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Abstract—In this paper, we provide a theoretical analysis on
the performance of the famous Gradient-based Tone-Reservation
PAPR reduction algorithm. To that end, we study the amplitude
statistical distribution of the time domain OFDM signals to which
PAPR reduction has been applied. Such distribution is then
integrated into a generic EVM expression in order to provide
a closed form expression of this latter, which is validated and
analyzed through numerical simulations. Thanks to this work, we
provide theoretical tools to analytically assess the performance
of the Gradient method relatively to the optimal TR algorithm,
and hence allow further analysis about the complexity-PAPR
reduction efficiency trade-off of TR PAPR reduction algorithms,
which could be useful for the optimization of the power efficiency
of any multicarrier system.

Index Terms—Analytical expression, EVM, OFDM, PAPR
reduction, Probability distribution, Tone Reservation, Gradient
algorithm.

I. INTRODUCTION

Multi-carrier modulations and especially Orthogonal Fre-
quency Division Multiplexing (OFDM) are key technologies in
modern communication systems like Digital Video Broadcast-
ing - Second Generation Terrestrial (DVB-T2) [1], Advanced
Television Systems Committee 3.0 (ATSC3.0) [2], Long-Term
Evolution (LTE) [3], as well as the recent releases concerning
the fifth mobile generation (5G) [4]. The major issue related
to such waveforms remains their high Peak to Average Power
Ratio (PAPR). At the amplification stage indeed, the use of
High Power Amplifiers (HPA) characterized by potentially
strong non-linearities, brings about much more distortions to
signals exhibiting high PAPR. The distortion level can then
be mitigated by using the HPA at an operation point far from
the saturation region, however dramatically degrading the HPA
power efficiency. A fine tuning of the so-called Input power
Back-Off (IBO) is thus seeked in practice to trade signal
quality against power efficiency.

Two complementary ways can be followed to improve such
distortion-power efficiency trade-off: either enlarging the lin-
ear zone of the HPA by means of predistortion techniques [5],
or processing the baseband signal, in order to reduce its PAPR.
In this paper, we are interested in this latter case. A large
variety of PAPR reduction techniques exist in the literature,
among which simple clipping approach [6] or the popular
Tone Reservation (TR) concept [7]. Indeed, TR is a promising

technique that has been proposed by standards like DVB-
T2 and ATSC 3.0, because of its high efficiency in reducing
PAPR without including distortions by itself and whatever the
constellation order, and for its downward compatibility. TR
consists in adding a kernel signal orthogonal to the transmitted
signal in a way to reduce its PAPR without causing distorsions.
Several algorithms can be used, in order to compute this
kernel. The optimal one consists in solving a Quadratically
Constrained Quadratic Problem (QCQP). Though this algo-
rithm provides the optimal solution, it remains too complex to
be implemented in real systems. For that reason, DVB-T2 and
ATSC 3.0 rather consider a Gradient search based algorithm in
practice. The Gradient solution provides a good complexity-
PAPR reduction efficiency trade-off owing to the quite simple
computation of the TR kernel at the transmitters.

In order to find the optimal system setting reaching the best
distortion-power efficiency trade-off, it is needed to be able
to predict the performance of the selected PAPR reduction
algorithm. A large number of studies consider the performance
of TR PAPR reduction and especially the development of the
Gradient algorithm (see [8] and references therein). However,
these studies are limited to empirical evaluations and the
literature is lacking theoretical results. In this context, a recent
study provided tools for the analytical computation of the Error
Vector Magnitude (EVM) of OFDM signals after non-linear
amplification and for any TR PAPR reduction algorithm [9].
EVM is an important figure of merit measuring the amount
of in-band distortions of signals. The application guidelines
of several standards like DVB-T2, ATSC3.0 and LTE have
actually defined their requirements in terms of EVM. EVM is
then well suited to assess the performance of PAPR reduction.

In this paper, we propose to derive the theoretical EVM
of amplified OFDM signals after Gradient-based PAPR re-
duction as proposed by the DVB-T2 and ATSC3.0 standards.
Following the methodology introduced in [9], we first provide
a thorough analysis of the signal amplitude distribution after
PAPR reduction, namely depending on the clipping factor
which is the main setting parameter of the Gradient algorithm.
The obtained statistical model, which is the heart of the
material used for the theoretical EVM derivation is then used
to derive the closed-form EVM expression for Gradient-based
PAPR reduction. Hence, complementary to the expression
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Fig. 1: System Model

given in [9], which has been derived for the QCQP algorithm,
again not implementable in practice, we provide herein the
EVM closed-form for the sub-optimal, but implementation-
friendly, Gradient algorithm.

