Data Stream Query Processing on Mobile Devices

Mitra Kazemzadeh
Department of Mathematics and Computer Science
University of Lethbridge
Lethbridge, Alberta, Canada
mitra.kazemzadeh @uleth.ca

Abstract—Nowadays, data management and processing sys-
tems exist that handle streaming data. Streaming data is data
that is very large and cannot all be stored, and also may only
be valid for a certain period of time. In existing stream data
managements systems, data streams are transmitted to a server
where the management and processing of queries take place,
before the results are transmitted on an outbound stream -
possibly to another mobile device. However, no strategies exist
that receive, manage and process stream data directly on a
mobile device, without having to rely on the services of a server.
This paper proposes an architecture and framework for stream
data management and query processing on a mobile device.
The architecture only keeps a minimal number of features.
All database operations are handled with minimal data storage
requirements. It also presents details on an implementation of
this framework for a currency conversion application, which
demonstrates the utility of our framework. This work will lead to
several new directions of research in the area of stream processing
on mobile devices.

Index Terms—data streams, mobile computing

I. INTRODUCTION

Nowadays, data management and processing systems exist
that handle streaming data. A data stream (also known as
streaming data) [1] is a data set where data items for it
are generated continuously from some source, and may be
considered obsolete after a certain period of time.

As mobile device usage increases, so do the opportunities
for information processing applications for these devices. One
such type of application is the processing of queries that
involve streaming data. For example, a currency conversion
application that continuously receives cash amounts in various
currency and converts each to another currency using informa-
tion in a currency table is an ideal application that can process
this information locally on a mobile device.

In existing stream data managements systems, data streams
are transmitted to a server where the management and process-
ing of queries take place, before the results are transmitted on
an outbound stream - possibly to a mobile device for display.
However, to the best of our knowledge, no frameworks exist
that receive, manage and process stream data directly on a
mobile device, without having to rely on the services of a
server. Having stream processing directly on a mobile device
allows for the processing of stream queries to take place
anywhere and at any time. In addition, the need for processing

*Corresponding Author

Wendy Osborn*
Department of Mathematics and Computer Science
University of Lethbridge
Lethbridge, Alberta, Canada
wendy.osborn @uleth.ca

on an intermediate server before obtaining and displaying
results can be eliminated, which in turn reduces the amount of
network transmission that must take place. The trade-off here,
however, is the limited storage available on mobile devices,
which must be taken into account when supporting stream
query processing applications.

This paper proposes a proof-of-concept architecture and
functionality for stream data management and query pro-
cessing on a mobile device. Both consider the properties of
mobile devices - in particular, limited storage availability -
for supporting stream queries. This paper also presents an
implementation of this framework for a currency conversion
application in order to demonstrate the utility of our frame-
work. This work will lead to several new directions of research
in the area of stream processing on mobile devices.

The remainder of this paper proceeds as follows. Section
II summarizes existing research in the area of spatial data
streams. Section III presents our proposed framework for
query processing on mobile devices, including preliminaries,
architecture and functionality details. Section IV presents
an example application of the proposed framework. Finally,
Section V concludes the paper and proposes directions for
future work.

II. RELATED WORK

In this section, we summarize some relevant related work
in the area of stream query processing, with a focus on
benchmarks and some more recent extensions. Babu and
Widom [1] propose a server-based architecture for database
query processing where the data being processed is in stream
form, rather than stored form. They also address how existing
database query operations can be processed in the architecture.
Arasu, Babu and Widom [3] propose a SQL-based query
language for specifying queries in a stream-based database
system. They also present a related query execution plan,
and processing strategies for this language assuming both
streaming data and standard relations. Their approach also
considers the sharing of results among multiple continuous
queries. Maier et al. [5] address the issue of the actual
definition of a data stream, and propose functions to address
this. Jain et al. [6] proposal a unified stream querying standard
that incorporates both time-based and tuple-based execution of
continuous stream queries.

Fig. 1. Mobile Data Stream Processing Architecture

Stream processing strategies have been proposed for other
types of data, such as spatial data streams. Kwon and Li [2]
proposed a progressive spatial join strategy that joins the same
pair of objects multiple times, beginning with a simplified
representation (i.e. a minimum bounding box) and increasing
the complexity of the representation for subsequent joins,
in order to reduce the cost of the spatial join as simpler
representations are computationally less expensive to join [2].
Osborn [4] proposed several strategies that utilize both a
conventional spatial join and a bit-array join (i.e. similar to
a Bloom join [7]). They employ the idea of a common region
between the two spatial data streams to identify objects that
would participate in a join.

One limitation of the above proposed architectures and
strategies are that all process stream queries on a server,
in which the result must be transmitted to the mobile de-
vice before it would be displayed. Eliminating the additional
transmission step will result in more real-time processing and
display of query results for the user.

III. PROPOSED FRAMEWORK

In this section, we present our framework for data stream
query processing on mobile devices. After summarizing some
preliminaries, we present both the architecture and function-
ality of our framework.

