Design and Evaluation of an SDR-based
LLoRa Cloud Radio Access Network

Eryk Schiller, Silas Weber, Burkhard Stiller
Communication Systems Group CSG, Department of Informatics Ifl, University of Ziirich UZH
Binzmiihlestrasse 14, CH-8050 Ziirich, Switzerland
Emails: [schiller|stiller] @ifi.uzh.ch, silas.weber@ius.uzh.ch

Abstract—Long Range (LoRa) defines a popular modulation
scheme based on the chirp spread spectrum technique. It is
used in Low Power Wide Area Networks (LP-WANSs) for the
Internet-of-Things (IoT). Thus, this work here designs, specifies,
implements, and evaluates a Cloud Radio Access Network (C-
RAN) architecture for LoRa networks, while using (a) Software
Defined Radios (SDR) to receive/send radio signals and (b)
Docker to virtualize the setup. (c) A software modulator is
developed to emit signals on the downlink targeting regular LoRa
end-device receivers, such as Semtech SX1276 chips. Finally,
the network, processing, and cost requirements of the C-RAN
implemented are evaluated.

I. INTRODUCTION

Low Power Wide Area Network (LPWAN) technology
offers long-range communication with low power requirements
in Internet-of-Things (IoT) use-cases. LPWAN battery pow-
ered devices can run for years. For instance, a node sending
100 Byte once a day using LoRa (Long Range) lasts for 17
years [12]. LoRa is a spread spectrum modulation technique
and a wireless Radio Frequency (RF) technology for long-
range and low power platforms. It has become the de facto
technology of choice for IoT networks worldwide [6].

LoRaWAN is an open standard backed by the LoRa Alliance
specifying the Medium Access Control (MAC) protocol built
on top of the physical LoRa layer (LoRa PHY). LoRaWAN is
designed in a bottom up way to optimize LPWANS for battery
lifetime, capacity, range, and cost [7]. LoORaWAN operates in
the unlicensed Industrial, Scientific, and Medical (ISM) radio
band, which is a significant advantage in comparison to similar
cellular solutions, such as the LTE Narrow Band (NB)-IoT.

In a typical LoRaWAN use case, an [oT device, such as a
sensor, sends its data over the air. A LoRa gateway picks up
the signal, decodes it, and forwards the data packet received
over the Internet to the network server. If needed, a response
message can be scheduled by the network server.

The Cloud/Centralized Radio Access Network (C-RAN) has
been demonstrated to be highly beneficial [17]. In C-RAN
systems, the software defined physical layer of a given radio
protocol is implemented in software and runs in the cloud envi-
ronment, i.e., cloudification of PHY. The C-RAN architecture
suffers from higher operational costs in comparison to typical
hardware solutions, in which signal processing is handled by
network access points (e.g., LoRa gateways) equipped with
special purpose Radio Frequency Integrated Circuits (RFIC).

This paper introduces and evaluates an SDR-based LoRa C-
RAN architecture, while focusing on costs associated with
instantiating and provisioning cloudified LoRa networks, in
which the LoRa PHY is cloudified. As a benefit, the LoRa C-
RAN will support LoRa PHY protocol amendments without
replacing existing physical infrastructures. Furthermore, LoRa
C-RAN setups will explore dynamic provisioning and flexible
scalability, once LoRa C-RAN will have become a reality.

The architecture of the current LoRa gateway may be
divided into several separate components, i.e., the RFIC-based
LoRa PHY module, Hardware Abstraction Layer (HAL),
Packet Forwarder, and backhaul interface. The functionality of
the RFIC module may be significantly reduced, since several
signal processing functions may be executed in the cloud
environment (i.e., not on the gateway) using a general purpose
hardware. In such a cloudified case, a residual gateway could
be left with marginal PHY functionality, since demodulation
and decoding are performed in the cloud. Therefore, a gateway
does not need any specialized hardware, i.e., the SX1302
transceiver!, found on regular LoRa gateways. Instead, the
gateway is equipped with an antenna, an amplifier, Digital to
Analog (DAC) and Analog to Digital (ADC) converters, and
is addressed as the Remote Radio Head (RRH).

This paper delivers three main research contributions,
which are based on a brief and general introduction into LoRa,
LoRaWAN, and its applications. 1. Architecture and Speci-
fication: This overview leads to implementation details of the
novel C-RAN for LoRa. 2. Evaluation: Major network-related
requirements are evaluated experimentally with the prototype
developed supporting one end-device. Third, as the LoRa PHY
is closed source, there is no official documentation on how
the LoRa PHY is implemented. 3. Extension of Existing
Uplink Signal Encoder: All existing implementations are
reverse engineering attempts with a various degree of success
and they focus on decoding LoRa signals transmitted by a
regular hardware. However, the successful LoRa C-RAN is
required to successfully decode uplink signals and also encode
downlink signals. Thus, to achieve this the new extension
developed provides the ability to generate downlink signals
being compliant with regular LoRa end-devices using the
Semtech SX1276 chip?.