The rest of this paper is organised as follows. Section II
presents the system model as well as the QCQP and Gradient
algorithms. Section III is a summary of the analytical work
done in [9] for the general case of TR technique applied for
TR-QCQP. Section IV concerns the theoretical study of the
Gradient algorithm. The amplitude distribution is analyzed and
modeled. The EVM expression for the Gradient solution is
thus evaluated. Section V presents numerical results. Section
VI concludes this paper.

II. SYSTEM MODEL
A. OFDM chain

Let us consider the OFDM transmission depicted in Fig.1.
Without loss of generality, an OFDM system with N =8 K
subcarriers and 16-QAM modulation is considered using the
DVB-T2 frame structure and its corresponding positions of
Peak Reduction Tones (PRT). In the frequency domain, X, C,
S € CY present the original data signal, added signal by TR
and resulting signal respectively. X, C, S are their respective
corresponding signals at the receiver. In the time domain, s €
CN of mean power P, is the signal corresponding to S, its
received version is denoted by §. Before amplification, a power
IBO is applied to s in a way to have a HPA input signal z;,, of
mean power P, such that the IBO factor Frgo = \/ Pin/Ps.
The HPA output signal, z,,;, has a mean power P,,; that
is re-scaled to P, by applying a normalization factor F,, =
v/ Ps/Poyt, in order to fairly compare constellation points of
equal energy levels when evaluating the EVM. C is evaluated
depending on the choice of the TR algorithm.

B. Tone Reservation PAPR Reduction

TR consists in adding the signal C to X in a way to reduce
the PAPR of the resulting time domain signal s. Vector C
is composed of R PRTs on the subset of sub-carriers S,
vectors X and C lie into disjoint frequency sub-spaces such
that X, =0, Vk € S; and C, = 0, Vk € S;. This ensures
that TR method does not include any distortion by itself. Let
Q denote the inverse fast Fourier transform matrix, c = QC is
the TR kernel signal added to the time domain signal aiming at
reducing its peaks. The evaluation of the kernel signal depends
on the TR algorithm.

1) The QCQP problem: Basically, C is calculated based on
the optimization problem introduced by Tellado [7] as follows:

min 7

1
such that ||x + QC||%, < 7 M

where ||.||oo denotes the infinity norm. In standards a power

constraint is added to PRTs. Let I' = 10 o be the scale
between the maximum power allowed to each PRT and the
mean power of one data carrier Py,,, Where AP, is the value
of the power boost in dB, the following condition adds:

ICl|A < AP, + Paga. )

The problem is thus a convex problem of type Quadratically
Constrained Quadratic Problem (QCQP) [7]. The QCQP prob-
lem formulation is the optimal solution for TR and gives the
upper-bound of PAPR reduction level using TR. However,
QCQP is complex and introduces high latency due to its
computation time. Several sub-optimal methods have been
proposed in the literature [10]. The most famous is the gradient
algorithm proposed by the DVB-T2 and ATSC3.0 standards
that we describe in what follows.

2) The Gradient Algorithm: The concept of the Gradient
algorithm described in DVB-T2 [2] is summarized in what
follows. Each iteration of the Gradient algorithm aims at one
peak reduction, in a way to ideally set all samples amplitudes
under a predefined threshold V¢;;,. It consists on adding an
impulse-like kernel to the time domain signal.

Note that as the number of PRTs is limited, the kernel is
not a pure impulse and presents some leakage samples, which
prevent from a perfect peak cancellation. In that sense, the
Gradient-based algorithm is sub-optimal and, if it does not fail
to, may need several tens of iterations to globally converge,
depending on the threshold setting.

Based on such kernel, the peaks of the time domain signal
can be reduced by shifting the kernel to the position of the
highest peak. Let y(*) be the amplitude of the highest detected
peak at the iteration i. The amplitude of the kernel is ideally
equal to |y — V,4;,|. However, this amplitude should respect
the power constraint imposed on the PRTs in the frequency
domain. Otherwise, the algorithm reduces the peak using the
remaining amount of allowed power on the PRTs. For such
case however, the sample amplitude is reduced, but is still
above Vip.

The algorithm continues this one peak cancellation by iter-
ation until reaching one of the following breaking conditions.
The first condition is reached when the amplitude of all the
time domain samples remains under V;;;,. The second one is
obtained when the maximum allowed power AP, is attained
for at least one of the PRTs, whereas more power is required
on this PRT to reduce the next peak. The third one is reaching
a maximum allowed number of iterations I,,,,, that maintains
an acceptable computation time.

