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Abstract—Static spectrum allocation policies allied with the
increasing demand for higher data rates stimulated the pursuit
of alternative spectrum allocation strategies. In this context,
Opportunistic Spectrum Access (OSA) has been considered an
alternative to allow licensed portions of the spectrum to be shared
with unlicensed users. OSA requires unlicensed users to identify
unused portions of the spectrum for opportunistic access that
minimizes possible interference with the licensed users. Accurate
mechanisms to avoid interference and improve the spectrum
usage is highly desirable. This work investigates the performance
of a traditional Hidden Markov Model (HMM) predictor where
the licensed traffic follows a Poisson distribution. The results show
that, under the evaluated settings, traditional HMM predictor can
improve spectrum usage up to 15% at the expense of a high rate
(≈ 50%) of inaccurate forecasts of idle periods. Based on these
results, this paper proposes two techniques to optimize prediction
performance and reduce inaccurate forecasts rate. Using the
proposed enhancements inaccurate forecasts rate was reduced
to only 6%. An additional benefit was observed when reducing
collision with the licensed user, that is an improvement in the
amount of slots effectively used by the unlicensed users from
15% to 23%.

Index Terms—Hidden Markov Model, opportunity forecast-
ing, Poisson Distributed Traffic, Cognitive Radio, opportunistic
spectrum access.

I. INTRODUCTION

Numerous spectrum usage measurement studies have been

conducted [1]–[3] in the past showing that some frequen-

cies are barely or eventually occupied by the licensed users

(a.k.a primary user (PU). As a consequence of the static

allocation, where each service has one reserved channel, there

is a spectrum shortage for new services. Cognitive Radio

(CR) emerged as an alternative technology to deal with the

spectrum scarcity problem as it enables nodes to perform

Opportunistic Spectrum Access (OSA), allowing coexistence

with other users in the same frequency without interference.

Modeling PU’s behavior is the key topic to achieve collision-

free opportunistic communications. In order to characterize the

PU traffic in a time-slotted system, spectrum sensing methods

usually employ energy detection (ED) mechanisms [4]. Such

strategies enable unlicensed secondary users (SU) to employ

cognitive techniques to share the same frequencies with PUs

and improve spectrum usage.

Hidden Markov Models (HMM) have been used to perform

spectrum prediction in several network environments [5]–

[9]. Most of these works predict the occupancy of one slot

ahead, and do not indicate the duration of the idleness. That

characteristic limits the usage performance of the available

slots. In [5], [6], this problem is solved by using a different

channel representation, where each symbol denotes the state

and its duration. By doing that, the input for the HMM-

based predictor consider the busy and idle duration during

the training phase, allowing it to predict the duration of

the next idle period. Machine learning techniques have been

employed for spectrum prediction, such as Neural Networks

(NN) [10]–[13] and linear prediction [14], [15]. As reported

in [16], increasing the intermediate NN layers increases their

computational complexity and accuracy. On the other hand,

the complexity of an HMM predictor is lower than an NN

predictor, making HMM an interesting alternative to predict

spectrum opportunities.

HMMs have been used as a candidate for online predictor,

which means all parameters can be, efficiently, updated before

each prediction. Despite the better prediction accuracy of NNs,

it has been used as an offline predictor as it requires prior

training or retraining each time the PU characteristics changes.

In this work, the performance of a traditional HMM predictor

is evaluated for a PU that follows a Poisson distributed traffic.

The HMM implementation is similar to the one proposed

in [6]. Simulation results show that applying a traditional

HMM incurs in a high number of incorrect predictions, which

may prevent successful opportunistic usage. To overcome this

limitation, this paper proposes two modifications to optimize

the prediction performance and reduce collisions of an HMM-

based predictor where the PU traffic is modeled as Poison

process. More precisely, we remove under-trained HMMs from

the predictor and apply a strategy, called “calibration”, which

reviews predictions with high probability of collision. Results

show that the proposed enhancements allowed to reduce colli-

sion rate to less than 7%. Employing these techniques, we have

obtained better accuracy and performance. As low collision

rate is achieved, the number of used correctly identified

opportunities increased from 15% to 23%.