Uhttps://www.semtech.com/products/wireless-rf/lora-gateways/sx 1302
Zhttps://www.semtech.com/products/wireless-rf/lora-transceivers/sx 1276

The remainder of this paper is structured as follows. While
Section II surveys LoRa and LoRaWAN as related work,
Section III introduces the C-RAN architecture for cellular
networks in terms of an architectural overview, a system
specification, and implementation details of the new LoRa C-
RAN developed. The steps needed to move from a traditional
setup toward a C-RAN architecture are presented. Advantages
as well as drawbacks of the C-RAN approach are discussed.
Section IV describes C-RAN measurements, being comple-
mented with a cost evaluation of the system. Finally, Section V
draws conclusions and outlines future steps.

II. RELATED WORK

The key aspects of LoORaWAN and LoRa PHY are presented
in this section, however, a more detailed description of LoRa
can be consulted in [18]. The main characteristics of C-RAN
are also discussed but it is worth noting that to best of our
knowledge, LoRa C-RAN (i.e., cloudification of LoRa PHY)
was not discussed in the literature to date. Furthermore, the
details of major parameters relevant for comparative measure-
ments are discussed as well.

A. LoRaWAN

A LoRaWAN network architecture is a star-of-stars topol-
ogy. Gateways relay messages between end-devices and a
central network server. Gateways are connected to the network
server via IP connections, converting RF signals into IP
packets and vice-versa [2]. End devices are not associated
with any specific gateway. Messages are sent by a node in a
destination-less manner and can be received by multiple gate-
ways simultaneously. Each gateway forwards the message re-
ceived to the network server, which filters redundant message
instances, provides security checks, and forwards messages to
the appropriate application server [7]. The network server is
also responsible for scheduling downlink messages.

Three classes of end-devices are distinguished. Class A
(uplink/downlink transmissions) is the default class supported
by all LoRaWAN devices, in which end-nodes initiate com-
munications. After an uplink transmission on an end-device,
two downlink reception windows are opened to receive a
response enabling the two-way server-device communication.
LoRaWAN is an ALOHA-based protocol, where an end-device
can initiate the transmission at any given moment of time. For
Class A devices, downlink transmissions from the server have
to wait for an uplink transmission from a given end-device
and cannot be initiated directly by the network server. Class A
devices show the lowest power consumption. A Class B (two-
way communication with the deterministic downlink latency)
device opens extra receive windows at explicitly scheduled
times. This is achieved by time-synchronization using beacons,
where gateways notify an end-device to open a reception
window at a given moment of time. Class C (low latency,
two-way communication) devices have always open reception
windows except at the time when they transmit themselves. A
downlink transmission can be initiated by the network server
at any time assuming the device is currently not transmitting.

Class C devices require more power, and are operated as
plugged-in rather than battery powered devices.

B. LoRa PHY

LoRa is designed for long-range and low power communi-
cation, where only few bytes are transmitted per day. As an
example, LoRa proves the signal reception from a low orbit
satellite [S5]. However typically, LoRa shows a range of 2-5 km
in urban and 15 km in suburban areas [§]

NI

Fig. 1. Uplink Transmission by the SX1276 Chip captured with the Lime
SDR board>and displayed with Inspectrum®

1) Modulation: In North America and Europe the ISM
band is located in the 902-928 MHz and 863-870 MHz
spectrum range, respectively. LoRa signals in the ISM band
are composed of “chirps” modulated using the Chirp Spread
Spectrum (CSS) technique [10], [14]. A typical LoRa Band-
width (BW) is at 500 kHz and 125 kHz in North America and
Europe, respectively. Fig. 1 displays an example uplink LoRa
transmission sent from an Arduino-based node’ equipped with
a LoRa shield® based on regular SX1276/SX1278 transceivers.

The signal presented consists of up-chirps and down-chirps
spread among the available channel. Up-chirps start with a
signal of low frequency and increase the frequency over time,
while down-chirps (or conjugated chirps) start with the signal
of high frequency and decrease the frequency over time (cf.
Fig. 1).

The uplink signal begins with a so called preamble con-
sisting of 10 unmodulated up-chirps. Those are then followed
by two and “a quarter” unmodulated down-chirps that point
out the end of the preamble and indicate the subsequent
payload. The payload consists of symbols coding the header,
the message, and a Cyclic Redundancy Check (CRC) used for
final error detection.

2) Spreading Factor (SF): A varying SF (ie, SF €
{7...12}) influences on the air-time, when keeping the con-
stant packet size and BW. Higher SF's typically mean longer
range, however, the higher the SF, the longer the time on air.

