algorithm to predict network congestion in
HetVNET. We have evaluated the performance of our proposed
network congestion prediction model using a Cross-Validation
test approach. Numerical results show that the proposed linear
congestion prediction model is reliable, which can explain and
support variability of the response as well. Moreover, we have
weighted effectiveness of each considered HetVNET parameters,
in association with congestion situation in HetVNET.

Index Terms—Heterogeneous Vehicular Networks (HetVNET),
network congestion prediction, supervised machine learning
method, Intelligent Transportation System (ITS).

I. INTRODUCTION

In Heterogeneous Vehicular Network (HetVNET) connected
vehicle’s users can be profited from various services, which are
provided by Dedicated Short Range Communication (DSRC)
and Long-Term Evolution (LTE) [1]. In vehicular networks,
data generated by vehicles can be transmitted via two types
of communications: Vehicle-to-Vehicle (V2V) and Vehicle-
to-Infrastructure (V2I). HetVNET applies DSRC and LTE in
V2V and V2I communications respectively [2].

The growing number of smart vehicles and the significant
tendency of people to enjoy diverse services from Internet
ubiquity generate high resource demands for data transmission
through network, which is a notable challenge. In the scenario
that a huge volume of data needs to be transmitted, but we do
not have enough resources in HetVNET to dedicate, network
will experience congestion situations. Unfortunately, conges-
tion can impair network performance and user satisfaction by
collapsing the Quality of Services (QoS). When a vehicular
user finds out that data transmission is low and has to wait
for network respond, then his satisfaction typically will drop.
Therefore, congestion in a vehicular network is negatively
related to QoS. In a real time situation, when an accident
has happened, two actions of warning other vehicles on the
way and sending an alarm to immediate health help must be
done within an appropriate time and with least latency. In such
a scenario, if the HetVNET encounters congestion problem
and no congestion mechanisms are used, the direct effect of

congestion on QoS could have irreparable harms for human
life, time consumption and money expenditures.

Intelligent learning methods help devices and machines to
learn from existing data, and then use what they learned for
new data, which the device may have never seen those data
before. Machine learning algorithms are categorized into su-
pervised and unsupervised learning. An unsupervised learning
method is capable to learn and making solutions with no
error evaluation. However, a supervised method is an error
correction method, and learning will be matured by training
[3].

Regarding to this preface, we decided to study current works
related to network congestion in vehicular networks, which the
authors used machine learning algorithms in them. However,
the number of works in this area is limited. That being said,
controlling congestion by applying an unsupervised algorithm
for clustering information generated by vehicles in Vehicular
Ad hoc Network (VANET) has been proposed by Taherkhani
et al. [4]. Although their work is not about network congestion
prediction, they succeeded in controlling congestion by clus-
tering data using learning K-means algorithm. In many similar
works, authors assumed congestion situation from channel
busy level and then tried to propose a mechanism to control
network congestion. However, for the first time, in this work,
we do not use any assumption for network congestion, we
propose a method to predict it, and results will show to which
extend the proposed prediction method is accurate and reliable.

Moreover, the concept of fracturing control unit and data
plane has been emerged by Software-Defined Networking
(SDN) architecture [5], [6]. In SDN, the control layer plays
administrative roles in the whole network. Therefore, the con-
trol layer is able to update, configure and optimize network re-
sources very fast and dynamically thanks to its programmabil-
ity attribute [5]. SDN is adaptable, manageable, cost-effective,
and ideal for dynamic environment like HetVNET. In this
regards, a network congestion prediction model at the control
layer, can help in forming and boosting an intelligent network
management in SDN based architectures of HetVNET. In
this paper, we propose a multiple linear network congestion
prediction model for HetVNET.

This paper is organized as follows. In Section II, we present
a literature review, and in Section III a methodology and the
proposed prediction model. Simulation scenario and numerical



results are presented and discussed in Section IV. Concluding
remarks are presented in Section V.

