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Abstract—Upcoming sensing applications (acoustic or video)
will have high processing requirements not satisfiable by a
single node or need input from multiple sources (e.g., speaker
localization). Offloading these applications to cloud or mobile
edge is an option, but when running in a wireless senor network
(WSN), it might entail needlessly high data rate and latency.
An alternative is to spread processing inside the WSN, which
is particularly attractive if the application comprises individual
components. This scenario is typical for applications like acoustic
signal processing.

Mapping components to nodes can be formulated as wireless
version of the NP-hard Virtual Network Embedding (VNE)
problem, for which various heuristics exist. We propose a
Reinforcement Learning (RL) framework, which relies on Q-
Learning and uses either Greedy Epsilon or Epsilon Decay for
exploration. We compare both exploration methods to the result
of an optimization approach and show empirically that the RL
framework achieves good results in terms of network delay within
few number of steps.

I. INTRODUCTION

The advances in embedded devices have opened the door
for a new class of applications in Internet of Things (IoT) and
more specifically Wireless Sensor Networks (WSNs). First, the
embedded devices are no longer limited to data collection, but
they can do data processing. This can off-load the computation
from central cloud services to end-user devices, reduce end-
to-end latency, and add an extra privacy layer [1]. Second,
the processing per node is not restricted to a single service or
function. Thanks to virtualization, devices can run services on-
demand, which facilitates the process of reconfiguration, fault
management, hardware deployment, and decreases the cost.

Nevertheless, relatively heavy data-processing applications
will over-utilize the processing of a single device. Instead,
we can rely on a network of devices to process the data. An
example of these applications is realized when distributing the
computation in a WSN, i.e., a group of devices collaborate
together for local computation, which is, indeed, a special case
of fog computing [2]. Within this context, some work has
considered locally distributing network functions [3], complex-
data analysis [4], and acoustic signal processing [5].

Instead of having a monolithic format, an application is
given by a set of processing functions, linked together in a
predefined order. The main challenge appears when running
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Fig. 1: Visualization of VNE graphs

the application inside a cluster of wireless nodes; we need
to place each function on a node and find paths between the
processing nodes (Figure 1). Selecting nodes for placement
and paths for routing simultaneously is an NP-hard problem,
which is known as Virtual Network Embedding (VNE) [6].

This approach has received a lot of interest because it
exploits the idle devices for pipeline processing. Accordingly,
it improves the overall processing performance compared
to running on a single node as in edge computing [7].
There has been some work [8] that solves wireless VNE
using optimization problem [9], [10], heuristics [11], [12]
and meta-heuristics [13]–[15]. The objective for each solution
differs between minimizing the packet losses, maximizing the
throughput, minimizing the delay, or generally maximizing
Quality of Services (QoS).

Different solutions with common objectives may assume
different types of inputs, which makes it hard to compare
between them. For instance, the work in [16] assumes that
the data rate between wireless nodes is predefined, while
the work in [11] assumes that the data rate is dependent on
the interference from neighboring transmitting nodes. Hence,
the comparison requires additional overhead to adapt either
solution to the other.

Another family of solutions is Reinforcement Learning
(RL), which requires less overheard for adapting one solution
to another. It relies on standardized components and processes
(Section II), therefore, subtle differences in the problem def-
inition or solution attempts, can be reproduced by modifying
or replacing the components and processes.

Nevertheless, it has not been well investigated for wireless



VNE in particular. Most of the RL work focused on building
paths between the nodes [17], without taking into considera-
tion the placement aspect. The work in [18] considered recon-
figuring existing placement solutions, under the assumption
of changing resource requirements, but in our problem, we
do not assume the existence of an initial placement solution,
nor a change in the resource requirements. Reference [19]
considered the placement aspect in mobile edge computing
(MEC), in contrast to our case, they consider the placement
of separate function rather than a graph of functions.

To sum up, existing RL solutions do not address the same
facets of our problem and cannot be directly applied to our
input assumptions for wireless networks. In this work, we
formulate the placement problem using RL with corresponding
states and actions. Then, we integrate the RL with a heuristic
solution for a complete VNE solution. Finally we compare the
RL framework to the optimization problem. Furthermore, we
make our framework publicly available to make it easier for
future comparisons and modifications [20].

II. REINFORCEMENT LEARNING

Reinforcement Learning (RL) is an area of machine learning
that works by taking actions to maximize the reward in a
particular situation or environment [21]. Unlike the supervised
learning, which needs in advance the knowledge about labels
or the answer key, RL trains an agent to learn from trial and
error without any prior knowledge about the ground truth.
Hence, it makes it easier to adapt a solution to different
objectives by just updating the reward.