3) Coding: LoRa signals are encoded to channel with a
modified Hamming coding [14] of a given coding rate (CR),
where CR denotes the fraction of data carrying the actual
information. A channel code provides reliability to noise by
introducing redundancy, which results in a longer binary se-
quence. Four different coding schemes exist, Cx € {1,2, 3,4},
resulting in different CR = 4/(4 + Cx).

Ohttp://limemicro.com/products/boards/limesdr
Ohttp://github.com/miek/inspectrum
"https://store.arduino.cc/arduino-mega-2560-rev3
8https://wiki.dragino.com/index.php?title=Lora_Shield

C. LoRa PHY Implementations in Software

Software-Defined Radios (SDR) provide signal processing
components that are usually implemented in hardware. The
most popular open-source signal processing framework is
GNU Radio [1]. Seven steps in the receiver impact on a
successful reception of LoRa signals: detection, synchroniza-
tion, demodulation, de-interleaving, de-whitening, de-coding,
and packet re-construction [3]. Four existing open-source
SDR implementations of LoRa [3], [4], [19], [9] are able
to successfully decode signals. The first implementation [3]
uses a sub-optimal non-coherent CSS demodulator, which
depends on a high Signal-to-Noise Ratio (SNR). The second
implementation [4] provides an optimal coherent demodulator,
however, de-whitening was not appropriately handled, which
resulted in SF and C R-dependent whitening sequences. The
third implementation [19] provides appropriate decoder and
whitening operations fixing problems existing in [4]. This
allows working in the low SNR region. Furthermore, the
authors corrected the problems of Sampling Time Offset and
Carrier Frequency Offset resulting in more reliable delivery.
Other implementations, such as [9], are not documented and
the setup is cumbersome [11].

D. Centralized-Radio Access Network

A Radio Access Network (RAN) is a major component in
telecommunications, which provides the connection between
an end-device, e.g., a mobile phone, and the Core Network
(CN) of the telecom provider. In a Cloud/Centralized-RAN
(C-RAN), a cloudified BaseBand Unit (BBU) processing ra-
dio signals is hosted at a centralized location up to a few
kilometers away from the RRH, i.e., the BBU hotel. BBUs
operate in a virtual environment and interact with physical
resources directly or through hardware abstractions. Typically,
BBUs run on a physical servers with each distinct BBU placed
in a virtual environment. When LoRa C-RAN becomes reality,
LoRa will be able to explore C-RAN benefits reported already
in cellular systems. For example, the protocol amendments
may be quickly introduced, while all components (e.g., PHY,
MAC) are written in software. Furthermore, on-demand provi-
sioning using a pay-as-you-go system may be used, in which
computing resources are allocated on demand resulting in
decreased CAPital and OPeration EXpenditure (i.e., CAPEX
and OPEX).

Typically, analog electric signals may be sampled with a
given sampling frequency (i.e., samples per second) using
an I/Q sample stream. An I/Q sample contains the real and
imaginary part of the complex baseband signal derived from
the passband signal at a given moment of time (i.e., centered
around the carrier frequency). Typically, communication sys-
tems are classified as baseband or passband systems. Baseband
corresponds to sending a signal without modulation (i.e.,
frequency shifting). In LoRa, this relates to frequencies around
125 kHz-500 kHz. Passband transmissions shift the baseband
signal to a higher frequency, e.g., 868 MHz in Europe. The
passband signal may be shifted back to its original baseband
frequency. The LoRa signal may be, therefore, effectively

encoded with an 1/Q sample stream, in which sampling re-
spects the Nyquist-Shannon sampling theorem [16]. The main
disadvantage of C-RAN is typically the high network capacity
of the fronthaul network transporting the baseband In-phase
and Quadrature (I/Q) sample stream exchanged between the
BBU and RRH units.

BBUs processing I/Q samples are typically provided as
containers, e.g., Docker. This proved to be an adequate design
choice in cellular networks, as containers offer near bare metal
performance required by RAN functions [13].

III. C-RAN LORA ARCHITECTURE

To reach a minimal working environment for a LoRa C-
RAN, such that comparative measurements are possible, the
gateway functionality is divided into distinct RRH, BBU, and
Network Server (NS) components. Furthermore, the environ-
ment is virtualized and runs on general purpose Commercial-
off-the-Shelf (COTS) hardware. The RRH, BBU, and NS are
interconnected, and a simple NS processes uplink messages
and schedules downlink transmissions when/if required.

A. Architecture Overview

Fig. 2 displays the high level architecture with all compo-
nents of the modular architecture involved. It contains three
computing entities, i.e., BBU, RRH, and NS. The RRH has an
SDR attached, e.g., through the USB port, to send and receive
radio signals using the SDR radio chain.