II. RELATED WORK

In the literature, several authors decided to cope with net-
work congestion by adjusting the transmission power [7], [8],
[9], [10]. For instance, Ali Shah et al. [8] defined a mechanism
to reduce the transmission power in order to control traffic
load of control channel in VANET. If a vehicle finds out
that control channel is congested, it will inform other vehicles
that they may be affected by the congestion problem. Then,
vehicles are sorted based on their current transmission power.
Vehicles formed several groups, and vehicles belonging to each
group start to reduce transmission power fairly. In this method,
the congestion is alleviated by all vehicles that are impacted
by the effects of network congestion. Chakroun et al. [10]
tuned transmitting power of each vehicle based on crowding
level surrounding of the vehicle. In the proposed algorithm,
as far as local communication congestion does not exceed a
communication congestion threshold, the transmitting power is
increased, and otherwise, the transmitting power is decreased.
In this paper, the value of communication congestion threshold
is not defined. Rostami et al. [11] compared the performance
of two approaches of reactive state based and linear adaptive
approaches. In reactive state based approaches three different
states are defined for channel: idle, active, and high traffic
load. Active level is divided to three sub sets. Each channel
occupancy level has a predefined related message transmission
policy in terms of time for transmission message and message
transmission rate. In linear adaptive approaches message trans-
mission policy is defined to worthy channel utilization. Sim-
ulation results illustrate that the message throughput with the
linear adaptive approach is higher than the message throughput
with the stable reactive approach. Zang et al. [12], used a static
and fixed threshold for channel usage. Different congestion
control mechanisms are used according to the channel usage,
for more than 95% and for more than 70%. However, as found
by the authors, congestion may occurred with lower channel
usage figures.

Taherkhani et al. [4] improved packet loss, average delay
and probability of collision metrics by applying the K-means
clustering technique (unsupervised algorithm). Its proposed
strategy is divided in to three parts: congestion detection, data
control and congestion control. In the congestion detection
unit, it is assumed that congestion is happened whenever chan-
nel usage comes up to 70%. In the control unit, messages are
collected, filtered and then clustered. In the congestion control
unit, appropriate communication parameters are assigned to
each cluster.

Lu et al. [13] proposed a method, which reduce the band-
width assigned to delay tolerant data and adding it to the
bandwidth used by sensitive delay data. The solution approach
was applied where the channel queue length had been grown
more than a threshold and congestion happened. Zemouri et
al. [14] proposed a model to predict density around a vehicle
in the next time window by using beacons’ information.

Then based on density prediction, the vehicle can adjust its
parameters to avoid congestion for the next time window.

Hasanabadi et al. [15] proposed the Synchronized Persis-
tent Coded Repetition (SPCR) algorithm. With SPCR, each
active vehicle node broadcasts composition linear coding of
messages, which are selected randomly from its queue. If the
number of vehicles in a cluster is [V, then the congestion
control mechanism randomly selects n nodes as active (which
defined as n < NN) and abandons all messages from (N — n)
inactive nodes. Therefore, the value of n is from O to N.
If n = N, it means that all N vehicles in the cluster are
active and can all broadcast messages. On the other hand, if
n = 0, it means all nodes are passive and all safety messages
are dropped which is dangerous especially in critical situation
like road hazards. Kolte et al. [16] defined several segments
and assigned each vehicle to a segment. In each segment, one
node decides that which of the other nodes of the segment can
use dedicated bandwidth during specific time interval. Since,
segments densities are not equal, bandwidth allocation is not
fair, as a node in a denser segment has to wait more to use
dedicated bandwidth. Besides, time of using bandwidth for a
node in crowded segment is less than a node in a non-crowded
segment.

