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Abstract—Here, we present a mobility prediction framework
for 5G mobile systems. Our work stems from the intuition that
mobility in vehicular networks is highly correlated, and such
correlation can be captured by advanced neural network designs
to anticipate the users' point of attachment. To prove this, we
combine Markov chains with recurrent and convolutional neural
networks, training them on mobility trajectories estimated by
the received radio signal from mobile millimeter-wave devices.
The proposed framework is decentralized, i.e., user trajectories
are independently learned by each base station. In this paper,
various problems are pragmatically tackled and solved, such as
dealing with imbalanced datasets, as some trajectories are under
represented, and obtaining a mobility classifier whose accuracy
increases as new mobility samples are collected.

The proposed technique is assessed using emulated traces
obtained through the SUMO mobility simulator for the city of
Cologne. Numerical results show accuracies higher than 88% in
the prediction of the next serving base station from 4 seconds
before the handover is performed. Mobility (next base station)
predictors like the ones presented here are key for network
management purposes within 5G networks, e.g., to proactively
allocate communication and edge computing resources.

Index Terms—5G, mobility prediction, radio-positioning, re-
current neural network, convolutional neural network.

I. INTRODUCTION

Fifth-generation (5G) mobile networks are expected to
provide broadband access in dense areas, high communication
capacity and ultra-low latency, for mobile users [1], [2]. These
features will be enabled by the introduction of, among oth-
ers, millimeter-wave (mm-wave) communications and massive
multiple-input multiple-output (MIMO) technologies.

Besides other benefits, the high bandwidth available at
mm-wave frequencies and the antenna arrays employed for
massive-MIMO, will allow 5G networks to provide network-
based positioning that, with an expected accuracy of less
than one meter, will outperform that provided by the global
navigation satellite system (GNSS) (five meters) [3]. These
positioning capabilities can be exploited to enhance the 5G
network performance, through location- and mobility-aware
allocation of communications and computing tasks in 5G
edge networks [4], [5]. Several proactive resource allocation
schemes are investigated in the literature, exploiting short-
term and long-term predictions. Short-term predictions, i.e.,
from one to a few radio frames ahead, can be utilized at
runtime to tune the mobile network parameters. For ex-
ample, location-based prediction of interference sources can
be used within channel access protocols. As an example,

in [4], [7] short-term location estimates are utilized to perform
beamforming for 5G enabled vehicles and high-speed trains.
Longer-term mobility predictions, on the other hand, can be
exploited to re-route processes at the network layer [6].
Paper contribution: our work focuses on long-term mobility
predictions, i.e., ranging from one to a few seconds into
the future. Our idea is that 5G base stations (BSs) could
independently track the connected users to estimate their
physical trajectories as they move through the radio cells. We
target vehicular networks, where mobility is constrained to
the physical connectivity structure of road links, as well as
to their morphology. Our intuition is that vehicular mobil-
ity is a highly correlated process, which can be effectively
captured by the BSs by observing the radio signals from
their connected mobile users. In the literature, this prediction
task has been tackled exploiting Markov chains (MC) and
support vector machines (SVMs), using as input the sequence
of previously visited cells [8]-[10]. Although this approach
may be effective in simple scenarios, we remark that the
historical information about the sequence of serving BSs does
not suffice to provide accurate position estimates as the number
of physical trajectories increases. As a solution, we propose
to exploit the location information that will be provided by
5G networks, using the sequence of users’ positions with
a granularity of one second. Our approach is decentralized,
as each BS tracks its own connected users by estimating
the probability distribution of their next serving BS (taken
from the set of neighboring ones). Learning is carried out
through recurrent and convolutional neural networks (NNs)
combined with standard MCs. Once trained, the predictor
returns mobility estimates, i.e., a probability vector for the next
serving BS, from the moment a user connects to the cell to the
moment it leaves it. Such estimates are continuously improved
as subsequent radio samples from the user are collected.

To the best of our knowledge, the only other work adopting
a similar approach is [11], where a recurrent neural network
(RNN) is used to estimate the next BS that the user will be
connected to from the received signal strength (RSS) values
acquired every 500 ms. In [11], a simple RNN design is
considered, training it in a centralized fashion on a small-scale
scenario featuring 8 BSs and 3 users moving in a grid topology
over an area of 6 x 6 square kilometers. Our present work pro-
vides significant advancements over this prior research along
several dimensions: i) a real-life mobility scenario is consid-
ered, using the “simulation of urban mobility” (SUMO) [12]



to emulate more than 50 thousands vehicles moving within the
city of Cologne; ii) a realistic 5G network is emulated, with
densely deployed BSs within the monitored area (coverage
radius of 40 m, for a total of 196 BSs); iii) we combine
RNN with Markov chain estimators, retaining the benefits
of both; iv) the approach is decentralized by design, i.e., a
single NN-MC based predictor is trained for each BS, solving
issues such as the lack of data for less represented trajectories.
Numerical results indicate that the new serving BS can be
estimated with an accuracy higher than 88% from four seconds
before the handoff, which seems to be appropriate for proactive
resource management algorithms.