Radowaves ggid line: data flow
o~ Dotted line: medium

N transmit
_,‘T‘ Network
- Server
%Sensor
..o Radio waves A Bl
receive !
L) K
A\ prd R
() ==z E
O
SDR N
[in 1Q samples response out »,/’
A7
RRH @ ? <----- fronthaul -------3 > v @BBU
out 1Q samples request in

Fig. 2. High Level C-RAN Architecture

Regular devices generating and receiving LoRa-compliant
signals are this architecture’s clients. As such, regular sensors
(e.g., Arduino-based) equipped with legitimate hardware, e.g.,
SX1276, may benchmark the reverse-engineered software-
based LoRa PHY implementation.

B. End-to-End (E2E) Connectivity

Radio waves coming from sensors on the uplink are picked
up by the RRH, which samples analog signals and sends the
corresponding 32-bit I/Q sample stream over the fronthaul
network to the BBU (¢f Fig. 2). The BBU entity runs a
software-based LoRa modem as a Virtual Network Function
(VNF). The virtual LoRa modem demodulates and decodes

the I/Q sample stream. The message decoded is sent to
the NS for processing on the upstream using the backhaul
interface. In case a response is requested, the NS originates a
down-stream data packet toward a BBU through the backhaul
interface. This response packet is encoded by the BBU and
sent as resulting down-stream I/Q samples to the RRH on
the fronthaul interface. The RRH provides the sample stream
received toward the attached SDR, which in turn emits the
analog radio signal through the outgoing radio chain so that
the signal is transmitted back to the Arduino on the downlink.
Finally, the Arduino device receives the LoRa waveform using
the regular SX1276/SX1278 radio transceivers.

E—

Compute Node #2
~lsuB
BBU

incl. LoRa
decoder

SOCK DGRAM

Compute Node #1

I

Decoded message

SOCK DGRAM

incl. LoRa
encoder

IPUBS-

Send an ACK
if requested by
an end device

i

3

1Q samples

PUB: ZMQ Publishing Socket
SUB: ZMQ Subscribing Socket

Fig. 3. C-RAN Socket Communications Between Components

C. Containerization and Orchestration

Utilized Docker containerization provides a uniform re-
source abstraction layer for all virtual entities, i.e., RRH, BBU,
and NS (¢f. Sections. III-D, III-E, and III-F). Docker containers
are more lightweight than full Virtual Machines (VM) and are
better adapted for signal processing VNFs [13]. Docker pro-
vides the orchestration tool docker-compose, which stores the
configuration of the entire system bundle using Yet Another
Markup Language (YAML). As a result, a single orchestration
action can start multiple containers implementing a specific
composed software function, i.e., cloudified LoRa. Therefore,
Docker is the foundation for the LoRa C-RAN specified and
implemented in this work. Docker can also equally well deploy
functions among open cloud-computing platforms, such as
Openstack’, which may improve the usability of the system.

Moreover, in the future, Docker will allow for LoRa PHY
protocol amendments, while a new version of the container
may be quickly developed incorporating a new software-based
LoRa PHY available on the market. Furthermore, Docker will
allow for on-demand system scaling as LoRa gateways may
be instantiated and disposed to optimize the system according
to the current situation. Those features are not yet, however,
explored in this paper, while first, the cloudified LoRa system
has to be developed, and its costs have to be evaluated.

D. Remote Radio Head (RRH)

The RRH (c¢f. Fig. 3) is a pure GNU Radio-based com-
ponent [1]. Physically, it consists out of the computing node

9https://www.openstack.org/

equipped with a Lime SDR!? attached through USB and anten-
nas installed on appropriate input and output ports of the SDR
device. Logically, the architecture uses the Publish/Subscribe
(PUB/SUB) model. RRH uses two RF components, i.e., SDR
Receiver (RX) and SDR Transmitter (TX), which correspond
to the physical RX and TX radio channels of the SDR
device. The RX component of the LimeSDR provides an
incoming signal as 32-bit wide I/Q samples and publishes
them in a Zero Message Queue (ZMQ)!'-based Publish (PUB)
socket. The first task of the RRH is, therefore, to publish I/Q
samples toward registered Subscribers (SUB), i.e., BBUs. The
second task is related to the processing of down-stream I/Q
samples originating at the BBU. The I/Q sample stream is
received through a subscribe (SUB) socket from the BBU and
forwarded toward the TX block of the Lime SDR, which emits
corresponding LoRa waveforms through the air.