III. METHODOLOGY AND PREDICTION MODEL

A. Designing Structure of Data set

Inspiring of current works, we consider a group of param-
eters, which each one has effect on creating congestion in
vehicular network. Indeed, analyzing a group of different pa-
rameters, which have effect on congestion in vehicular network
using learning algorithm, helps us to produce prediction model
with high accuracy in congestion prediction result. Besides,
assigning a weight to each parameter in prediction model can
guide us to find out the importance level of parameters in terms
of their effects on congestion in the HetVNET. This approach
can guide us towards creating a congestion control mechanism
based on most effective parameters on congestion occurrence.

We consider following five vehicular network parameters in
this work: Number of Vehicles (V'), Data Rate (DR), DSRC
Transmission Power (T'Ppsgrc), LTE Transmission Power
(TPrrE), and LTE Bandwidth (B).

B. Proposing Utility Function

The network throughput is the amount of data successfully
received at the destination point per unit of time. The data
generation rate is the amount of data generated by the network
nodes per unit of time. As a result, in part of creating data set,
we propose utility function like U(V;) as a metric to detect
congestion in the HetVNET. Indeed, congestion recognition
is based on two factors of network throughput (7) and data
generation rate («) by V' vehicles. Value of U(V;) € [0,1]
for time of ¢ and with V' vehicles. We can assume that if the
value of U(V;) grows towards one, the network condition in



terms of congestion improves, and if value of U(V;) collapsed
towards zero then congestion is happened in the network:

U = (tpsrc) (Vi) + (TLTE)(Vt)’
a(Vi)

where, a(V;) is the data generation rate by V vehicles
for time unit . Moreover, we consider total throughput in
the heterogeneous vehicular network as sum of throughput
of DSRC (7psrc(V:)) and throughput of LTE (7,75 (V})),
both based on Bytes per second (Bps). This vision helps us to
investigate congestion problem based on sensitivity of urban
roads. For various scenarios and based on network sensibility,
we define a threshold for value of utility function like 7" (which
T € (0,1)) and based on that, we can define three network
congestion states in HetVNET:

D

statel:safe, if:
(T+7) <UW) <1
state2:warning, if:
T<UW) < (T+7)
state3:congestion, if:
0<UWV) LT

congestion state =

;@

where v € (0,1) is used to define the warning interval and
(T + v) < 1. For instance, assume that the HetVNET is
implemented in a non-safe road with high risk of car accident
and the weather is rainy. In such a scenario, as the required
emergency and safety services should be provided smoothly,
we may set U(V;) to 0.4 or over, so T= 0.4. If we assume
that v= 0.2, then based on (2), we have:

statel:safe, if: 0.6 < U(V;) <1
state2:warning, if: 0.4 < U(V;) < 0.6
state3:congestion, if: 0 < U(V;) <04

congestion state =

In this example, the congestion prediction model must make
a warning when it predicts that the value of U(V;) will
get less to below 0.6. Then, at this moment, the congestion
control/avoidance mechanism will be executed before the
value of U(V;) is collapsed to 0.4, and pushes it up to upper
level like beyond 0.6. Therefore, we can be assured that in
a critical network situation in terms of data traffic, our target
HetVNET can provide at least an acceptable level of network
services for vehicular users.

C. Multiple Linear Regression Prediction Model

In order to predict quantitative values such as for U(V;),
linear regression is a popular method [17]. According to the
Multiple Linear Regression (MLR) method, we use the least
squares method in order to generate a best possible fitted
prediction model by minimizing predicting error. It means that
by using least square approach we attempted to find model
coefficients () for our prediction model in the manner of
minimizing Residual Sum of Squares (RSS). RSS is the dif-
ference between observed values of U (V) in training data set
and response values that are predicted by the prediction model
[17], [18]. Based on MLR, if X = (xg,x1,%2,...,Tm) =

(1,V,DR,TPpsrc, TPrrE, B) contains our predictor vari-
ables, and  is a set including of our model coefficients ()
which 8 = (80,601,082, - --,0m), then the quantitative value of
U(V;) (which we call ) can be predicted as follows:

j = Bo+51V +B2DR+ 33T Ppsre +BaT Prre+ 5B (3)