The following sections are organized as described: Sec. II

formally defines the HMM theory. Sec. III describes the train-

ing and prediction procedures. Sec. IV presents the obtained

results using the traditional predictor. Sec. V proposes two

techniques to improve performance. Finally, Sec. VI closes

the article and presents the future work.



II. HMM THEORY

In order to completely describe the prediction procedure, be-

gin by introducing a formal definition of the HMM used in this

work. For further details, we refer the interested reader to [16]–

[18]. Let Q ∈ {1, 2, ...,Ω} be a variable denoting a hidden

state, where Ω is the total number of states. A hidden state

produces observation symbols, denoted by E ∈ {1, 2, ...Γ},

where Γ is the maximum value for each observation. As a

result, a sequence of hidden states Qn = {Q1, Q2, ..., Qn}
generates a sequence of observations En = {E1, E2, ..., En}.

Considering this, a Hidden Markov Model (HMM) can be

defined as a tuple λ = (π,A,E), where π is a matrix of

initial probabilities with size Ω× 1, A is the transition matrix

with size Ω× Ω defined as

A =
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where an element ai,j ∈ A represents the probability of being

in the state i in a moment t and change to the state j in a

moment t+1. E is the emission matrix of size Ω×Γ and can

be defined as

E =
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where element ei,j represents the probability of being in the

state i and the observation symbol j is generated. Fig. 1 shows

the topology of an HMM for a number of states Ω = 2,

Γ observation symbols for each state Q, and the respective

transition probabilities ai,j and observation probabilities ei,j .

III. HMM SPECTRUM PREDICTION

Spectrum scarcity have fostered the quest for alternatives to

improve spectrum utilization. In this context, a primary user

(PU) may grant channel access to secondary users (SU) under

certain conditions. In general, it is expected that SUs should

be capable of identifying spectrum opportunities based on

spectrum or traffic analysis. This section describes the HMM

prediction procedure used in this work. In what follows, we

consider that the PU and SU operate over a single channel,

where the SU is capable of continuously monitor this channel.

Its main components are depicted in Fig. 2. As shown in the

figure, the spectrum sensing module senses the frequencies that

the radio is locked on and acquires information which is then

passed to the length extraction module to extract features of the

incoming traffic. These features are used initially for training

the HMMs and then stored for latter spectrum opportunities

forecast. A Secondary User (SU) may use the prediction

procedure to obtain spectrum opportunities information to gain

access to channel to transmit its data. The SU may resort to

different medium control access (MAC) strategies coordinate

with other SUs that may attempt to transmit concurrently. This

latter step, however, is outside the scope of this paper. In

what follows, we detail the main components of the prediction

model.

A. Spectrum Sensing

The spectrum sensing module acquires channel information

and produces a binary occupancy output B ∈ {0, 1}, which

is stored for spectrum decisions [19]. In a common use of

this representation 0 denotes that the channel is idle and 1
denotes that the channel is busy in a particular slot. An HMM

defined with two hidden states is traditionally used to model

the behavior of the aggregated PU traffic received by the SU

[16]. The sequence B is obtained by the SU as an aggregated

traffic received from the PU in its radio range. Since the SU

has no knowledge of the traffic pattern, this is considered

hidden in terms of HMM modeling.

B. Length Extraction

The Length Extraction module analyses the binary occu-

pancy output and extracts the lengths of idle and busy states,

forming the sequence D = {d1, d2, ..., dk}, where k is the

length of the sequence D. Being τ the maximum value

observed for a single channel, Iv denote an idle sequence and

Bv denote a busy sequence of length v, for v ∈ {1, ..., τ},

respectively. So, an element in D can take either values Iv
or Bv , creating a sequence D = {..., dn−1, dn, ...}, where

dn−1 ∈ {I1, ..., Iτ} and dn ∈ {B1, ...,Bτ}. For a binary occu-

pancy output sequence B = {0011111100000001110001111},

the length extraction module outputs a sequence D =
{I2,B6, I7,B3, I3,B4}.