The rest of the paper is organized as follows. In Section II
we detail the proposed mobility prediction framework. In
Section Il we describe the experimental scenario and the
performance of our technique is assessed in Section IV.
Concluding remarks are presented in Section V.

II. SEQUENTIAL LEARNING ARCHITECTURE

Next, we detail the proposed mobility estimation frame-
work. The sequence of azimuth («) and elevation () angles
that describes the positions of the vehicle from the time it
connects to a BS (¢ = 1) to the instant in which it hands over
to another BS (¢t = T') is referred to as a trajectory. Formally,
a T-long trajectory is denoted by Sp = (s1,82,...,87),
with s; = (ay,B:)T. Our framework returns a new soft-
prediction, in the form of a probability vector over the next
serving BS, every time a new trajectory sample is gathered,
with an accuracy that increases with the number of samples.
Considering that the BS to which the user will hand over
must be one among the Ngg adjacent BSs, we formulate the
problem as a classification task and we design a supervised
learning framework to carry it out. The classification is per-
fomed in parallel by two blocks: i) a NN block, consisting
of a recurrent neural network (RNN) (see Section II-A) and
a convolutional neural network (CNN) (Section II-B), that
uses as input the user trajectory samples, and ii) a MC block
(as proposed by [9]) that exploits the sequence of previously
visited cells (Section II-C). The classification results from
i) and ii) are then combined to obtain the final estimates
using a parameter that is learned as part of the training (see
Section II-D). The blocks are shown in Fig. 1, while the
training process is detailed in Section II-F. To complete our
framework, we propose a pre-processing algorithm to deal
with possible imbalanced datasets (Section II-E), which is key
to also learn under represented trajectories, for which there are
fewer training examples.

A. GRU-based RNN for mobility feature extraction

RNN is the most used learning tool for sequential data, as
it is able to track temporal correlation among input samples
and handles inputs with different numbers of elements [13]. An
RNN is composed of one or more memory cells whose number
is indicated by the number of layers, L,... The temporal
correlation between subsequent input samples, from s; to s;,
is recorded in the values of the Vo, neurons constituting the

cell internal state, h;, where ¢ is the time index. To that end,
the input sequence S; = (s1,So,...,s;), is fed one sample
at a time into the first layer of the RNN. In case of multiple
layers, the internal state of the first layer cell becomes the
input of the second layer cell, and so on. Every time a new
sample arrives, the internal states of the RNN cells are updated
based on the values of the previous states and on the new
sample. The update procedure is described by the cell update
function, that defines the memory cell, whose parameters
are adjusted to minimize a loss function, i.e., a user-defined
distance between the expected and the actual network output.
Dropout layers can be inserted between recurrent layers,
providing network regularization by randomly zeroing some
of the elements of the input, following a Bernoulli distribution.
In our implementation, we use L, = 2 gated recurrent units
(GRUs) [14] memory cells with N, = 20 neurons per layer,
and a dropout layer with a retain probability of 0.9. For each
input sequence, we collect the internal state values of the
two stacked RNN cells, each time a new trajectory sample is
processed. Note that the RNN internal state is a feature vector
capturing the most representative traits of the input time series.
After applying layer normalization, this feature vector is used
by the subsequent CNN that acts as a classifier, see Fig. 1.

B. CNN for next serving BS prediction

A CNN consists of the cascade of layers (i.e., functions),
where all or some of them use the convolution operator, i.e.,
small-size kernels (matrices of weights), which are convolved
with the entire input data volume [13]. The result of such con-
volutions is passed through a non-linearity, called activation
function, to produce an output activation map. The number
of kernel filters employed at one layer defines the depth of
the layer output, i.e., the number of activation maps produced
for a single input, each of which captures different aspects
of the input. One interesting feature of CNNs is their param-
eter sharing property: the kernel filters are applied to each
position of the input, allowing one to capture specific input
peculiarities, no matter their specific location. Similarly to
RNNs, dropout layers can be interposed between convolutional
layers. In this work, we use a one dimensional CNN, where
the kernels are vectors, with L., = 2 convolutional layers
with ReLu activation functions, and two dropout layers with a
retain probability of 0.9. Batch normalization is applied after
each convolutional layer to reduce the training time. The CNN
input corresponds to the two (stacked) final internal states
extracted from the GRU-based RNN. The output of the last
convolutional layer is then passed through a fully connected
layer with SoftMax activation function that produces a
Npg-dimensional vector, p{™™ £ (p{3™, pi%"™, ..., piAv,)s
containing the probability that the user will hand over to each
of the Npg neighboring cells after leaving the current one.