E. Base-Band Unit (BBU)

Physically, a BBU (c¢f Fig. 3) is a native cloud-based
computing resource, while logically it is a GNU Radio [1]
environment running a LoRa decoder [3]. It is worth noting
that the BBU does not contain any physical RF components,
such as SDR RX or TX radio chains. The BBU receives the
I/Q sample stream from the ZMQ SUB socket and passes it
further to the local decoder. The decoder, in turn, processes
LoRa signals and forwards messages decoded to the UDP
message socket leading toward the NS. Moreover, the BBU
shall provide the downstream UDP socket to receive a byte-
stream from the NS, an extended version of the encoder
component [3], and a PUB socket publishing I/Q samples on
the downstream toward the subscribed RRH.

The message received from the NS on the downstream
socket shall be provided toward the encoder, which in turn
produces I/Q samples with the corresponding LoRa signal
that are forwarded toward an RRH through the PUB socket.
Currently, the downstream chain is not implemented, since the
downstream packet is directly assembled by the NS and sent
toward the RRH bypassing the BBU.

E. Network Server (NS)

An NS (cf. Fig. 3) receives and logs data packets received
from the BBU through an upstream UDP socket. Furthermore,
the NS requests a downstream transmission by contacting
the BBU through its downstream UDP socket. In the current
simplified architecture, the NS bypasses the BBU and directly
provides the RRH with the corresponding I/Q sample stream
on the downstream.

G. Communication Diagram

All communication between the components is implemented
through sockets, as stated in Sections III-D, III-E, and II-F.
The ZMQ messaging library is deployed here, since it offers
N-to-N communication schemes using the Request-Reply or
PUB/SUB paradigms. GNU Radio offers ZMQ blocks by

10https://limemicro.com/products/boards/limesdr
Uhttps://zeromq.org/

default, while TCP source/sink blocks for socket-based com-
munication are still available but deprecated. For the RRH-
BBU communication, the PUB/SUB paradigm is applied.

H. Notes on the Implementation

Fig. 3 shows all PUB/SUB blocks alongside with the
corresponding data flow. The RRH offers a PUB socket that
publishes the I/Q sample stream generated by the SDR RX
chain. Therefore, the SUB socket of the BBU subscribes to
the RRH PUB socket to receive I/Q samples. Please note that
a TCP connection is used, therefore, I/Q samples arrive in
tact from the RRH RX radio chain at the BBU decoder [3]. A
Python script plays the role of the LoRa NS. The NS receives
the decoded LoRa messages sent over on this UDP socket and
optionally streams down I/Q samples of the response message
over a ZMQ PUB socket. The RRH SUB socket subscribes to
the NS PUB socket, which closes the communication loop.

The advantage of ZMQ is that sockets may ignore fime
out or disconnect actions, thus, subscribing sockets can be
started before publishing sockets without interference. The
subscribing socket can wait for the publishing socket to be
instantiated. In this architecture, this means in particular that
all docker containers for the RRH and BBU can be started
in any order. Furthermore, additional BBU instances can be
added at run-time, while the PUB/SUB paradigm allows for
new subscribers and publishers to join at any moment of time.

IV. MEASUREMENTS AND RESULTS

The experimental setup allows for in-depth evaluations of
the architecture developed and its key parameters.

A. Hardware and Software Specification

The setup consists out of two regular laptops running
Ubuntu 18.04'2 and following the specifications (cf. Fig. 3).
The CPU is a 64 bit, 4-core Intel i7-7500U of the x86 family
with the clock speed of 2.70 GHz. Moreover, laptops are
equipped with 8 GB RAM of type DDR3 with the speed
of 1,867 MT/s. Furthermore, a Samsung 860 EVO Solid
State Drive of 250 GB is installed. Both laptops are armed
with Ethernet interfaces using the full duplex 1,000 Base-T
standard. The Ethernet cards are connected with a category 6
twisted pair, which materializes the fronthaul interface.

Additionally, a LimeSDR board equipped with a regular 2
dBi SMA antenna for for the 868 MHz frequency band uses
a USB 3.0 port of Compute Node #1 node. Compute Node
#2 is a regular computer without any additional RF elements.
The end-device is an Arduino Mega board, with Dragino
LoRa shield having the Semtech SX1276 radio transceiver.
Currently, the focus is on the communication between one
end-device and the cloudified system, as the system is in an
early development stage. Furthermore, other contributions in
this domain also support very limited setups [3], [4], [19].

2http://releases.ubuntu.com/18.04/

B. System Provisioning Time

First, the provisioning operation is evaluated (cf. Fig. 4). The
system is composed of three Docker containers namely RRH,
BBU, and NS, holding all necessary GNU Radio Elements
and instantiated over Compute Nodes #1 and #2. RRH runs on
Compute Node #1, while Compute Node #2 spawns both the
BBU and NS. The Ethernet connection becomes the fronthaul
of this LoRa C-RAN, while a virtual bridge interface on
Compute Node #2 becomes the backhaul. Docker enables
caching, therefore, service instantiation, i.e., VNFs, is a rapid
operation, with less than a second completion time. Two
scenarios were tested, when BBU and NS, i.e., BBU+NS, run
within the same container or separately, i.e., BBU and NS. In
all situations, the service instantiation time is considered very
rapid and remains under 1 s.