C. Training

Before training the system is unable to predict, so all

elements in the output of Length Extraction are directed to the

training block. The training module receives a representative

sequence, called Dtraining , to setup the HMM parameters. For

each idle length Ij , (1 ≤ j ≤ τ) observed in Dtraining ∈
{1, ..., τ}, an HMM is trained using at most S , (S ≥ 1)
sequences with the same size. For the training purpose, Baum-

Welch forward-backward algorithm [20] is used to set the

parameters for all HMMs. The training process produces

Σ = {σ1, σ2, ..., στ} trained HMMs. Note that our interest

is to predict idle states (i.e. spectrum opportunities), hence

we concentrate this work to train HMM to recognize idle

sequences.

D. Memory

Once trained, the output sequence D of the Length Ex-

traction is directed to the Memory block. The sequence D is

continuously available to this block, where the last l symbols

from sequence D are stored in the Memory block. Lets say dn
is the last element of the sequence D in a instant n, then Dn =
{dn−l, ..., dn}. In the same way, Dn+1 = {dn−l+1, ..., dn+1}.

As soon as the preceding block sends another idle symbol, the

previous one is discarded.

E. Prediction Procedure

The prediction block receives the trained HMMs from

the training module and a sequence Dn of length l, which

are used to predict the length of the next opportunity (that



Fig. 1. HMM topology representing a number of states Ω = 2.
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Fig. 2. Predictor system model.

is, dn+1). The likelihood computation follows the procedure

described in [6], [20]. The probability of the state sequence

Qn = (Qn−l+1, Qn−l+2, ..., Qn) occur, for an HMM with

parameters λ, is given by

Pr(Qn|λ) =

n
∏

i=n−l+1

ai,i+1, (3)

where ai,i+1 is the transition probability from state i to state j

for the HMM λ. The next step is to calculate the likelihood of

an observation sequence Dn for the state sequence Qn, which

is given by

Pr(Dn|Qn, λ) =
n
∏

i=n−l+1

Pr(Di|Qi, λ), (4)

with Pr(Di|Qi, λ) being the probability of the state Qi

emitting the symbol Di. After this, the likelihood ζ of an

observation sequence Dn with an HMM with parameters λ is

given by the sum of Pr(Di|Qi, λ) evaluated for all possible

state sequences Qn, defined as

η(Dn, λ) =
∑

∀Qn

Pr(Di|Qi, λ). (5)

This likelihood could be calculated using Baum-Welch for-

ward procedure [20]. In order to obtain an estimation d̂n+1

for the next symbol dn+1, the HMM with higher likelihood is

chosen as the predicted symbol, defined as

d̂n+1 = argmax
i={1,...,τ},λi∈Σ

log η(dn, λi). (6)

IV. SIMULATION RESULTS

This section presents numerical results obtained using the

prediction procedure defined in Sec. III. We study the pre-

diction performance with respect to observation length l and

the number of training sequences S used in each HMM. Each

HMM has been configured to use 2 hidden states. In order to

characterize the PU behavior, five sets of the sequence D with

100,000 samples were generated based on Poisson distribution

with mean of 15 slots. A slot, in the scope of this work,

is the minimum period of time needed to determine channel

occupancy by spectrum sensing. Each sample represents the

duration of an idle or busy sequence of slots. A confidence

interval of 95% was calculated and is properly represented in

the following results. The channel occupation by the PU is

around 50% in this scenario.

