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Abstract—In this paper, we propose a method to predict
the average packet error rate (PER) of a coded single carrier
frequency domain equalization (SC-FDE) transmission scheme
after minimum mean square error (MMSE) equalization when
statistical channel state information (SCSI) is available. We as-
sume that the encoded bits are spread over several blocks (which
may correspond to a frequency hopping system for instance)
which are transmitted under independent multipath random
fading channel realizations. The PER prediction technique used
here is based on the effective SNR mapping approach that gathers
the signal to noise ratios (SNR)s of the different blocks into one
single value. The novelty of this contribution resides in the fact
that we propose a new expression for the effective SNR that
allows us to approximate its statistical distribution with a beta
random variable whose parameters depend on the SCSI. This
approach enables us to compute the PER prediction with a lower
complexity that the one required by conventional approaches.
Moreover, we show by simulations that the accuracy of our
solution is very close to the conventional ones, typically within
1 dB of error for PER of the order of 10−2.

I. INTRODUCTION

Packet error rate (PER) prediction of communication links is
of great interest in wireless communications either for system
design and performance analysis [1], or link adaptation [2].

In the case of multicarrier schemes such as orthogonal
frequency division multiplexing (OFDM) and single carrier
frequency domain equalization (SC-FDE) used in recent sys-
tems such as the long term evolution (LTE) standard, the
PER prediction is performed using the well-known effective
signal to noise ratio mapping (ESM) method [3]. Indeed, for
these schemes, the time-domain multipath impulse response of
the channel is transformed into a single-tap in the frequency
domain on each subcarrier which can thus be equalized with
low complexity. As a consequence, each subcarrier has a
specific signal to noise ratio (SNR). The ESM allows to
estimate an equivalent SNR, called effective SNR, which would
lead to the same PER when transmitting in an additive white
Gaussian noise (AWGN) channel with the same modulation
and coding scheme (MCS).

The most common techniques to compute the effective SNR
are the mutual information effective SNR mapping (MIESM)
and the exponential effective SNR mapping (EESM) [3]. These
techniques enable to predict instantaneous PER assuming that
the instantaneous channel state information (CSI) is available,

i.e. the instantaneous channel impulse response is known or
estimated.

However, there exist contexts in which we only know the
channel power delay profile (PDP) instead of its instantaneous
realizations, which will be referred to as statistical CSI (SCSI)
in the sequel. This is the case for instance for link adaptation
in ad hoc networks [4], [5], or in assisted device-to-device
networks [6]. In these cases, computing the predicted average
PER requires the knowledge of the effective post-equalization
SNR distribution. Previous works in the OFDM case with
EESM are for instance [2] for throughput prediction and [7] for
PER prediction. In [2], the authors approximate the statistical
distribution of the effective SNR of EESM by a beta distri-
bution whereas in [7] this statistical distribution is obtained
through numerical convolution. To the best of our knowledge,
predicting the PER for SC-FDE schemes with minimum
mean square error (MMSE) equalization in the SCSI context
has never been addressed so far in the literature. The most
relevant work is in [8] where the author analyzes the outage
performance of soft-cancellation frequency-domain minimum-
mean-square error turbo equalization in a serially concatenated
coded modulation scheme over frequency-selective Rayleigh
fading channels from the PDP. In this work, the distribution
of the post-MMSE-equalization SNR is modeled by a normal
distribution.

In this paper, we propose a procedure to predict the average
PER for MMSE equalized SC-FDE systems when only SCSI is
available. The procedure is based upon the ESM technique for
which we propose a new effective SNR expression. Moreover
we also compare the complexity of the proposed method with
the one that would be required using the conventional MIESM
and EESM ones.

The rest of the paper is organized as follows. In Section II,
we detail the model of the system. In Section III, we derive the
proposed PER prediction procedure. In Section IV, we present
numerical results to assess the proposed procedure accuracy.
Finally, in Section V, we draw concluding remarks.