For each action the agent takes, the environment reports
back a reward and the new state for the agent. The rewards can
be both good or bad to indicate positive or negative behaviors,
respectively. Using a series of consecutive actions, the agent
aims at maximizing the cumulative reward.

There are different classifications for reinforcement [22]
learning algorithms, such as model-based vs. model-free and
on-policy vs off-policy. Model-based algorithms assume that
an action takes time to be executed, thus the agent uses this
time to simulate a model to learn more about the environment
given the previously taken actions and corresponding rewards.
This becomes, however, impractical when the state and action
space is large. Unlike model-based algorithms, model-free
solution learn directly by trial and error and does not require
the relatively large memory.

Each state has expected long-term reward. On the one hand,
on-policy algorithms learn this reward by taking actions based
on a current policy. On the other hand, off-policy algorithms
learn the reward by taking actions that do not necessarily
follow the current policy. In this paper, we use Q-learning as
a model-free off-policy algorithm to solve the VNE problem .

Initially, the agent has no knowledge about the environ-
ment, hence, the selection of an action is based on two
main processes: Exploration and Exploitation. The former is
used to collect information about the environment, even if
it means selecting an action with a bad reward. The latter
uses the collected information and selects the best action with

Fig. 2: RL framework describing the role of agent and the
process of environment as described in Section IV-A

the maximum reward. The trade-off between exploration and
exploitation is dependent on the problem definition and must
be carefully balanced, accordingly.

We follow an episodic formulation to implement and eval-
uate the RL algorithm. It defines step t, at which an agent
performs an action and the environment returns the new state
and reward. It also defines an episode; as a sequence of steps
(i.e., actions, states and rewards) that ends with a terminal
state.

We use Q-learning method to find the next action, which
is selected based on a greedy behavior. Consequently, a Q-
table containing Q-values (per each state St and action At)
is created for the given environment. We initially assign same
negative values to the Q-table, then the Q-value is updated
using:

Q(St, At)←Q(St, At) + α [Gt + γ argmaxQ(St+1, a)] (1)
and Gt = Rt −Q(St, At),

where α ∈ [0, 1] is defined as the learning rate; the extent
to which Q-values are updated per each step, and γ ∈ [0, 1]
is the discount factor that determines the importance given to
future rewards; γ = 0 will make the agent short-sighted by
only considering current reward Rt.

Indeed, the Q-values are a mapping of state-action pairs
to the expected returns, which are updated by adding the old
Q-values with the new learned ones. Although the Q-learning
seems to be always greedy by selecting the maximum Q value
for future states, this is not always the case. An additional
meta-parameter, epsilon (ε ∈ [0, 1]), is used to control the
exploration rate; when ε = 1 an action is always selected at
random.

III. SYSTEM MODEL

We give a brief overview of the problem at hand. First,
we define the inputs as the infrastructure and overlay graphs
(Figure 3a). The infrastructure graph specifies the wireless
nodes v ∈ V , their processing capacities cv and the atten-
uation between the nodes av,v′ . Additionally, we assume a
contention-free time-based MAC protocol and set a maximum
set of timeslots K that can be used within a time frame and
a common noise floor N0. Furthermore, we notate vsrc and
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Fig. 3: Visualizing the RL framework steps; assume all nodes can run one process at maximum.

TABLE I: Summary of Variables.

Variable Description

θ(p, v) ∈ {0, 1} for placing a function p on node v
f(v, κ) ∈ {0, 1} to determine if node v is transmitting

at timeslot κ
s(v1, v2, p, κ) ∈ {0, 1} states that v1 sends to v2 the output

of processing function p at timeslot κ
h(v1, v2, p) ∈ N to determine how many tasks needs to

receive the p when node v1 sends it to v2

vsink as the source (e.g., microphone sensors) and sink (e.g.,
gateway or database) nodes, respectively.

The overlay graph denotes the distributed application as
a directed graph; it consists of processing virtual functions
p ∈ P and the required node resources per each processing
function wp. The functions are connected via virtual links
l = (p, p′)∀ ∈ L, where each link requires a data rate that
is mapped to a threshold signal-to-interference ratio SINRl.
For simplicity, we assume in this paper that all links require
the same data rate, therefore, they require the same SINRth.
Similar to the infrastructure graph, we also define psrc and
psink to identify the start and end processing functions of the
application.

In order to embed the overlay graph into the infrastructure
graph, there are a couple of constraints that should not be
violated (see the variables in Table I).

The capacity constraint (Eq. (2)) ensures that a node is not
overutilized by the running processes. The duplex constraint
(Eq. (3)) ensures that a node does not send and receive at
the same timeslot. The flow control constraints (Eq.(4) –
(6)) ensure that flow conservation rules for packet forwarding
in a multicast environment is not violated. The interference
constraint (Eq. 7) ensures that the SINR for a receiving node
at a timeslot is above the SINRth. For more details about the
problem definition, we refer to [11].