To evaluate the prediction performance two metrics were

investigated in this work. Firstly, we calculate the mean-

squared error (MSE) between the prediction and the available

for each slot, defined as

MSE =
1

n

k
∑

i=1

(di − d̂i)
2, (7)

where k is the number of predictions, di the length of available

slots in the symbol i and d̂i is the output prediction. This

metric aim to measure how distant a prediction is from the

available number of idle slots. The second metric is the

collision rate, that measure how many predictions generate

collisions with PUs, i. e., a prediction d̂n+1 is longer than



the available number of idle slots dn+1. So, we can define a

collision P (n) as

P (n) =

{

0 if d̂n+1 ≤ dn+1

1 if d̂n+1 > dn+1

. (8)

Therefore, for each P (n) we can calculate the collision rate

as

C =

∑n

i=1
P (i)

n
. (9)

Both metrics were evaluated varying the length of the eval-

uation sequence l and also varying the number of training

sequences S provided for each HMM.

The prediction performance is shown in Fig. 3, varying

the length of the evaluation sequence (as well as the training

sequence) in the interval of 1 ≤ l ≤ 20. As we can see, the

MSE is around 95 for values l ≥ 7. On the other hand, for

values l < 7, the performance starts degrading, reaching 170
for l = 2. When l increases, collision rate remains in the same

level, achieving the best value of 50.85% for l = 10.
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Fig. 3. MSE and Collision Rate varying the length of evaluation sequence l

The number of training sequences provided to the HMM

also could influence the predictor performance. The results

using from 10 to 100 sequences to train each HMM are shown

in Fig. 4. The better results for both parameters were obtained

using 50 sequences for training.

All idle slots in the elements of the sequence D can be

grouped in three categories: idle slots that have been correctly

identified by the HMM predictor; idle period which has not

been identified by the HMM and are wasted; overestimated

idle slots. This last category we call as "collision" and its

use by the SU may interfere with the PU. Fig. 5, depicts

the possible situations and represents each group of slots.

Potentially used slots are the ones that would be used whether

this prediction procedure is implemented and d̂n+1 ≤ dn+1.

As shown in the figure, when predicting d̂n+1 = I4, four slots

are potentially used. Potentially unused slots are the left slots
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Fig. 4. MSE and collision rate for each quantity of training sequences.

in this idle period, i.e, tree out of seven are potentially unused.

Finally, when the d̂n+1 > dn+1, all idle slots are counted as

potential collisions.
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Fig. 5. Idle slots usage when prediction do not result in collision and when
it results in collision.

Each idle or busy duration is denoted by one symbol

that represents its type and duration, for example, in Fig. 5,

I5 represents an idle period of five slots and B6 a busy

period of six slots. As an initial analysis, we verified how

collisions are distributed for each predicted idle duration. The

probability of collision per predicted idle duration is shown

in Fig. 6. Collisions occur mainly when d̂n+1 > I15, and

as can be seen in Table I, which represents 89.86% of all

collisions. Predictions where d̂n+1 ≤ I15 generates 10.14% of

all collisions. A residual amount of collisions occurred when

the predicted symbol is d̂n+1 ≤ I10.

Based on the results presented in Fig. 6 and Table I, the most

part of collisions occur when predicting d̂n+1 ≥ I15, therefore

any performance improvement method must deal with those

predictions. To do so, we have analyzed how changing those

predictions affects MSE and collision rate.
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Fig. 6. Collisions per predicted idle duration in number of slots.

TABLE I
COLLISIONS PER PREDICTED IDLE DURATION IN THE HMM PREDICTOR

Predicted Idle Duration in Slots Probability

1 ≤ d̂n+1 ≤ 10 0.0086

11 ≤ d̂n+1 ≤ 15 0.0928

16 ≤ d̂n+1 ≤ 20 0.2502

21 ≤ d̂n+1 ≤ 25 0.2663

26 ≤ d̂n+1 ≤ 30 0.3312

31 ≤ d̂n+1 ≤ 35 0.0509

V. ENHANCEMENTS

In order to lower MSE and collision rate presented in

the Sec. IV, we have studied the effects of two changes:

remove under-trained HMMs from the predictor and reducing

prediction with high probability of collisions. We show that

the benefits of reducing collisions also includes a higher usage

of idle slots for the SU.