II. SYSTEM MODEL

The information packet to be transmitted is composed of
KB bits which are passed through a bit interleaved coded
modulator, resulting in a stream of KS modulated symbols,



denoted as s := [s1, . . . , sKS ] and referred to as the encoded
codeword in the rest of the paper. This encoded codeword is
then divided into NB blocks of size n: s := [s̃1, . . . , s̃NB ]
where s̃i is a (1 × n) vector, and each block is transmitted
in a different SC-FDE symbol. We assume that the SC-FDE
symbols are transmitted over a bandwidth B that is divided
into Nc subcarriers. The transmission is done over a subset
of n subcarriers denoted by I = {I1, . . . , In}, where Ik,
1 ≤ k ≤ n, is the subcarrier index with 1 ≤ Ik ≤ Nc.
The ith transmit SC-FDE symbol carrying s̃i is obtained by
adding a cyclic prefix (CP) to the following (Nc × 1) vector:
xi :=

√
PFHNcM

TSTi , where (.)T (resp. (.)H ) stands for
the transpose (resp. transpose conjugate) operator, P is the
transmit power, Fk is the normalized (k× k) discrete Fourier
transform (DFT) matrix, Si := Fns̃Ti , and M is the (n×Nc)
demapping matrix, whose (k, `)th entry is equal to 1 if ` = Ik
and is equal to 0 otherwise.

The signal is transmitted through a frequency-selective
random fading channel, whose sampled impulse response is
noted by the (L × 1) vector hi = [hi(0), . . . , hi(L − 1)]T ,
where L is the length of the channel. We assume that
hi ∼ CN (0,Σ), where CN (0,Σ) stands for the complex
Gaussian distribution with 0 mean and covariance matrix
Σ := diagL×L(2σ2

0 , . . . , 2σ
2
L−1). We further assume that the

channel impulse response changes independently between two
consecutive SC-FDE symbols, i.e., E[hih

H
j ] = 0 if i 6= j.

When receiving the ith SC-FDE symbol, the receiver dis-
cards the CP, performs the size Nc DFT of the resulting signal,
and demappes the samples of interest by multiplying resulting
signal with the demapping matrix M. After these operations,
the received j samples of the ith block can be expressed as:

Yi(j) =
√
PHi(j)Si(j) +Wi(j), j = 1, . . . , n, (1)

where Hi(j) is the Ij th element of the size Nc DFT of hi,
Si(j) is the jth element of Si, and Wi(j) is a circularly sym-
metric white Gaussian noise with known variance 2σ2

n. It is
worth noticing that Hi(j) ∼ CN (0, 2σ2

H), with 2σ2
H = Tr(Σ).

The received signal expressed in (1) is passed through a
MMSE equalizer and Ŝi(j), the estimated value of Si(j), is
thus given by Ŝi(j) =

√
PH̄i(j)/(P |Hi(j)|2+2σ2

n)Yi(j). The
receiver then computes the size n inverse DFT of the estimates
Ŝi(j), j = 1, . . . , n, and carries out a soft-demapping on the
resulting estimated symbols. To do so, the receiver needs to
compute the post-MMSE-equalization SNR of the ith block.
It is proved in [9] that this post-MMSE-equalization SNR is
the same on all the subcarriers of the ith block, and is equal
to:

γi(P ) =
ai(P )

1− ai(P )
, (2)

where ai(P ) is the signal-plus-interference-plus-noise ratio
(SSINR) of the ith block, which can be expressed as:

ai(P ) :=
1

n

n∑
j=1

P |Hi(j)|2

P |Hi(j)|2 + 2σ2
n

. (3)

Finally, once the NB blocks have been received and demapped,
the resulting log-likelihood ratios are deinterleaved and pro-
vided as an input to the decoder. The average PER of such a
system is the probability of decoding the encoded codeword s
with error. Notice that (3) corresponds to one single realization
of the channel hi and that in this paper we are looking to
performance prediction in the SCSI context when only the
statistics of hi are known, i.e. the channel covariance matrix
Σ is available. In practice, this matrix can be estimated using
the method derived in [10].