If we suppose that y is the observed value of U(V;) in the
data set, then e; = y; — 9, is residual error for it" data record
[17], [18]. A prediction model can be trustful, where amount
of e; is at minimum value of itself. To achieve this goal, least
squares method can help us find a best fitted prediction model
in linear regression problems. Therefore, according to the least
squares method, we propose different values for our predictor
variables and output Y. Therefore, if we consider a (nx6)
matrix of X and a (nx1) matrix of Y as follows (which n is
number of observed data records in data set):

1 Vi DRy TPpsrci TPrre1 B
X=1 z S
1 Vn DRn TPDSRCn TPLTEn Bn
Y1 U1(Vt)
Y2 Uz(Vt)
Y: = . 5
Yn Un(V2)

then, we can calculate ( X7 x X) as a (6 x 6) matrix with
subsequent members:

T11 Ti2 T13 T4 T15  T16
To1 T2z T3 Taga Tas  T26
XT % X — |¥31 T3z T3z T34 Tzs T3e R
T41 T42 T43 T44 T45 T46
ITs1 T2 53 Ts4  Ts5  Ts6
T61 Te2 T3 Teda Les L6
where:
T11=n z1a =y (TPpsro)i
xo1 =3, Vi x2a =Y, (Vi)(TPpsrc)i
w31 = ., DR; w34 =Y ; (DR:;)(TPpsrc)i
z41 =y o (TPpsro)i x4 = > (T Ppsrc);
xzs1 =, (TPLrE)i @54 =y, (TPrre)i(TPpsrc)i
ze1 =Y, 4 B zea = Y, (Bi)(T'Ppsrc)i
T2 =1, , Vi z15 = . (TPLrE)i
T22 = Z?:l(v) T25 = Z?:l(v)(TPLTE)
x32 =y (DR:)(V3) x35 = Y, (DR:)(TPrrE)i
za2 =y o (TPpsre)i(Vi) |xas = (T'Ppsrc)i(TPrrE):i
xzs2 = »_o  (TPrre)i(Vi) Ts5 = Z?zl(TPLTE)?
ze2 =y . (B )(V) zes = p_ . (Bi)(TPrrE)i
r13 = Z:;l( ) 16 = Z?Zl(Bi)
w3 = . (Vi )( R;) w26 = >, (Vi)(Bi)
w33 =Y, (DR;)? z36 = Y., (DR:i)(B:)
43 = . (TPpsrc)i(DRi)|xas = Y. (TPpsrc)i(Bi)
253 =), (TPrrE)i(DR:) |56 = ), (T PrrE)i(Bi)
Te3 =y (Bi)(DR:) zos = > iy (Bi)”




therefore, we can calculate X7 x Y as follows:
Z?:l Ui(Vk)
2 iy Vi x Ui(Vi)
Z?zl DRi X Uz(‘/;f)
S (TPpsre)i x Us(Vi) |
> i1 (TPprE)i x Us(Ve)

Y i1 Bi x Ui(Vi)
Finally, 8 contains the proposed model coefficients is com-
putable using (6), and the multiple linear regression congestion
prediction model can be completed:

XTxy = &)

B=XTxX)'x (XTxY)= B2 (6)

IV. SIMULATION SCENARIO AND NUMERICAL
RESULTS

A. Simulation Scenario

In this paper, as part of data generation and towards generat-
ing urban simulation scenario, we use OpenStreetMap (OSM)
to create map of boroughs of the city of Montreal in Canada.
Then, we used the “.osm” file in Simulation of Urban Mobility
(SUMO) 0.26.0 to generate road traffic. Finally, we worked
with Veins LTE version 1.3 [19], which is standing on the
OMNeT++ (4.6) Network simulator to simulate heterogeneous
vehicular network based on IEEE 802.11p and LTE.