Service Provisioning Time
1

0.75

0.5

Time (s)

0.25

BBU + NS RRH NS BBU

Service

Fig. 4. Docker Provisioning Times

C. Demodulation and Decoding Processing Time

Decoding is considered a far more computing hungry pro-
cess than encoding. Fig. 5 benchmarks the decoder on the
BBU displaying the processing time for small LoRa packets
received. Within LoRa networks, e.g., The Things Network
(TTN), end-devices periodically report small data chunks with
a given periodicity between 0-300 hours [15]. The signal on
the BBU is sampled with 1 MS/s (Mega Samples per second),
while the end-device sends LoRa packets with a 125 kHz BW,
SF7, and Cz=1. The processing time for such small packets
is established at the level of around 10 ms (cf. Fig. 5), which
is good, since for SF'7, one chirp lasts around 1 ms, cf. Fig. 1,
therefore, the processing time is shorter than the length of the
packet preamble (i.e., around 12 ms). This allows for a LoRa
signal processing in real-time. Note that SF'7 has the shortest
symbol duration in the LoRa PHY specification, and, therefore,
stresses the computing infrastructure the most, while, chirps
for higher SF's last longer, i.e., when SF increases by one,
the symbol duration doubles.

D. Network Utilization

Monitoring the fronthaul yields 335 Bps on idle. Once
the C-RAN is instantiated and the connection between RRH
and BBU is established, the network utilization raises to
a fixed 8 MiB/s. The theoretical value can be derived the
following way: LimeSDR sends 1 MS/s of complex type
(i.e., 2x32 b), which results in the data traffic of 64 Mb/s.
Overhead of TCP and IP is 40 Byte (20 Byte each); the

[—— Demodulation IMS/s, SF7, Cx1]

Computing Time [ms]
-

Payload Size [B]

Fig. 5. LoRa Decoder Signal Processing Time

Maximum Segment Size (MSS) is, therefore, 1460 B assuming
the 1500 B Maximum Transmission Unit (MTU). 64 Mbps
requires 5480 TCP packets/s of MSS 1460 B, which results
in the total overhead of 1.76 Mbps, therefore, 64 Mbps (data)
+ 1.76 Mbps results in 7.8 MiB/s fronthaul load.

The RRH constantly sends samples to the BBU despite
the LoRa network utilization, therefore, the fronthaul load
stays at the constant level. The load of the fronthaul may
be, however, reduced. According to the Nyquist-Shannon
sampling theorem [16], a sufficient sampling rate f, for a
signal with bandwidth BW is given by f; > 2 x BW. The
LoRa signal BW in the experiment is set to 125 kHz. Thus
the minimum sampling frequency according to the sampling
theorem is 0.25 MS/s, which is a quarter of the previous
sample rate of 1 MS/s. Lowering the sampling rate below
the Nyquist-Shannon limit results in the signal unsuccessfully
decoded. It is, therefore, concluded that the minimal fronthaul
data load for LoRa in the case of 125 kHz channels is 2 MiB/s
with sampling at the level of 0.25 MS/s (cf. Table I).

TABLE 1
SAMPLING RATES AND NETWORK UTILIZATION

Samples Max. Signal Network Decode Success
per second Bandwidth Utilization in Experiment
1,000,000 500 kHz 8 MiB/s yes
500,000 250 kHz 4 MiB/s yes
250,000 125 kHz 2 MiB/s yes
125,000 62.5 kHz 1 MiB/s no

Various network delays for the outgoing sample stream
between the RRH to the BBU on the fronthaul interface were
tested (cf. Table II). Overall, the higher the delay, the lower
the network utilization was measured on the fronthaul, since
the TCP does not maintain an appropriate throughout. Without
additional delays, RX and TX, respectively, on the fronthaul
are as expected at 8 MiB/s. However, when the 600 ms value
is reached, the network utilization drops to 2.32 MiB/s.