III. PROPOSED PER PREDICTION METHODOLOGY

A. Average PER expression using the ESM with statistical CSI
Let qA(γ(P )) denote the instantaneous PER of the system

described in Section II under the AWGN channel for a
given MCS, with γ(P ) := [γ1(P ), . . . , γNB (P )], the vector
collecting all the block SNRs experimented on the different
transmitted blocks. The average PER, denoted by q(P ), is
defined as the expectation of the instantaneous PER with
respect to γ(P )1:

q(P ) = Eγ(P ) [qA(γ(P ))] . (4)

Computing the exact value of the expectation in (4) is analyt-
ically intractable. Using the ESM approach allows to simplify
the problem by replacing the computation of (4) by the
following approximation:

q̃(P ) = Eγeff (P ) [qA(γeff(P ))] , (5)

where γeff(P ) is the effective SNR computed from γ(P )
thanks to the ESM. Let pγeff (P )(x) denote the probability den-
sity function (PDF) of γeff(P ). Then, (5) can be equivalently
written as:

q̃(P ) =

∫ +∞

0

pγeff (P )(x)qA(x)dx. (6)

Thus, in order to compute (6), we need to know both pγeff (P )

and qA(x).
In practice, qA(x) is estimated by simulating the commu-

nication scheme in AWGN or can be approximated by a
parametric function. For the density pγeff (P ), its expression
depends on the γeff(P ) function selected to compute the
effective SNR. For instance, for the MIESM technique, the
expression is given by:

γMI
eff (P ) = α1J

−1

(
1

NB

NB∑
i=1

J

(
γi(P )

α2

))
(7)

where J(.) is the mutual information, αi, i = 1, 2, are fitting
coefficients adapted to the MCS, and J−1(.) is the inverse of
J(.) with respect to the composition. The mutual information
cannot be expressed in closed form and needs to be evaluated
through simulations for each considered modulation and tabu-
lated. In the EESM case, the expression of γE

eff(P ) is similar
to (7) where J(x) is replaced by exp(−x) and J−1(x) by
− log(x).

1By abuse of notation we use the same names to figure the random variables
and their realizations.



B. New effective SNR expression

In this paper, we propose an alternative definition of the
effective SNR based upon the SSINR values (3) and name it
as: SSINR effective SNR mapping (SSESM). Its expression is
given by:

γSS
eff (P ) :=

ā(P )

1− ā(P )
, (8)

with

ā(P ) :=
1

NB

NB∑
i=1

ai(P ). (9)

The SSESM expression (8) has the same form as the SNR
per block (2) where the ai(P ) value is replaced by the
average value of the SSINR over all the blocks. Intuitively,
defining ā(P ) as (9) corresponds to assuming that the whole
encoded codeword is sent on a single SC-FDE symbol which
experiments a channel whose frequency response is the con-
catenation of the channels frequency response experimented by
the actual SC-FDE symbols. It is worth noting that although
(8) is introduced in the SCSI context, it can be used likewise
with instantaneous CSI for PER prediction in the the SC-FDE
context, the same way as it is done when using MIESM or
EESM.

This new expression will be shown to allow a less com-
plex implementation than the conventional ones (discussed in
Section III-E) while keeping similar accuracy (validation is
provided in Section IV).

C. PER prediction

To evaluate the PER from (6), we first resort to the approx-
imation used in [11] which consists in approximating qA(x)
by q̃A(x) as follows:

q̃A(x) :=

{
1 if x ≤ γth,
0 if x > γth,

(10)

where γth is a SNR threshold which depends on the MCS.
It is obtained by performing PER simulations in the AWGN
channel for a given MCS and numerically evaluating the γth

value which best fits (10). It is important to notice at this point
that γth does not depend on the effective SNR expression and
thus is common to all ESM methods as long as (10) is used.

Replacing qA(x) by q̃A(x) in (6), we immediately get:

q̃(P ) = Fγeff (P )(γth), (11)

where Fγeff (P )(γth) = Pr(γeff(P ) ≤ γth) is the cumulative
distribution function (CDF) of γeff(P ). Applied to our new
effective SNR mapping expression (8), we get from (9):

FγSS
eff (P )(γth) = Pr

(
ā(P )

1− ā(P )
≤ γth

)
= Pr

(
ā(P ) ≤ γth

1 + γth

)
,

leading to:

FγSS
eff (P )(γth) = Fā(P )

(
γth

1 + γth

)
, (12)

where Fā(P )(x) is the CDF of ā(P ). As is will be exposed
in Section III-D, we propose to approximate the PDF of ā(P )
by a beta distribution with parameters α and β, which leads
to:

Fā(P )(x) ≈ Ix(α, β), (13)

where Ix(α, β) is the regularized incomplete beta function
[12]. From (13), (12) and (11), we finally get:

q̃(P ) ≈ I γth
1+γth

(α, β). (14)