C. MC for next serving BS prediction

MC is here used to capture the correlation in the se-
quence of cells that are visited by a user. Indicating with
Cp+1,; the i-th neighbouring cell of the current (serving) BS,
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Fig. 1: Processing pipeline. The estimation is performed in parallel by the NN block (GRU-based RNN + CNN), using as
input the («, ) angles describing the trajectories, and the MC block, exploiting the sequence of previous visited cells. The
output vector of probabilities for each adjacent BS (p;) is obtained as a combination of the two classification outputs.

xS {1, R 7]\/vBS}, and with cy = (Cb—N;Cb—N-i-l, RN Cb) the
ordered sequence of the last N 4 1 cells visited up to and
including time ¢, each element of the Ngg-dimensional vector

MC A& ( MC ,MC MC :
Py~ = (Pi17sPt2 s PiNge) 1S computed as follows:

pM‘C — Zdataset Number(cb+1,i7 CN)
" Zdataset Number(cN)

where Number (cpt1,i, ¢n) (resp. Number(cy)) indicates the
number of instances for the sequence (cp+1,, ¢n) (resp. cy) in
the training dataset. The value of N, i.e., the MC order, results
from a numerical performance assessment, see Section IV.

(D

D. Combination of NN and MC predictors

The final Npg-dimensional probability vector p; =
(pt1,Pt,2,- - Pt,Ngs) i obtained by combining the NN and
MC estimates through a parameter v € {0, 1}, which is fixed
for each NN-MC predictor and automatically learned during
training. The parameter ~y is used together with the variable ¢,
allowing the predictor to differently weigh the two estimates
as the number of gathered trajectory samples ¢ changes:

k= min{(t — 1)7,1} €{0,1}, )
p: = kp{™™ + (1 — k)p;"“. 3)

E. Dealing with imbalanced datasets

In an urban scenario, the number of examples available
for each of the possible trajectories inside a BS’s coverage
area usually differs. Using such an imbalanced dataset for
training would lead to a neural network with poor mobil-
ity prediction capabilities for those users that follow under
represented trajectories. To cope with this, we propose a
method to artificially generate new trajectories, so that they
resemble the ones belonging to the under represented classes.
This oversampling process is only performed on the training
dataset, whose trajectories are labeled with the indication of
the next BS towards which the user will be moving after
the handover. Based on this label, the input data is split into
different groups. The groups whose cardinality is smaller than

70% the most populated one undergo an oversampling process,
while the others remain unchanged, as they contain enough
samples to accurately learn their trajectories. The trajectories
belonging to each of these groups are further split into a
number of classes reflecting a quantization on the trajectory
space, i.e., by grouping together those trajectories that lead to
the same final BS (same group). To do this, we first obtain
fixed-length trajectory representations (codes). A simple and
common coding method in machine learning is padding, which
amounts to concatenating each input vector with as many
zeros as needed to reach a common (fixed) length. However,
in our case, this is not the best choice as the inputs have a
specific physical meaning (city roads). Instead, we interpolate
the trajectories with a degree 3 polynomial function, and use
the interpolated versions, i.e., the codes, as inputs for the
(unsupervised) “hierarchical density-based spatial clustering
of applications with noise” (HDBSCAN) algorithm [15]. For
each trajectory class, we then produce artificial trajectories
picking at random trajectories from the class, and adding white
Gaussian noise with standard deviation o = 5 x 10~* radiants
to each sample. The new trajectories are assigned to the proper
label and are ready to be used for the model training.