TABLE I
PARAMETERS AND CORRESPONDING VALUES USED IN
SIMULATION SCENARIO

Value

1000 m x 1000 m
Number of lanes 4 (two in each direction)
Number of vehicles 30, 50, 100, 150, 200
Number of base station (eNB) 1

Bandwidth (IEEE802.11p) 10MHz

Bandwidth (LTE) 5 MHz, 10MHz, 20MHz
Transmission power (IEEE802.11p) | 1 mW, 50 mW, 100 mW

Parameter
Total road length

Transmission rate (IEEE802.11p) 6-27 Mbps
Resource Blocks size 25, 50, 100
Message size 400 Bytes
Vehicles speed 0-40 km/h
Propagation model Nakagami
Simulation time 1000 s
Simulation runs 260

Table I contains attributes and parameters values, which are
applied in each of the 260 running simulation scenarios. For
each scenario, we set the values of V, DR, T Ppsrc, T PrrE,
and B and then calculated the value of U(V;).

After generating data extracted from executing simulation
scenarios and putting it in shape of a data set, we use R
programming language (using RStudio version 1.1.463) in
order to create multiple linear regression congestion prediction
models and statistically analyzing their performance to finally
find a congestion prediction model most fitted to the observed
data.

Value of R Square in different congestion prediction models
composed of variable permutations of predictors
MAX:0.82733

R Square
[=]

Fig. 1. Value of R? for each possible 30 prediction models.

B. Multiple Linear Regression Analysis: Assessing Congestion
Prediction Model

In the current HetVNET related works, we did not find
any work that could be used as a benchmark (until today),
and make comparison with our proposed method. Therefore,
in order to evaluate congestion prediction model generated
by multiple linear regression method, we will respond to the
following questions, which are mainly considered in regression
problems:

Q1) How much of variability in amount of U(V) can be
expressed by predictor variables (V, DR, T Ppsrc, TPrTE,
and B) in congestion prediction model? Or using a subset
of predictor variables is more effective for predicting U(V;)
than having a congestion prediction model contains all five
predictor variables? R square parameter can show us that how
much changing in value of dependent variable like U (V) is
determined by independent variables like V', DR, T Ppsrc,
TPrrE, and B in our problem [17]. Fig. 1 illustrates amount
of R? for each possible 30 prediction models, which are
generated using information of data set and MLR method.

Fig. 1 shows that in model 24, which we apply all five
predictor variables to make a congestion prediction model,
as we expected, it has highest coefficient of determination
(R?) among all possible 30 congestion prediction models. It
confirms that, information from the variables like number of
vehicles, data rate, DSRC transmission power, LTE transmis-
sion power, and LTE bandwidth are helpful to better predict the
network performance in terms of problem in data transmission
in HetVNET. The regression congestion prediction model 24
composed of all five considered variables, with coefficient of
determination of 0.82733 (which is most close to one among
other models), is most capable to express variability in amount
of U(V;). Therefore, in continue we just consider information
of all five predictor variables in order to generate congestion
prediction models using MLR.

Q2) Is proposed congestion prediction model a reliable
model? Based on Cross-Validation test method [17], we con-
sidered 80% of our observed data in a training data set and



Root-Mean-Square-Error (RMSE) in 20 times of running
Cross-Validation test method
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Fig. 2.
approach.

RMSE in different splits of data set using cross-validation test

remaining 20% are used in a test data set. We performed this
approach 20 times and for each time data belonging to training
data set and test data set are selected randomly among 260
data records of our observed data. In each split of training
data set, the MLR algorithm generates a model based on data
of training data set.