D. Statistics of the post-MMSE-equalization SNRs

As stated in Section III-C, we propose to approximate the
PDF of ā(P ) in (9) by a beta distribution. The reason for
such a choice is the following one. First, we can see from
the expression (3) that ai(P ) take its values in [0, 1]. As a
consequence, (9) can be interpreted as the sum of identically
distributed random variables with finite support. Thus, using
the same approach as in [2], ā(P ) can be approximated
by a beta distribution. In this approach, the evaluation of
the α and β parameters is performed through a moment-
matching technique at order two. If Y denotes a random
variable following beta distribution with parameters α and β,
we compute these parameters such that the expectation and
variance of ā(P ) and Y are equal, i.e., E[ā(P )] = E[Y ], and
Var[ā(P )] = Var[Y ]. These two equalities yield [2]:

α =
E[ā(P )]F(P )

Var[ā(P )]
(15)

and

β =
(1− E[ā(P )])F(P )

Var[ā(P )]
(16)

with F(P ) :=
(
E[ā(P )]− E[ā(P )]2 −Var[ā(P )]

)
. Evaluat-

ing (15) and (16) requires to compute E[ā(P )] and Var[ā(P )].
To do so, we take inspiration from the approach derived in
[8] but applied in a different context to (9), leading to the
following result.

Result 1. The expectation and variance of ā(P ) can be written
as:

E[ā(P )] =
−2σ2

n

P2σ2
H

e
2σ2n
P2σ2

H E1

(
2σ2

n

P2σ2
H

)
+ 1, (17)

Var[ā(P )] =
1

NB

(
G(P )

n
−

(E [(ā(P ))])2 +
2

n2

n−1∑
j=1

(n− j)λj

 (18)

where E1(.) is the exponential integral function, and

G(P ) := 1 +
σ2
n

Pσ2
H

(
1− e

σ2n
Pσ2

H E1

(
σ2
n

Pσ2
H

)(
σ2
n

Pσ2
H

+ 2

))
,

(19)



λj :=ω1,j

+∞∑
k=0

ω2,j,k

4P 2k+2

[
(−1)k+1(2σ2

n)k+1e
2σ2n

Pω3,j,k

E1

(
σ2
n

Pω3,j,k

)
+

k+1∑
i=1

(i− 1)!(−2σ2
n)k+1−i(Pω3,j,k)i

]2

,

(20)

with ω1,j := 1/(σ4
H(1 − ρj)), ω2,j,k :=

(2
√
ρj)

2k/(4k(k!)2(ω3,j,k)2k), ω3,j,k := (1 − ρj)2σ
2
H ,

and ρj := Cov(|Hi(1)|2, |Hi(j + 1)|2)/Var(|Hi(1)|2).

In the following Result 2 whose proof is omitted due to
space limitation, we derive the closed form expression of ρj
as a function of the PDP, i.e., the diagonal elements of the
channel covariance matrix Σ.

Result 2. The parameters ρi can be expressed as:

ρj = 4

L−1∑
`=0

σ4
` + 8

∑
0≤`<`′
`′≤L−1

σ2
`σ

2
`′ cos

(
2π

ej
Nc

(`− `′)
)

(21)

where ej is the difference between the first and the (j + 1)th
subcarrier indexes, i.e., ej = Ij+1 − I1.

Thus, the moment-matching identification of α and β is
done by computing first E[ā(P )] and Var[ā(P )] using (17)
and (18) thanks to (19), (20) and (21). Second, by inserting the
computed values of E[ā(P )] and Var[ā(P )] in (15) and (16). It
is worth noting that the α and β values depend on the PDP and
thus have to be updated according to the PDP evolution in time
with respect to the changes of the propagation environment.

E. Complexity analysis

In this section, we compare the complexity of our proposed
average PER prediction solution based on SSESM against the
conventional ones based on MIESM and EESM. It is important
to notice that neither the MIESM nor EESM have been
described in the literature in the context of PER prediction with
SCSI in the case SC-FDE with MMSE equalization. Thus, this
section also gives an overall description of what could be the
implementation of these two alternative approaches.

First, it is important to notice that the derivations provided in
Section III-C work for all the methods up to (11), which states
that the average PER is expressed as a function of the CDF
of the effective SNR. Thus the evaluation of γth is common
to all the methods. It turns out that thanks to the simple
expression of γSS

eff (P ) we get a closed form expression of the
approximated average PER by modeling the PDF of ā(P ) by a
beta distribution. This modeling requires a moment-matching
procedure to estimate the beta distribution parameters.