E. Training process

Next, we detail how the building blocks composing our
solution are combined and jointly trained, as summarized in
Algorithm 1. First, the training trajectories are used to generate
artificial examples to balance the training dataset. Hence,
from each (7-long) trajectory we extract all the possible
(T — 1) sub-trajectories of size greater than two, i.e., ([s1, S2],
[s1,s2,83], ...[s1, S2,...s7]). Each of these sub-trajectories
is forwarded through the NN block to obtain the probability
vector pf°"’ for the next BS. The sequence of previously
visited cells ¢y is used to compute the probability vector pM©,
which is then combined with p{°"V to obtain p;. p; is then
compared with the ground truth to determine the prediction
loss. (The ground truth is a Ngg-dimensional “one hot vector”
with the element corresponding to the actual next BS being



equal to 1, and the other ones to 0). The loss is computed
by multiplying the negative log-likelihood by an exponential
penalty term that depends on the sub-trajectory length (¢) and
on the total length (7") of the trajectory as follows:

penalty(t) = 2t/T — 1. “)

The backpropagation of sub-trajectory prediction losses allows
the network to adjust its parameters to correctly estimate the
next BS even when the complete T-long trajectory is not yet
available. Through Eq. (4), higher penalties are assigned as the
number of collected samples, ¢, approaches T'. This forces the
network to become more accurate as the number of samples
increases. Every 20 epochs, the performance of the framework
is assessed using the validation data. The RNN+CNN weights
and the combination parameter () are extracted and saved if
they outperform the previously saved ones in terms of vali-
dation accuracy. Otherwise, an e-greedy approach is adopted,
see, e.g., [16]: with probability € = 0.3 the training continues
from the weights computed in the last iteration, while with
probability 1 — ¢ it restarts from the previously saved network
parameters. Besides, every 20 epochs the artificial training
examples used to balance the dataset are re-computed. These
combined actions increase the generalization capacity of the
framework as during each training round (20 epochs) the
dataset is re-populated maintaining all the real training data,
while adding different artificial examples.

Algorithm 1 Deep learning framework: training process.

- num_epochs 100, ¢ < 0.3, max_val_accuracy + 0;
for j < 1 to (num_epochs/20) do
- add training trajectory examples — Section II-E;
- extract training sub-trajectories;
for jj <— 1 to 20 do
- split the set of sub-trajectories in batches with
batch_size = 64 examples each;
for all batches do
- forward propagate the input — Section II-F;
- compute the prediction error using penalty in (4);
- backpropagate the error through the network;
- assess prediction performance with validation set;
- val_accuracy < accuracy on the validation set;
if val_accuracy > max_val_accuracy then
- save network parameters (weights, biases, 7);
- max_val_accuracy < val_accuracy;
else if random(0, 1) > ¢ then
- restore previously saved network parameters;

III. EXPERIMENTAL MOBILITY SETUP

We consider an urban 5G scenario in the center of the
city of Cologne (900 x 700 square meters), with 5G enabled
vehicles that move around while being continuously connected
to the 5G network. The mobility is emulated with SUMO,
an open-source traffic simulation suite that allows generating
the movement of emulated users around a predefined city
road map, and extracting the needed metrics [12]. BSs are

deployed on a grid topology, and the mobility area is covered
with hexagonal 5G cells with a radius of 40 m, each with
a BS in its center. With this topology, each BS has a total
of Npg = 6 neighboring BSs, and depending on the specific
road links morphology, a vehicle exiting from the coverage
area of one BS, can visit a subset of them, i.e., there are n
possible next BSs, with n € {1,...,6}. Note that the 5G
communication protocol stack is not emulated, as it is not
needed for the purpose of position tracking. We only consider
the link establishment phase, as detailed in the next section.

A. Channel model for user-BS association

For the wireless link between the vehicles and the BSs, we
consider the mm-wave channel model of [17]. At every point
in time, each vehicle (user) connects with the BS providing
the best communication conditions, measured in terms of
path loss (PL). Indicating with d the distance between the
transmitter and the receiver, and with A/(0,02) a Gaussian
random variable with zero mean and variance o2, we have:

PL(d) = p1 + p210log;o(d) + ¢ [dB], (5)
¢ ~N(0,0%) [dB]. (6)

The channel parameters are set to p; = 61.4, po = 2 and
o = 5.8 dB, as defined in [17] for the 28 GHz LOS model.

For the user association, a simple hysteresis mechanism,
with parameter ep, is considered. Specifically, a handover is
performed to a new BS only if the power received from this
new BS exceeds that received from the serving BS by an
amount greater than ep = 2 dB.

B. Vehicle location information acquisition

High positioning accuracy is a key requirement for 5G
systems, and cellular network based positioning in the three
dimensional space should be supported with accuracy from
10 m to less than 1 m, depending on the application [18],
[19]. Network based positioning was considered as an op-
tional feature in previous generation cellular systems and was
implemented mainly for emergency calls, through different
techniques [20]. Among them, the ones that provide the
highest accuracy are based on trilateration and triangulation.
The former relies on time of arrival, time difference of arrival
or received signal strength metrics, while the latter exploits
the angle of arrival (AoA) of the received signals. These
techniques entail the combination of the measurements from
three different BSs. Instead, in 5G networks, the use of two
dimensional antenna arrays with the introduction of massive
MIMO enable two dimensional terminal positioning by just
using a single AoA measurement [21].