Under-trained HMMs in a predictor can lead to unbalanced

probabilities, which means the predictor could be influenced

by that HMM. So, training control aims to remove under-

trained HMMs from the predictor, i.e., do not use HMMs

for prediction of symbols Di ∈ {1, ..., τ} that has less than

S occurrences in Dtraining . The results using the modified

predictor, where all under-trained HMMs were removed, are

depicted in Fig.7. This change has reduced the collision rate

and MSE for all length of evaluation sequence, achieving

the better result using l = 10. For 1 ≤ l ≤ 6, a linear

behavior of MSE was observed when using the modified

predictor when the traditional predictor expressed an expo-

nential characteristic. When the evaluation sequence becomes

shorter, the predictor becomes more susceptible to unbalanced

probabilities. Besides the reduction on the collision rate, the

MSE reduced to less than 30% (best case), meaning that the

predictions are much closer to the current idle duration.

A. Calibration

In this section we analyzed the influence of the predictions

with high probability of collision. Let us consider an initial

prediction of d̂n+1. Then, if d̂n+1 ≥ c, where c > 0, is

constant calibration value, the new prediction for the next

slot becomes d̂n+1 − c. Otherwise, the prediction remains un-

changed d̂n+1. The results are shown in Fig. 8. The calibration

was able to reduce the collision rate up to 6.4% with c = 13,

in contrast with 50% using the traditional predictor. When
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Fig. 7. MSE and collision rate for predicting using under-trained HMMs and
removing under-trained HMMs.

c > 13, the overall performance starts degrading. Despite

the increase in the MSE, no side effects were noted. Using

calibration with the traditional predictor also reduce collision

rate, but the better results were achieved when using the

two proposed techniques simultaneously. A trade-off could

be established here. When SU observes high collision rate,

it could increase c in order to reduce collisions. SU should

increase c until collision rate increase, achieving the better

calibration.
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Fig. 8. Reducing predictions for symbols with high collision probability.

Beyond the advantage obtained in the collision rate, remove

under-trained HMMs and applying calibration brings another

improvement for the SU. As presented in Fig. 9, the number of

potentially used slots has increased reached 47% of the avail-

able idle slots, against 30% without any modifications (upper

graph). Another improvement is shown in the bottom graph,



where the number of slots classified as potential collision was

reduced from 46% to 9%. This leads to energy consumption

reduction as SU stops colliding with PUs. The middle graph

shows that potentially unused slots has also increased, but it

has a neutral effect since SU and PU are not affected when it

occurs.
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Fig. 9. Slot usage overview.

VI. CONCLUSION

In this work a traditional HMM predictor is used to perform

opportunity forecast in wireless networks. This predictor aim

to identify white spaces that may be used for opportunistic

access. We consider that the PU behavior follows a Poisson

distribution. Simulation results show that applying a traditional

HMM incurs in a high number of incorrect predictions, which

may prevent successful opportunistic usage. To overcome this

limitation, this paper proposes two modifications to optimize

the prediction performance and reduce collisions of an HMM-

based predictor where the PU traffic is modeled as Poison

process. More precisely, we removed under-trained HMMs

and used a “calibration strategy”, which consists in review

predictions with high probability of collision, to reduce the

collision rate to less than 7%. The results have shown that

reducing collisions also improves the amount of slots effec-

tively used by the SU. This may help reducing SU’s energy

expenditure. We also established an optimization procedure to

find the optimal parameters for training and prediction in an

HMM-based predictor. Future work will consider other traffic

patterns and analyze the impact of channel occupation on the

prediction performance. For comparison purposes, future work

will also consider the evaluation of other methods of prediction

(such as NN) for a performance-complexity analysis.
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