∑
b∈B

θ(b, v) · wb ≤ cv , ∀v ∈ V (2)

f(v, κ) +
∑
vi∈V

∑
p∈P

s(vi, v, p, κ) ≤ 1,
∀v ∈ V
∀κ ∈ K

(3)

∑
v′∈V

h(vsrc, v
′, bsrcp )

−
∑

(bsrcp ,b
′)∈L

θ(bsrc, vsrc) = 0 , ∀bsrcp ∈ bsrcP (4)

∑
v′∈V

∑
(p,bsink)∈L

h(v′, vsink, p)−
∑

(bp,bsink)∈L
θ(bsink, vsink) ≥ 0 (5)

∑
v′∈V

h(v, v′, p)−
∑
(p,b′)

θ(b, v)

=
∑

v′∈V \v
h(v′, v, p)−

∑
(p,b′)

θ(b′, v),
∀v∈V

∀p∈P\{bpsink ,bpsink} (6)

∑
p∈P

s(v, v′, p, κ) · SINRth ≤
f(v, κ)

No + I(v, v′)
av, v′, ∀{v,v

′}∈V
∀κ∈K

where I(v, v′) =
∑
u∈V
u 6=v

f(u, κ) · γu,v′ (7)

IV. PROBLEM FORMULATION

In this section, we describe the formulation of states and
actions, as well as the implementation of the environment and
agent of the RL framework. (Figure 2).

A. States and Actions

We represent the state space of the embedding environment
by the placement of virtual functions on the infrastructure
nodes. Consequently, a state is given by an array of length
|B|, where each element of this array has a value ∈ V ; the
total number of states is given by |V ||B|.

The placement solution per state is not necessarily always
valid (e.g., the capacity constraint may be violated as in Fig-
ures 3b and 3c). Therefore, the agent takes an action to
move the placement of a virtual function from one node to
another (Figures 3c and 3d); the total number of actions per
state is equal to |V | · |B|.

B. Reward Function

The reward for every state-action is based on two main
criteria: First, whether the new state’s solution satisfies all
constraints (Figure 3d). Second, the number of timeslots
required to send the data from source to destination, based
on the placement solution (Figure 3f).
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Each state yields a reward according to its placement solu-
tion. If the solution violates any of the constraints (Section III),
a negative value (−rζ) is given every time a constraint is
violated (Eq. (8))

Rt = −rζ (8)

If the state has a valid solution, the shortest path between
the nodes used for placement is calculated, where a path is
calculated for each link in the overlay graph (Figure 3e).
Then, we estimate the number of timeslots needed to send
the data along the paths, by solving for the duplex (Eq. (3))
and interference (Eq. (7)) constraints. Finally, we terminate
the episode and calculate the reward using Eq. (9)

Rt =
|B| · rζ

number of used timeslots
(9)

C. Exploration Rate

In this paper we investigate two variants for exploring the
environment; Greedy epsilon and Epsilon decay.

1) Greedy epsilon: we fix the epsilon parameter over all
steps for all episodes to explore and exploit the environment.
Accordingly, an agent selects a random action with a proba-
bility equal to ε.

2) Epsilon decay: the epsilon is initially set to 1, meaning
that the agent chooses actions at random to explore the new
environment and update the Q-table. After each episode, the
epsilon’s value decays, to shrink the exploration rate as the
Q-table’s values are refined through several steps, hence, the
agent starts exploiting the learned experience.

V. EVALUATION

We define two different infrastructure graphs with 4 and 6
nodes. For each one we change the source and destination
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Fig. 5: Explored maximum reward per state

nodes, the attenuation between the nodes, and the nodes’
capacities, to have in total 50 different scenario per each graph.
We fix the overlay graph to a linear chain of five processing
blocks, where all links in the overlay graph require the same
data rate.

We set the hyper-parameters for the RL algorithm to α =
0.1 and γ = 0.6. When using Greedy epsilon we set ε =
0.1, 0.5, 0.9 and fix it later to ε = 0.1 (Section V-A). For the
Epsilon decay variant, we decrease the value of ε by 1

|episodes|
2 −1

,

and stop decaying the epsilon after |episodes|
2 episodes. We set

the maximum number of episodes to triple the number of state,
so that we have 3072 episodes and 23328 episodes for 4- and
6-nodes networks, respectively.

A. Value based convergence

We first investigate the Q-table’s convergence when using
Epsilon decay and Greedy epsilon with different values for
ε (0.1, 0.5 and 0.9). In Figure 4, we observe that when
using ε = 0.1 or using Epsilon decay, the mean value for
the Q-table seems to converge within 2000 episodes for 4
nodes network (Figure 4a) and 10000 episodes for 6 nodes
network (Figure 4b). However, when ε = 0.5 or 0.9, the mean
value does not converge for 4 nodes network nor for 6 nodes
network.