A. Preliminaries

Our approach begins with adapting the architecture pro-
posed by Babu and Widom [1] to a mobile environment. Their
proposed architecture consists of the following components
[1]:

o Input Stream 1 ... Stream n - the components that transmit

data (e.g. tuples) to the data stream query processor.

o Query Processor - the component that processes queries
on both the incoming tuples from the Input Streams,
as well as tuples residing in the Scratch component
(described below).

o Output Stream - the component where the tuples that are
permanently part of the result are sent, to be received by
others.

e Store - the component where result tuples that may not
be permanently part of the result are kept. Along with the
Output Stream, this make up the other part of the current
result.

e Scratch - the component where tuples that may be re-
quired for future processing are kept. For example, if
tuples are needed for joining with one that has not arrived
yet, then it is stored here until it is discarded (i.e. either
due to not longer being needed, or due to lack of space).

o Throw - the component where tuples that are no longer
needed are sent. As mentioned by Babu and Widom,
this component is generally not implemented in an active
system.

B. Architecture

Figure 1 presents our overall architecture for mobile data
stream processing architecture. The input for our architecture
consists of two data streams, which transmit data directly to
the mobile device. It also consists of a scratch storage, which
is used for storing the “current” data that has arrived from
the data streams. Although this is depicted externally in the
diagram, this storage is actually within the mobile device.
Finally, it consists of a throw, which is for tuples that will
not be kept anymore.

Our architecture differs from [1] in the following ways:

o In theory our architecture could be extended to support
multiple input streams. However, when taking storage
limitations on a mobile device into consideration, we
concluded that it makes sense to only support a limited
number of streams. Therefore, our current architecture
only supports up to two input streams.

e Our proposed architecture does not have an Output
Stream. Instead, the result of a query at a given time
is displayed on the screen of the mobile device.

« In addition, our proposed architecture does not maintain
a store of results that may or may not remain in the result
“forever”. Therefore the only result consists of the tuples
on the display of the mobile device at a given moment
in time.

C. Functionality

In our framework, a query is only submitted once to the
stream query processor on the mobile device. We assume
tuple-based execution of a continuous query - specifically, a
query is executed continuously for each new tuple that arrives
from the input streams.

We have several table types available for use, including an
append-only table, and a temporal table. In an append-only
table, new tuples are simply appended to the end of the table,
with tuples at the beginning of the table being removed if
the capacity of the table has been reached. The temporal table
consists of a list of “current” tuples, with outdated tuples being

E40 & 0 @

DataStreaming

FREVOUS

EUR:D0O

GaP -0

Fig. 2. Initial List of Currencies

archived in a separate list. The current list is the list that is
utilized for query processing operations.

As mobile devices have very limited storage, the advantages
of using both of the above table types are the following:

o The append-only table can be easily adjusted to accom-
modate a specific number of tuples - from none (i.e. not
storing tuples at all after processing them on arrival) to
some number depending on the availability of memory
on the device.

o If outdated data is not required to be kept, then the tempo-
ral relation can be reduced to a standard, updatable table.
However, the flexibility exists to store this information
when a temporal table is used.

Our proposed framework supports select, aggregation, pro-
jection, and join operations that have minimal storage require-
ments. For the select and project operations, if both are being
performed on an append-only stream we do not need to utilize
the scratch storage. In both cases, tuples that meet either a
selection and/or projection condition can be displayed to the
user immediately, and do not need to be stored for future use.

Similar reasoning applies to aggregation operations. An
incoming tuple on the append-only stream can e processed for
whichever aggregate calculations are required. For example,
if the value of one of the attributes is part of a running sum,
this can be updated before it is stored. All running aggregate
calculations will need to be stored in the scratch storage. But

B4 00

DataStreaming

PREVOLUS
EUR : 9280
-_'Ui: I o
CHF: 8
NZD - TO08

USD : 7304

Fig. 3. After Processing of More Orders

this is at most one value per aggregate formula, or possibly
one per formula per group-by attribute value. However, the
actual incoming tuples t do not need to be stored for future
use.

A join operation require more consideration, but under
certain conditions can be supported with minimal scratch
storage requirements. For a join operation, we utilize a nested
loop join strategy, with the assumption that one stream will
be stored in an append-only relation, and the other stored in a
temporal relation. The latter stores “current” information that
may be updated, while the former stores information that - on
a tuple basis - cannot be updated. If the submitted query only
requires results to be current the moment they are generated,
then only the temporal relation needs to be stored, while
storage of the append-only relation is not necessary. If updates
to tuples in the temporal relation require new joins with the
tuples in the append-only relation, then the append-only tuples
need to be stored in scratch storage, so they can be processed
again if need be. However, for some applications, once the
tuple is processed, any changes to tuple that it joined with
does not affect the tuple that was generated previously.

We demonstrate the following situation below - no storage
in the append-only relation, no storage of outdated data in the
temporal relation - for an application that does not require the
incoming tuples of one stream to be kept after processing, and
only the current tuples of the other stream to be maintained.