For the MIESM or EESM, the evaluation of the CDF
of the effective SNR is more complex since it requires to
evaluate the PDF of

∑NB
i=1 J

(
γi(P )
α2

)
. To do so, a first step

to find the PDF of γi(P ) is needed. This can be done using
a moment-matching approach as we have proposed for our
method by approximating the ai(P ) with a beta random
variable and deducing the distribution of γi(P ) in closed

form from (2). Thus regarding the complexity, all the methods
require a moment-matching phase. Now, calculating the PDF
of
∑NB
i=1 J

(
γi(P )
α2

)
is intractable in closed form and needs to

be evaluated using multiple discrete numerical convolutions
of the sampled PDF of J

(
γi(P )
α2

)
, even if the PDF can

be written in closed form. Indeed, for the EESM method,
computing the PDF of exp−

(
γi(P )
α2

)
can be done in closed

form. However, since the beta law is used to model ai(P ),
then the resulting distribution of exp−

(
γi(P )
α2

)
involves the

beta distribution as well, which can present discontinuities
around zero, requiring some tricks to process the numerical
evaluation of the convolutions [7]. Last, it is worth noting that
the evaluation of the PDF of the effective SNR needs to be
computed each time the PDP changes.

Thus we can conclude that computing the average PER
prediction using MIESM and EESM methods requires extra
numerical processing calculations (multiple numerical con-
volutions) which have to be performed each time the PDP
evolves compared to our method. As a consequence, we can
state that the proposed procedure based on SSESM is less
complex than the MIESM and EESM. This is an important
point for distributed networks where the resource allocation
algorithms are embedded in the mobile nodes which have less
computational capabilities than fixed infrastructure equipment.

IV. NUMERICAL RESULTS

In this Section, we perform simulations aiming at i) com-
paring the proposed solution SSESM with the conventional
MIESM in terms of PER prediction when full CSI is available,
and ii) evaluating the accuracy of the proposed average PER
prediction methodology when only SCSI is available.

A. Setup

1) Implemented MCSs: We implemented the LDPC code
of the 5G [13], along with the following three MCSs: MCS1,
which uses the QPSK modulation with code rate 1/2, MCS2,
which uses the 8PSK modulation with code rate 2/3, and
MCS3, which uses the 16APSK modulation with code rate
3/4. The number of uncoded bits for each of these MCSs
is chosen such that the number of modulated symbol in the
encoded codeword is the same for each MCS and is equal to
1, 000. In Table I, we provide the number of uncoded bits for
each MCS, along with the values of γth we used in the PER
approximation (14).

TABLE I: Number of uncoded bits and values of the threshold
γth for the three implemented MCSs.

MCS1 MCS2 MCS3
Uncoded bits 1, 000 2, 000 3, 000
γth (dB) 1.25 6.5 10

2) Channel models: We considered two PDPs for the
channel:

i) Uniform Channel (UC): a uniform PDP channel with
L = 2 and L = 6 taps.



ii) Proakis Like Channel (PLC) [14]: a channel with
L = 3 and L = 7 taps, whose covariance matrix is
provided by Σ = 1/4 × diag3×3(1, 2, 1) and Σ =
1/16× diag7×7(1, 2, 3, 4, 3, 2, 1) for L = 3 and L = 7,
respectively

3) Assumptions on the allocated subcarriers: We assume
that the bandwidth is divided into Nc = 2, 048 subcarriers
numbered from 1 to 2, 048, and we implemented the following
three cases regarding the allocated subcarriers.

i) Full Channels (FC): the 1024 central subcarri-
ers are allocated for communications, i.e., I =
(513, 514, . . . , 1536), and thus NB = 1.

ii) Half Channels (HC): 512 subcarriers are allocated.
These subcarriers are the same as in the FC case down-
sampled by a factor two i.e., I = (513, 515, . . . , 1536),
and thus NB = 2.

iii) Quarter Channels (QC): 256 subcarriers are allocated.
These subcarriers are the same as in the FC case down-
samples by a factor four i.e., I = (513, 517, . . . , 1536),
and thus NB = 4.