Throughout the paper, AP, is set to 10 dB following the
DVB-T2 and ATSC3.0 specifications, and I,,,4, is set to 50.
Please note that Vg, is referenced to a signal power P, = 1.

C. HPA Model

A memoryless amplitude to amplitude characteristic of the
HPA is considered by the following polynomial model:

Z b2l+1rm y (3)

HHPA Tzn



where 7;,, is the HPA input amplitude, L the order of the HPA
polynomial model and bg; 4 its odd indexed coefficients. The
IBO p, ,, applied at the HPA is defined as the ratio between
the HPA 1 dB compression point Pj4p and F;,.

D. EVM Definition

EVM is a metric that measures the in-band distortion
level of the signal. It measures the amount of deviation of
the received constellation points S relative to the original
frequency domain signal S. Letting E(.) be the expectation
expression, EVM can then be expressed by:

E(lls = sll?)
E(l[sl[)

III. GENERIC EVM EXPRESSION FOR TR PAPR
REDUCTION AND ITS APPLICATION TO QCQP ALGORITHM

EVM = “4)

In this section, we summarize the main results provided in
[9] to establish the EVM expression of OFDM signals after
TR PAPR reduction and non-linear power amplification. Its
utilization with the TR-QCQP algorithm is then exposed as
an application example to better understand how to further
exploit the generic expression for Gradient-based algorithms
in section IV.

A. EVM expression based on statistical signal description

As demonstrated in [9], a generic EVM expression derived
from (4) can be obtained as a function of the time domain
statistical amplitude distribution of the OFDM signal after TR
PAPR reduction and non-linear amplification depending of the
HPA model given by (3). It is expressed as:

1
with, 7= Zl o W pIBO Mg (2([ + 1))
ST v gl m, (204 1)
pl+i/z .
where u; = I;‘Zfl Re(by4+1) and vy = %%lﬂb;llﬂ.

mg(n) is the n'" ordered raw moment of the distribution f,(r),
time domain statistical distribution of the amplitude of the
OFDM signal r = |s| after applying TR, that is:

mg(n) = /000 r™fs(r)dr (6)

This expression presents a general analytical framework for
the TR technique relying on the evaluation of the moments of
the time domain amplitude distribution f;(r).

B. Application to TR-QCQP

As studied in [9], it can be shown that the time domain
distribution the OFDM signals after TR-QCQP processing
is composed of two modes. The first one is the Rayleigh
distribution of the original OFDM signal truncated at 7g¢p.
The second one follows a Generalised Extreme Value (GEV)
distribution. Hence the signal amplitude distribution writes:

L—p.p
fs(r) = v L ma

—W(r — Trep)) +p EEETF (1) (7)

where p is a scaling factor between the first and the second
mode, and ¢ is a normalization factor, P,., us, 02, ko are
the parameters of the Rayleigh and GEV distributions. From
such distribution model, the moments of the time domain
distribution for TR-QCQP can be derived as follows:

1

mg(n) = %p P'y(n+1,A)+p Z wap T (—kopy +1)

p1+p2+p3=2n

with s, = (,, 20, )1 (72)" 7 ana A = S
~v and I' present respectively the lower 1ncomplete and the
complete gamma functions. Thus, the EVM for TR-QCQP
is obtained by substituting the moment in (5) by the above
expression. This result was validated in [9] by proper EVM
simulations that show the relevance of these analytical deriva-
tions.

From this example, it is understood that any EVM expres-
sion can be obtained provided that the raw moments of the
signal amplitude distribution are available, as investigated in
the Gradient-based case in the sequel.

IV. STUDY OF THE GRADIENT METHOD

This section deals with the theoretical performance deriva-
tion of the Gradient-based PAPR reduction, based on the
exploitation of (5) The time domain amplitude distribution
is first studied and analyzed for different parameters of the
system. Then, a model of such distribution is investigated for
a certain set of parameters. This model is finally integrated as
in (6), in order to provide the analytical EVM expression.

A. Amplitude Distribution Analysis

Let us first analyze the empirical distribution for the time
domain OFDM signal after applying the Gradient method.
Fig. 2 shows such distribution for different values of Vi,
and using the 8 K DVB-T2 frame structure. From this
figure, one can remark that the algorithm begins to take
effect on modifying the distribution starting from V¢;;, = 2,
whereas before this value the output signal follows the original
Rayleigh distribution, which characterizes OFDM signals. It is
understood that the Gradient method translates into reducing
the amount of samples above V;;;, and somehow forcing them
at V¢;;, in a way to reduce the peak values of the signal. This
seems to be effective only for a sufficiently high value of V.