IV. APPLICATION EXAMPLE

To demonstrate the use of our proposed framework, we
implemented an Android application that tracks ongoing sales
of some of the top world currencies. This application was
implemented using Apache Flink.'

This application obtained its input from two continuous data
streams. The first is ExchangeRates, which keeps track of
changes to the exchange rate of different currencies to the
Japanese Yen. Each tuple in ExchangeRates consists of:

(time, currency, rate)

The second input stream is Orders, which keeps track of the
amount of money paid in a particular currency for a particular
product. Each tuple in the Orders stream consists of:

(time, productID, currency, amount)

For demonstration purposes, the data for both streams are
randomly generated. The query that we are interested in
performing on these data streams is:

select ExchangeRate.currency,

sum (Orders.amount » ExchangeRate.rate)
from Orders, RateHistory
where Orders.currency=ExchangeRate.currency
group by ExchangeRate.currency;

The result of this query is a list of currencies, and the current
total converted amount in Japanese Yen.

With respect to our proposed architecture above, the only
components that need to be stored are: 1) the current exchange
rates, and 2) the running totals of each currency converted
into Yen, which is stored alongside each exchange rate. As
we are only working with six exchange rates, we require very
little storage on our mobile device. We do not need to store
the incoming orders, since its converted amount depends only
on the current exchange rate. Therefore, once each Order is
processed it can be discarded.

Figures 2 and 3 depict the display of the current results,
initially and after some time. In Figure 2, we can see that
so far, only orders for conversion from Canadian (CAD) and
United States (USD) dollars have been processed, with no
orders having been processed for the British Pound (GBP).
In Figure 3 we can see that the total of each currency (after
conversion to Yen) increases as more orders arrive, and are
updated on the display. For example, for GBP, we see orders
that now total and convert to 11,428 Yen is displayed (Figure
3), while the total converted amount for CAD has not changed,
since no further orders have arrived for this conversion. We
also observe similar trends with the other currencies.

V. CONCLUSION

In this paper, we propose an architecture and functionality
for stream data management and query processing framework
on a mobile device. Both consider the properties of mobile

'URL: flink.apache.org
devices in supporting stream queries. In particular, our pro-

posed architecture does not maintain a separate result store,
nor does it generate an output stream, as the the result is
displayed immediately and continuously to the user. With
respect to functionality, many application can benefit from
database operations that only require minimal storage in order
to generate results.

An implementation of this framework for a currency con-
version application is also provided to demonstrate accurate
results that require minimal storage, which is ideal for data
stream processing on a mobile device.

This proof of concept has lead to several research directions,
including the following. The first deals with handling database
operations that work on updatable stream data - that is, a tuple
that arrives later may be a replacement for an earlier tuple. In
addition, having two streams that are not considered temporal
relations will affect the storage requirements of the system,
and would need consideration. Second, our system currently
assumed that the data arrives in the order it is generated. If
tuples arrive out of order, this can affect the accuracy of the
result (e.g. from our example above, the Order tuple arriving
much later than the exchange rate it was intended for). Third,
our framework assumes tuple-based execution of a continuous
query. Time-based execution is also a consideration. However
such an approach will require different storage considerations,
as tuples would need to be stored. Finally, our framework
currently assumes that the number of tuples in the temporal re-
lation is static, even if they are updatable during the execution
of the application (e.g. from our example, if a new exchange
rate arrives after Orders show up for it, and the Orders have
been deleted). These and other considerations lead to exciting
research in data stream query processing on mobile devices.

REFERENCES

[1] S. Babu and J. Widom, “Continous queries over data streams,” SIGMOD
Record, vol. 30, no. 3, pp. 109-120, 2001.

0. Kwon and K.-J. Li, “Progressive spatial join for polygon data stream,”
in Proceedings of the 19th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems. ACM, 2011.

A. Arasu, S. Babu, and J. Widom, “The CQL continuous query language:
semantic foundations and query execution,” VLDB Journal, vol. 15, no. 2,
2006.

W. Osborn, “Exploring bit arrays for join processing in spatial data
streams,” in Proceedings of the 22nd International Conference on
Network-Based information Systems, 2019, pp. 73-85.

D. Maier, J. Li, P. A. Tucker, K. Tufte, and V. Papadimos, “Semantics
of data streams and operators,” in Proceedings of the 10th International
Conference on Database Theory (ICDT 2005), Edinburgh, UK, January
5-7, 2005, Proceedings, ser. Lecture Notes in Computer Science, T. Eiter
and L. Libkin, Eds., vol. 3363. Springer, 2005, pp. 37-52.

N. Jain, S. Mishra, A. Srinivasan, J. Gehrke, J. Widom, H. Balakrishnan,
U. Cetintemel, M. Cherniack, R. Tibbetts, and S. B. Zdonik, “Towards a
streaming SQL standard,” Proc. VLDB Endow., vol. 1, no. 2, pp. 1379-
1390, 2008.

B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422-426, Jul.
1970.

(2]

(3]

[4]

(31

(6]

(71