TABLE 11
STATISTICAL PARAMETERS ABOUT CONGESTION
PREDICTION MODEL 19

Estimate  Std. Error t value Pr(>|t])
(Intercept)  -1.036e-02 1.943e-02 -0.533 0.594
v 1.555e-04 6.799¢-06 22.876 >2e-16
DR 1.921e-06 5.555e-05 0.035 0.972
TPpsrc 1.754e-04 1.036e-05 16.930 >2e-16
TPrTE 2.371e-04 4.482e-04 0.529 0.597

3.281e-05 1.033e-04 0.318 0.751

We evaluate accuracy of generated prediction models using
test data sets and based on Root Mean Square Error (RMSE)
parameter, which is one of the best parameter to show how
much the prediction model can be trustful in terms of pro-
ducing results close to actual data [20]. Fig. 2 shows value
of RMSE for different splits of data set using cross-validation
test approach. In prediction problems, a model with less RMSE
is more accurate than other model with higher RMSE value.
As Fig. 2 indicates, the prediction model 19 has minimum
amount of RMSE in compare to other congestion prediction
models. Table II contains coefficients of congestion prediction
model 19 based on least squares in multiple linear regression
method. We can see values of matrix 5 for model 19 (related
to formula (6)) in estimate column of Table II. Each of the
five predictor variables has its own level of effectiveness on
U(V;). Estimate column in Table II, shows effect of each five
predictor variable on smooth data transmission. Based on the
estimate column, transmission power of LTE has highest effect
on boosting data transmission by increasing value of respond
U(V;). DSRC transmission power has been placed at second

level of importance in terms of having contribute on enhancing
U(Va).

Table III provides other information about the congestion
prediction model 19, as well. F-statistic close to one indicates
no relationship betweenU (V) and five model’s predictors [21].
However, as Table III illustrates, F-statistic factor is far from
one, which emphasizes that at least one of predictor variables
of number of vehicles, data rate, DSRC transmission power,
LTE transmission power, and LTE bandwidth has strong
relationship with U (1}).

Even if we propose the most fitted prediction model, we
could not say that our model can predict exactly observed
value of U(V;) with hundred percent of accuracy in prediction
results. If we apply the congestion prediction model, Residual
Standard Error (RSE) helps us to estimate variance of the error
(0%). Therefore, from Table III, we can say that the proposed
congestion prediction model has a variance of error of about
o2 = 0.00607. Based on this value, we infer that the predicted
value of U (V%)) is as much as 0.0.00607 different from exact
observed value of U(V}).

All the assessments in this work is based on prediction
models that are made from analyzing and learning of data,
which are generated by simulator tools. Having more and
more data generated from real HetVNET could help us to-
ward proposing congestion prediction models closer to real
situations of HetVNE.

TABLE III
STATISTICAL PARAMETERS ABOUT CONGESTION
PREDICTION MODEL 19

Parameter Value
Residual Standard Error 0.00607
R? 0.801
Mean Square Error 0.000021
F-statistic 162.7

V. CONCLUSION

In the current literature related to congestion problem in
vehicular networks, only a few authors applied intelligent
methods using machine learning algorithms. The reason for
that could be the absence of data needed for analyzing,
learning and making congestion prediction models applicable
to HetVNET. In this paper, we proposed a utility function to
explain how the heterogeneous vehicular network can satisfy
its vehicular users in terms of smooth transmitting of data.
Besides, we explained about how the proposed utility function
can help in having a tolerate HetVNET, which can provide
required services even in critical network traffic situation.
Afterwards, we move toward generating a congestion pre-
diction model, which can predict the utility function. We
generate a data set containing information records extracted
from simulation scenarios of HetVNET using Veins LTE
1.3 and SUMO 0.26.0. Moreover, we propose congestion
prediction model using multiple linear regression, which is
a supervised machine learning method. We evaluate reliability



of the proposed congestion prediction model in terms of
accuracy in predicted result by using various statistical metrics
such as RMSE, coefficient of determination (R?), and F-
statistic. The approach for predicting congestion in such a
proposed tolerable manner with respect to the target network’s
conditions and based on predicted value of defined utility
function, can be applied for 5G based SDN architectures as
well.
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