To go further in the analysis, Table I shows statistics on
the breaking conditions of the algorithm for different values
of Vip on a total of T' = 10000 OFDM symbols. Ny, Np
and N are the number of symbols, where the algorithm exits
respectively because (i) all the samples are under the limit
of Viip, (i1) the maximum PRT power is reached, or (iii)
because the maximum number of iterations is reached. Iy
and Ip are the mean number of iterations before breaking due
to (i) or (ii) respectively. We can hence note that for high
values of Vi, like 2.5 and 2.3, the algorithm succeeds in
limiting the amplitude of all the samples under V,;;,, for a high
percentage of symbols while respecting the power constraint.
This reflects the feasibility of the algorithm for high Vi,
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Fig. 2: Time domain amplitude distribution of the OFDM
signal using the Gradient algorithm for different V;;,

TABLE I: Statistics on the breaking conditions of the Gradient
method for different values of V,;;, with I,,,4, = 50 iterations

Veiip | Ni | Ny Iy Np Ip
1.7 0 0 — 10000 5.15
1.9 0 0 — 10000 6.48
2.1 666 25 44.76 9309 13.76
2.3 70 9014 | 21.99 916 16.15
2.5 0 9993 5.88 7 9.85

with AP, = 10 dB. However, for V,;;;, = 2.1, the algorithm
succeeds in his task for only 25 symbols, whereas for the
rest of the symbols, the algorithm passes the power limit or
the maximum number of iterations before succeeding to set all
the samples under the threshold. This means that the algorithm
should not be processed at low values of V. It actually
becomes inefficient in that case, since the assumption of a
perfect Dirac-like kernel, onto which the algorithm is based, is
not strictly valid. In fact, this makes the algorithm not correctly
converge when V,j;;, is too low. In addition, for low Vi,
the algorithm rapidly passes the power constraint due to the
large amplitude difference between V,;;;, and the highest peaks
in the signal. This eventually explains why the output signal
distribution is not modified in Fig. 2 when V;, < 2.

B. Amplitude Distribution Modeling

From the previous section, we understand that the Gradient
algorithm should be used for sufficiently high values of V.,
in order to be effective. With V;;, > 2.2, one can note
from Fig. 2 that the distribution is composed of two main
modes. The first is the Rayleigh distribution of the original
OFDM signal, which is truncated at V;,, corresponding to
the samples under V,;;, resulting after applying the algorithm.
The second reflects the number of samples around and at
Veiip resulting from the modification of samples due to the
algorithm.

We thus propose to model the distribution as a superposition
of two functions. The first is the Rayleigh distribution, trun-
cated at V. The second is modeled as an impulse located at
Vetip, Which corresponds to an ideal behavior of the algorithm,
as if it were able to perfectly force the samples above the
threshold to take an amplitude of V¢;;,. Thus, the distribution
can be expressed as:

1) = 2 a-ue

where p’ is the ratio of samples at Vetsp and the total number

*Vclip))*l“p/ 6( clzp) (8)

of samples, fg:;y(r) is the Rayleigh distribution of power
parameter P/, u(r) is the step function and &(r) is the Dirac
delta function. As can be seen in Fig. 2, this approximation can
not be valid before a limit of V¢;, = 2.1, where the algorithm
begins its reduction effect. The validity of this approximation
will be later investigated when studying the EVM results in
the following.

C. Analytical EVM Expression

From the above modeling of the distribution, the nt" mo-
ment of f&724(r) denoted by m$™d(n) can be developed as:

1—
m&ad (n) = ( q/p) ms, (n) +p' mg,(n) , with:  (9)
Vclip P’
()= [ ) (10)
0
mg, (n) = / 0 (r — Vegp)dr . (11)
0

From the integral properties of the Dirac delta function,
m, (n) is simple to compute. For myg, (n), using the definition
of the Rayleigh distribution, it can be evaluated through:

Vetip 27.
msl(n):/o r’ B¢ Prdv

x

(12)

From this level, using the integral properties in [11] for the
exponential function and for the Dirac delta, the integration of
mg(n) for the Gradient method is straightforward. Thus, the
EVM for the Gradient method can be expressed as in (5) with
mg(n) expressed as:

2

Grad (1 B ) ) n Vclip ’
m&rad (n) = 7 -~ —’P 3 (2 + 1, P +p" Vaip - (13)
Thus, the closed form EVM expression of (5) for the gradient
TR algorithm can be easily evaluated as a function of Vi,

which is the key parameter of the algorithm.