B. Comparing SSESM with MIESM with full CSI

In this section, we compare the performance of MIESM
and SSESM in terms of PER prediction when full CSI is
available. Indeed, although the procedure developed in this
paper aims to predict PER with SCSI, SSESM provided in
(8) also enables SNR mapping when full CSI is available and
thus it is of interest to assess its accuracy to predict PER
with full CSI as well. To do so, we first perform simulations
(not shown in this paper) to tabulate the PER for the three
considered MCSs under the AWGN channel. Second, we
perform simulations under the considered fading channels in
the HC and QC cases. More precisely, for a given average
SNR we transmit 104 encoded codewords, each codeword
being segmented into NB blocks (i.e., SC-FDE symbols) and
each block experiments an independent random fading channel
realization generated according to the considered PDP. At the
reception of each encoded codeword, we compute the effective
post-MMSE-equalization SNR considering that the channel
is perfectly known using both i) the conventional MIESM
procedure provided by (7) where we set αi = 1, i = 1, 2,
and ii) our proposed procedure provided by (8) along with (9)
and (3). Then, we predict the PER using these effective SNRs
values by reading the corresponding error probability under
the AWGN channel in the look-up table.

In Fig. 1 and Fig. 2, we plot the PER obtained by
simulation and predicted PER using MIESM and SSESM
versus the average SNR for the three considered MCSs under
the UC (top) and the PLC (bottom) in the HC and QC
configurations, respectively. We can observe that the proposed
SSESM methodology enables very accurate PER prediction
for the MCS1, indeed, the PER curves obtained by simulation
are almost superimposed with the prediction obtained using
SSESM. We can also see that despite SSESM is slightly less
accurate for MCS2, the maximal deviation does not exceed
0.75 dB. Last, we can observe that SSESM enables accurate

PER prediction for MCS3, in fact, it is even more accurate
than MIESM.
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Fig. 1: PER obtained by simulation and predicted PER using
MIESM and SSESM the average SNR under the UC (top) and
the PLC (bottom) in the HC configuration. Solid lines: L = 2
in the UC and L = 3 in the PLC, dashed lines: L = 6 in the
UC and L = 7 in the PLC.
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Fig. 2: PER obtained by simulation and predicted PER using
MIESM and SSESM versus the average SNR under the UC
(top) and the PLC (bottom) in the QC configuration. Solid
lines: L = 2 in the UC and L = 3 in the PLC, dashed lines:
L = 6 in the UC and L = 7 in the PLC.

C. Accuracy of SSESM with statistical CSI

In this section, we assess the accuracy of the proposed
average PER prediction methodology when SCSI is available.
To do so, we perform the same Monte Carlo simulations than
in Section IV-B to obtain the theoretical average PER curves.
Then, we compute the predicted PER using (12) with the
values of γth provided in Table I.

In Figs. 3 to 5, we plot the PER obtained by simulations and
the predicted PER obtained using the proposed methodology
under the UC (top) and the PLC (bottom) versus the SNR for
MCS1, MCS2, and MCS3, respectively for the FC and the QC
configurations. We can observe that the maximum deviation
is less than 1 dB for PER of the order of 10−2.
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and L = 7 in the PLC.
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prediction method versus the average SNR under the UC (top)
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UC and L = 3 in the PLC, dashed lines: L = 6 in the UC
and L = 3 in the PLC.

V. CONCLUSION

In this paper, we proposed a methodology to predict the av-
erage PER for coded SC-FDE systems using MMSE equalizer
when SCSI is available, based on the effective SNR mapping
approach. The novelty of our approach is to introduce new
post-equalization SNRs and effective SNR expressions which
allow to approximate the effective SNR distribution by a beta
distribution with low complexity compared to conventional
methods. We assessed the accuracy of the proposed method-
ology through simulations and showed that it enables accurate
PER prediction for PER down to 10−2. Extensions of this work
could be: i) taking into account other channel models such
as the Rician one, and ii) use the proposed PER prediction
methodology to perform resource allocation.
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Fig. 5: PER obtained by simulation and using our proposed
prediction method versus the average SNR under the UC (top)
and the PLC (bottom) for MCS3. The solid lines stand for
L = 2 in the UC and L = 3 in the PLC, whereas the dashed
lines stand for L = 6 in the UC and L = 3 in the PLC.
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