TABLE II
EFFECT OF DELAY ON NETWORK TRAFFIC AND THE DECODING PROCESS
Fronthaul Fronthaul Decode
Delay [ms] Load [MiB/s] Success
0 8 yes
300 8 yes
400 5.5 yes
600 3.6 no

E. Cost of the LoRa C-RAN

LoRa gateways come with various prices. The low cost TTN
gateway costs around 703, while the high-end counterpart sells
for 300$. The BW consumed by the gateway is minimal; it is
a one time investment. Currently, SDR devices do not incur
elevated costs either, as a regular LimeSDR costs 300$. Now
let us consider, the costs incurred by running a cloudified
BBU over Amazon Web Services'>. The following three
fields have to be considered: Compute, i.e., Amazon EC2
Instance and Data Transfer. In the case of an EC2 instance,
selecting al.medium VM, which provides enough capacity,
i.e., 1 vCPU and 2 GiB of memory, costs 0.0255$ per hour.
The Ingress traffic has to be 8 MiB/s to accommodate the
maximum possible signal bandwidth of 500 kHz in the US
or 4 MiB/s for 250 kHz in the EU; the ingress traffic is
free, i.e., daily cost 0$. Egress Data Transfer on the other
hand does cost. In our calculation, we fix the 3 B downlink
payload (excluding preamble, header and CRC), SF'7, and
Cz=1, which yields an I/Q sample stream of 248 kB (including
preamble, header, and CRC) after coding and modulation.
The computed downlink signal has an airtime of 25.86 ms.
With the regular European duty cycle of 1%, the downlink
signal can be sent every 3 seconds. This means a maximum
of 28,800 downlink signals of this type can be sent by one
gateway a day. The Egress data transfer is, thus, limited to 7
GB a day. Assuming the 30% downlink utilization, the egress
traffic is at the level of 2.1 GB/day. The total monthly cost
per a cloudified BBU is acceptable, i.e., 24.07$, including
the Amazon EC2 Instance: 18.67$, Ingress Traffic: 03, and
Egress Traffic: 5.40$. Furthermore, the price is expected to
go down in the future with the development of cloud data
centers and wired networks. Decreasing prices should drive
the development of LoRa C-RAN.

F. LoRa Downlink Messages

The LoRa encoder [3] currently available only provides
uplink messages (compatibility with, e.g., SX1302 gateway
chips). To produce a downlink LoRa signal, a downlink trans-
mission was first recorded from a regular gateway (cf. Fig. 6)
to an end-device. We studied differences between uplink
and downlink transmissions. By observing similarities in the
uplink and downlink messages, we assumed that a downlink
transmission is complimentary to the uplink message, where
all up-chirps are converted to down-chirps and vice versa
(compare Fig. 1 vs. Fig. 6). The regular encoder is able to
produce down-chirps in the header (c¢f. Fig. 1). Therefore, a
flag was added to the modulator [3], which flips all down
chirps up and vice versa on the downlink in comparison to the
regular uplink encoder. In essence, this is provided through a
so called complex conjugate of chirps in the modulator.

Finally, it was tested whether the downlink signal generated
is successfully received by the end-device equipped with a
regular SX1276 transceiver. The current implementation does
not display good performance, while only a small fraction

3https://calculator.s3.amazonaws.com/index.html

“100 khHz

AL/

~100 kHz
Fig. 6. LoRa Downlink Message

of packets gets decoded on the downlink. Nevertheless, the
regular encoder does not deliver any packets to the end-device,
while a small fraction of downlink messages issued by the
modified encoder is successfully decoded by the SX1276 chip,
which confirms the hypothesis (¢f. Table III).

TABLE III
DOWNLINK DECODING BY THE SX 1276 CHIP

Encoder Successful Decoding by SX1276
Regular no
Modified yes

V. CONCLUSIONS AND FUTURE WORK

Moving toward a C-RAN (Cloud Radio Access Network)
in LoRa (Long Range) is now proven feasible as the imple-
mentation and evaluation performed have shown. To make this
happen, LoRa gateways’ functionality had to be split into sep-
arate RRH (Remote Radio Head) and BBU (Baseband Unit)
components, where each can be containerized and run in sep-
arate, virtualized environments. However, this approach leads
to a measurable amount of fronthaul load of approximately
2 MiB/s between the RRH and the BBU for the 125 kHz
BW case as proven experimentally. Since SDRs (Software-
Defined Radio) enable the reception and sending of radio
signals., especially, the software modulator developed emits
successfully signals on the downlink in support of regular
LoRa end-device receivers. Nevertheless, such a C-RAN offers
more flexibility in the long run against LoRa PHY (Physical
Layer) hardware solutions, because amendments to the LoRa
PHY can be provided in software, when required, without any
infrastructural changes on a broader range. The evaluation
of network, processing, and cost requirements of the new
C-RAN implemented indicate besides a clear feasibility that
communications are possible at a reasonable cost, including
the technical efficiency in certain cases.

Thus, the three goals have been achieved successfully, the
architecture and its specification, a detailed evaluation of a
C-RAN for LoRa, and based on a reverse engineered LoRa
PHY the extension of an existing uplink signal encoder to
generate downlink signals being compliant with regular LoRa
transceivers.