V. NUMERICAL RESULTS

In this section, numerical EVM results are analyzed. First,
the validity of the proposed theoretical EVM expression is
discussed by comparing simulation and analytical results.
Then, an analysis of the performance of the Gradient algorithm
is led, in order to investigate the optimal parameters of
the Gradient algorithm in the DVB-T2 standard. Finally, the
Gradient algorithm is compared to the TR-QCQP methods.



A. Validity of the EVM expression

Fig. 3 presents theoretical and simulated EVM in function
of the IBO, with a power constraint for TR PAPR reduction
equal to AP, = 10 dB, I = 50 and different values
of Vip. As can be seen, the analytical results show a good
match with the simulated EVM at high V., values. More
precisely, the difference between the theoretical and simulated
EVM is less than 0.2% for V,y;;, above or equal to 2.3. This
validates the analytical EVM expression and the distribution
model for high V(;, values. However, higher differences
are noticed as V), values are lower, where the Gradient
algorithm fails in efficiently forcing the samples to take the
amplitude of the threshold. In that case, the approximation in
the distribution model becomes visible. We then conclude that
the approximation is valid for V;;, > 2.3.

B. Study of the DVB-T2 Gradient Algorithm Parameters

As mentioned above, the DVB-T2 standard specifies a
power constraint for TR PAPR reduction to AP, = 10 dB.
In a way to guarantee an implementable algorithm on base
stations with acceptable delays, the number of iterations should
be under I,,,, that we limit to 50 iterations. According to
the algorithm analysis of the breaking conditions in Table I,
we hereby analyze the performance of the DVB-T2 Gradient
algorithm in terms of EVM. Fig. 4 shows EVM values in
function of V., for different values of the IBO using the
above described DVB-T2 parameter setting using the DVB-
T2 PRT positions for 8K subcarriers and I,,4, = 50.

As can be seen, an optimal performance of the algorithm
is achieved for V{;;;, = 2.1. This can be explained by the fact
that at greater values of V;;,, a small amount of samples is
reduced due to the limited number of samples above V,;;,. This
can be seen in Table I, where Ny, is near to the total number
of symbols for V;;, = 2.3 and 2.5. However, for V,;;, lower
than 2.1, the power constraint is rapidly reached due to the
high difference between V., and the highest detected peaks.
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Fig. 3: Simulated and theoretical EVM vs IBO for different
values of Vi,
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Fig. 4. EVM in function of V;, for different IBO using
Gradient algorithm with DVB-T2 parameters
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Fig. 5: Comparison of the EVM values using different PAPR
reduction schemes

Indeed, Vi, = 2.1 provides the best compromise between the
use of the allowed PRT power and the efficient peak reduction.

C. Comparison to TR-QCQP

Fig. 5 shows the EVM values using the Gradient, TR-QCQP
techniques as well as the case without PAPR reduction. The
DVB-T2 frame structure is considered with AP, = 10 dB.
As can be seen, the optimal performance is provided by
QCQP algorithm that by turns costs complex implementation
and computation time. However, the gradient method while
using the V;;, = 2.1 provides an efficient EVM reduction
relative to the case without PAPR reduction, whereas it is much
simpler than QCQP. It thus visualises the compromise between
PAPR reduction efficiency and the implementation complexity
between QCQP and the gradient techniques.



VI. CONCLUSION

In this paper, an analytical study of the Gradient TR
PAPR reduction algorithm is provided, following a generic
framework. This framework is based on a statistical analysis
of the signal after PAPR reduction. A theoretical approximated
distribution of the samples amplitude of the signal is proposed
as a bi-modal distribution. This model allows for rapidly deriv-
ing the theoretical EVM of the signal at the output of the PA
and predict the algorithm performance. A good convergence
between the theoretical and simulated EVM values for Vi,
equal or higher than 2.3 is observed, which validates the used
distribution model and the analytical approach for those Vi,
values. Furthermore, the optimal parameters of the Gradient
TR PAPR reduction have been determined based on simulation
results taking into account realistic conditions of the DVB-T2
and ATSC3.0 standards. . Finally, a comparison to optimal
TR algorithm is lead in order to assess the performance of
the gradient method in reducing EVM, compared to such
algorithms.

This work eventually provides theoretical results that can
be useful for further comparisons and analysis between the
Gradient-based and other PAPR reduction algorithms in the
perspective of the usage of such schemes in future systems.
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