We emulate such single BS AoA positioning approach by
processing the x-y traces extracted from the SUMO simulator
to obtain the angular information. We add white Gaussian
noise to the extracted data to account for estimation errors.
Specifically, indicating with hpg the height of the BS, the
azimuth («) and elevation () components of the AoA are
obtained as follows, see Fig. 2,

AT = Tyser — Tps +w, w ~ N(0,02), (7)
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Fig. 2: Azimuth («) and elevation (/3) angles that identify the
position of each vehicle inside the (serving) cell. The relative
coordinates of the vehicle with respect to the BS are indicated
with Az and Ay. 90-degree angles are drawn in violet.
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We set hgs = 8 m and 0, = 5/3 m in our simulations,

accounting for positioning errors of up to 5 meters (£30,,).

IV. PREDICTION PERFORMANCE

We trained the proposed mobility prediction framework
using 24 hour long SUMO mobility traces, acquired with a
granularity of one second. Trajectories are grouped based on
the current serving BS and labeled with the next serving BS
identifier, using the user-BS association procedure described in
Section III-A. Each of the 196 BS in the deployment obtains
a trajectory dataset from the radio measurements gathered
within the radio cell, that is used to train and evaluate the
NN-MC mobility predictor for that BS. Trajectory data is split
as follows: 80% for training, and 20% evenly divided between
validation and test sets. Note that although the architecture is
the same for all the BSs, the NN weights and the combination
parameter v are independently adjusted during the training
processes, and are in turn BS specific.

The proper MC order is selected by evaluating the next
radio cell prediction accuracy obtained using the MC block
only, with different N values. As can be seen from Fig. 3,
the best choice is N = 2, as using higher MC orders does
not lead to any noticeable accuracy increase. Note that if the
number of previously visited cells M at time ¢ is smaller than
N, the prediction is performed by training a MC with order
M < N. The case when a single BS can be reached form the
current BS is also shown in Fig. 3 for completeness: for it, as
expected, the prediction accuracy is always 100%.

In Fig. 4, we show the hard-decision accuracy obtained by
averaging the results achieved by the 196 NN-MC classifiers,
grouped based on the number of BSs in their handover set
(n = 2,3,4). For comparison, we also report the accuracies
achieved separately by the MC classifiers and NN classifiers

(i.e., RNN and CNN jointly trained without the MC contri-
bution). We do not report the cases when the handover set
contains more than four BSs because they rarely occurred,
and hence we could not collect enough data for reliable
training and assessment. As expected, the NN and the NN-MC
approaches outperform the state of the art MC classifiers,
proving the importance of collecting users’ positions within
the serving cell to estimate the next serving BS, rather than
only relying on the sequence of previously visited cells. The
NN-MC approach, based on the combination of these two
types of information, achieves the highest accuracies. In all
the cases, the average accuracy is greater than 88% starting
from four seconds before the handover and remains above 82%
until six seconds before, which represents the average time the
users remain inside a cell.

V. CONCLUDING REMARKS

In this article, we have proposed a decentralized technique
for the estimation of mobility trajectories in 5G vehicular
networks. Our objective was to predict, with high accuracy,
the next serving BS a few seconds before the handover occurs.
Such estimates are computed by each BS by processing the
radio signals from its connected users. A prediction framework
combining neural networks and Markov chains is put forward,
detailing its design and proposing a novel training approach
that effectively copes with under represented trajectories. To
assess the suitability of our algorithm for an urban environ-
ment, mobility trajectories of vehicles were collected through
the SUMO mobility simulator for the city of Cologne, con-
sidering a deployment with 196 base stations and more than
50 thousands mobile users. The final results confirm the effec-
tiveness of the proposed technique, showing accuracies greater
than 88% for predictions performed four seconds before the
handover. Our approach can be easily adapted to differing sce-
narios in terms of 5G network topology and vehicles’ speed.
The vehicle position acquisition rate can be changed based
on user/application needs, without any modifications to the
algorithm, and is only constrained to the available computing
power at the network edge. In any setup, a hyper-parameter
selection phase should be performed to adapt the prediction
framework to the specific scenario. Our technique can be
utilized in conjunction with resource allocation algorithms,
e.g., to proactively allocate communication and computing
tasks prior to the actual handover events. Proactive strategies
are expected to enhance the quality of service experienced by
the users, while improving the way in which network resources
are assigned. Investigation on this front is left for future work.
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