Next steps with respect to the signal processing are on
the open-source-based modulation of LoRa signals, since it
is still in early development stages. While the extension of
the existing implementation to produce downlink signals was
successful, the performance of the encoder is not yet at a fully

satisfactory level, since signals encoded are not always de-

coded by end-devices using SX1276 transceivers or gateways
using the SX1301 boards. Furthermore, the scalability and an

on-demand provisioning of the architecture’s prototype can be
explored further for additional C-RAN setups.

VI. ACKNOWLEDGEMENTS

This paper was partially supported by (a) the University of
Ziirich UZH, Switzerland and (b) the European Union Horizon
2020 Research and Innovation Program under grant agreement
No. 830927, namely the H2020 Concordia Project.

REFERENCES
[1] “About GNU Radio,” https://www.gnuradio.org/about/, last visited
27.12.2019.
[2] “About LoRaWAN,” https://lora-alliance.org/about-lorawan, last visited
27.12.2019.

[3] “GNU Radio blocks for receiving LoRa modulated radio messages using
SDR,” https://github.com/rpp0/gr-lora, last visited 27.12.2019.

[4] “GNU Radio OOT module implementing the LoRa PHY,” https://github.
com/BastilleResearch/gr-lora, last visited 27.12.2019.

[5] “LoRa Signals from a Low Orbit Satellite,” https://twitter.com/telkamp/
status/956900631985475586, last visited 27.12.2019.

[6] “What is LoRa,” https://www.semtech.com/lora/what-is-lora, last visited
27.12.2019.

[7]1 “What is LoRaWAN,” https://lora-alliance.org/sites/default/files/
2018-04/what-is-lorawan.pdf, last visited 27.12.2019.

[8] F. Adelantado, X. Vilajosana, P. Tuset-peiro, B. Martinez, J. Melia-segui,
and T. Watteyne, “Understanding the Limits of LoRaWAN,” no. Sep.,
pp. 3440, 2017.

[9] J. Blum, “LoRa Modem with LimeSDR,” https://myriadrf.org/news/

lora-modem-limesdr, last visited 27.12.2019.

J. Haxhibeqiri, E. De Poorter, I. Moerman, and J. Hoebeke, “A Survey of

LoRaWAN for IoT: From Technology to Application,” Sensors, vol. 18,

no. 11, p. 3995, 2018.

A. Marquet, N. Montavont, and G. Z. Papadopoulos, “Investigating

Theoretical Performance and Demodulation Techniques for LoRa,” in

IEEE 20th International Symposium on A World of Wireless, Mobile

and Multimedia Networks” (WoWMoM), Jun. 2019, pp. 1-6.

E. Morin, M. Maman, R. Guizzetti, and A. Duda, “Comparison of the

Device Lifetime in Wireless Networks for the Internet of Things,” IEEE

Access, vol. 5, pp. 7097-7114, 2017.

N. Nikaein, R. Knopp, L. Gauthier, E. Schiller, T. Braun, D. Pichon,

C. Bonnet, F. Kaltenberger, and D. Nussbaum, “Demo: Closer to Cloud-

RAN: RAN as a Service,” in Proceedings of the 21st ACM Annual

International Conference on Mobile Computing and Networking, ser.

MobiCom ’15, 2015, pp. 193-195.

P. Robyns, P. Quax, W. Lamotte, and W. Thenaers, “A Multi-Channel

Software Decoder for the LoRa Modulation Scheme,” in Proceedings

of the 3rd International Conference on Internet of Things, Big Data

and Security (IoTBDS). Settbal, Portugal: SciTePress, Mar. 2018, pp.

41-51.

E. Schiller, S. Rafati-Niya, T. Surbeck, and B. Stiller, “Scalable Trans-

port Mechanisms for Blockchain IoT Applications,” in IEEE 44th LCN

Symposium on Emerging Topics in Networking, Oct. 2019, pp. 34—41.

C. Shannon, “Communication in the Presence of Noise,” Proceedings

of the IRE, vol. 37, no. 1, pp. 10-21, Jan. 1949.

B. Sousa, L. Cordeiro, P. Simdes, A. Edmonds, S. Ruiz, G. A. Carella,

M. Corici, N. Nikaein, A. S. Gomes, E. Schiller, T. Braun, and T. M.

Bohnert, “Toward a fully cloudified mobile network infrastructure,”

IEEE Transactions on Network and Service Management (TNSM),

vol. 13, no. 3, pp. 547-563, 2016.

B. Stiller, E. Schiller, and C. Schmitt, “An Overview of Network

Communication Technologies for IoT,” in Handbook of Internet-of-

Things, S. Ziegler and J. M., Eds. Cham, Switzerland: Springer, 2020,

ch. 12.

J. Tapparel, O. Afisiadis, P. Mayoraz, A. Balatsoukas-Stimming, and

A. Burg, “An Open-Source LoRa Physical Layer Prototype on GNU

Radio,” arXiv preprint arXiv:2002.08208, 2020.

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