It is expected that the higher the value for ε it is, the more
the number of episodes to converge it needs. Nevertheless, if
we choose a very low value for ε, we will converge fast but
also prematurely to a misleading value, because we do not
explore all possible good choices. Accordingly, we fix Greedy
epsilon to ε = 0.1 for the rest of the evaluation, and compare
the goodness in Section V-C.
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Fig. 6: Average reward over episodes.

B. Exploration and Exploitation

To investigate the exploration for Greedy epsilon and Ep-
silon decay, we show in Figure 5 the resulted maximum reward
from all actions for each state. The baseline represents the
maximum ground truth for each state. For 4 nodes (Figure 5a),
we have 1024 states, where both Greedy epsilon and Epsilon
decay tend to give higher weights for the lower numbered
states. We observe a similar behavior for 6 nodes network
(Figure 5b) with 7776 states.

This behavior is due to the greediness of both approaches;
the baseline has the same reward for different states, therefore,
a greedy approach will select an action that exploits the first
(i.e., the lowest number) state, out of all possible actions with
the same reward.

We take a deeper look at the reward and see how it evolves
with increasing the number of episodes (Figure 6); over the last
100 episodes, we show the maximum, minimum and average
rewards for the selected actions.

On the one hand, we observe that for the Epsilon decay
method (Figure 6a and Figure 6b), the minimum rewards
converge and become close to the average reward after 1600
and 11000 episodes for 4 and 6 nodes networks, respectively.
This is due to the decaying property of epsilon, where the
agent becomes greedier as epsilon approaches zero.

On the other hand, the minimum reward for the Greedy
epsilon (Figure 6c and Figure 6d) has high variance, because
the greediness of the agent is fixed (ε = 0.1) and it does not
always aim at maximizing the reward, but also try other ran-
dom actions. Meanwhile, the average values converge similar
to the Epsilon decay method.

C. Comparison to the Optimization Model

We observe the resulted timeslots using Greedy epsilon and
Epsilon decay (Figure 7). We simulate 50 different scenario,
where each scenario has different source and sink nodes, dif-
ferent attenuation between the nodes, and different capacities
per nodes. Each scenario is solved 50 different times using
Greedy epsilon and Epsilon decay methods. Out of the 50
solutions, we calculate the mean, maximum and minimum
achieved number of timeslots. Additionally, we calculate the
optimal number of timeslots per each scenario using Pyomo
interface 1 and Gurobi solver 2.

As expected, the optimal number of timeslots (blue) act as
lower bounds for both Epsilon decay (red) and Greedy epsilon
(yellow) methods. Moreover, we observe that in worst case
scenarios, for both methods, the additional number of timeslots
(compared to the optimal solution) is 2 timeslots, for both 4-
(Figure 7a) and 6-nodes (Figure 7b) networks. Meanwhile, the
mean number of timeslot of the Epsilon decay is always less
than or equal to that of Greedy epsilon.

We show in Figure 8 the confidence interval for the average
number of timeslots using both methods for all scenarios
per each network. Although the Epsilon decay method has
lower mean for both networks, the confidence interval cannot
really conclude that the decay method is always better than
the greedy one. Nevertheless, the results from Figure 7a and
Figure 7b show that the the decay method is at least as good
as the greedy one in all 50 scenarios. It is worth mentioning
the number of steps required to find a valid solution are almost

1www.pyomo.org
2www.gurobi.com



0 10 20 30 40 50
Scenarios

2

3

4
Ti

m
es

lo
ts

Optimal
Decay
Greedy

DecayMax Min

GreedyMax Min

(a) 4 Nodes

0 10 20 30 40 50
Scenarios

2.0

2.5

3.0

3.5

4.0

Ti
m

es
lo

ts

Optimal
Decay
Greedy

DecayMax Min

GreedyMax Min

(b) 6 Nodes

Fig. 7: Resulted number of timeslots

4 6
Nodes

0

1

2

3

4

Ti
m

es
lo

ts

Epsilon decay
Greedy epsilon

Fig. 8: Epsilon decay vs Greedy epsilon

the same: on average 1.8 steps using the Epsilon decay and
1.98 steps using the Greedy epsilon.

VI. CONCLUSION

In this paper, Greedy epsilon and Epsilon decay methods
have been used for exploration and the results are compared
to the optimization model.

A major benefit of the RL-trained solutions is that they
are 1000 times faster than the optimization model. We show
that the proposed framework results in solutions that have on
average one additional timeslot for transmission compared to
the optimization model. Although both exploration methods
seem to have similar performance, the Epsilon Decay tends to
yield a better solution: faster and closer to the optimal.
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