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Abstract—Future mobile networks are rightly expected to
face the prospect of limited available resources. Continuous
technological advances and growing number of mobile devices
highlight the importance of further improving the performance
of mobile networks. User mobility poses technical problems in
network management. It is essential to ensure a satisfactory
level of quality of service for users. To achieve this goal, self
organizing networks (SONs) are potential solutions to fulfill
the requirements of users using learning algorithms. In this
paper, we propose an intelligent mobility model to predict
future trajectory of the mobile user in mobile networks. The
proposed approach has two main parts, including mobility data
preparation and user mobility prediction. Our primary focus is
on providing a carefully tailored mobility data from raw mobility
datasets using line simplification techniques. Next, we use the
accurately prepared data for learning user mobility behaviour
and predicting user future trajectory using recurrent neural
networks and its variants. Simulation results show a substantial
decrease in execution time from 4616s to 932s for the best case.
The proposed learning approach obtains a loss value of 0.10 using
a model based on long short term memory (LSTM).

Index Terms—trajectory prediction, neural networks, mobile
networks, data reduction

I. INTRODUCTION

Rapid technological advances in many areas, such as the
wildly popular paradigm of internet of things (IoT), can
provide plenty of golden opportunities for users in the mo-
bile networks. However, user mobility can cause a range of
problems such as increase in call dropping, increase in number
of handovers, limited available bandwidth, connectivity issues
and in general quality of service degradation. Mobile users are
entitled to expect a reasonable level of quality of service (QoS)
in the network. Therefore, it is crucial to further improve the
network performance and provide high level services to meet
the demands of the users in the mobile networks.

User mobility prediction as a part of intelligent mobility
management is a promising solution to address the men-
tioned issues. This concept is defined in the context of self-
organizing networks (SONs). These networks tend to eliminate
the manual efforts in configuration, optimization and healing
in the network management. Their focus is on developing fully
automated functions for different components and tasks in the
network. To achieve this objective, learning algorithms can

be fully exploited to automatize the network management.
Machine learning and deep learning algorithms can learn from
the data and optimize the performance based on the past
experiences [1].

From another stand point, there is a huge growth in the
number of mobile devices in recent years. It is anticipated that
there will be 5.7 billion mobile users by the year 2023 [2].
This rising trend in mobile users with mobile devices leads
to an inevitable generation of mobility datasets. This huge
amount of data can be used to broaden our understanding of
users’ needs and users’ mobility behaviour. We can extract
mobility patterns for predicting future trajectory of the user
based on user’s movement history. It is worth noting that the
generated mobility data is a raw data that may contain noise
and redundancy to some levels. It is highly recommended
to apply some preprocessing techniques to the raw data and
prepare the data before using it [3].

A large number of research areas can gain maximum benefit
from predicting user mobility trajectory in the network. When
network has the information of the user future locations,
it can exploit this knowledge to better provide services in
advance. It can be employed in passive resource allocation,
handover management, passive bandwidth reservation, call
admission control and optimized routing. As an example, for a
mobility-aware handover management, network can complete
handover preparation steps in advance. When handover is
triggered, the procedure starts from the execution phase. This
can significantly reduce the handover signalling overhead and
latency [4].

In this paper, we propose an approach for user trajectory
prediction. The proposed approach has two essential parts.
First, we introduce an initial data preprocessing step to provide
an appropriate dataset as an input for the model. This step
is focusing on removing irrelevant data from the dataset and
keeping only determining data points. We want to provide an
analysis of different data reduction techniques. Second, we
feed the prepared data to the mobility model to predict the
future trajectory of the user. This model is based on recurrent
neural network (RNN), long short term memory (LSTM)
and gated recurrent unit (GRU). In the following, a part of
recent related works are provided in Section II. Section III



presents the proposed approach. Finally, simulation results and
conclusion are provided in Sections IV and V, respectively.

II. RELATED WORKS

A wide range of works in the literature have studied user
mobility prediction in mobile networks from different aspects
[11, [3], [5]-[7]. From one point of view, we can divide these
works into two popular categories: Markov-based approaches
and learning-based schemes.

A large part of existing works relies on Markov mod-
els. In [8], authors proposed a trajectory prediction method
based on hidden Markov models. They considered the impact
of changing speed and introduced a self-adaptive algorithm
for selecting parameters. Also, in [9], authors proposed an
approach to predict the destination and mobility path using
a second-order Markov model. However, it is shown that
Markov models fail to effectively capture the long-term data
dependency in the user past trajectories [10].

Moreover, there are numerous works based on learning
algorithms in the literature for user mobility prediction. In
[11], authors used deep learning algorithms such as neural
networks, principal component analysis (PCA) and GRU for
providing an accurate prediction for mobile IoT devices. An
LSTM-based prediction approach was proposed in [12] to
predict user’s mobility based on mobility patterns. They also
introduced a new parameter to control data transfer during the
training stage. Another LSTM-based model was proposed in
[13] for vehicle trajectory prediction. This method can make
prediction for one to five seconds ahead. In [14], authors pro-
posed an RNN-based model to predict the next location of the
user. They introduced time/space-specific transition matrices
to provide a novel spatial temporal prediction. Authors in [7]
discussed location prediction in vehicular ad hoc networks
(VANETs). They mentioned neural networks and machine
learning algorithms as possible techniques to predict the future
location of the vehicle. They concluded that artificial neural
networks (ANNs) do not perform very well in terms of time
complexity. Furthermore, they fail to learn the long-term data
correlation between past movement of the user and accordingly
result in poor accuracy performance.

Therefore, we need to introduce a model that can take
advantage of neural networks and address the time complexity
issue of them. We need a mobility model that considers the
data correlation in the user trajectory to improve the accuracy
performance. Moreover, we can deploy new data preprocessing
techniques to effectively reduce the time complexity of the
mobility prediction model.

III. PROPOSED APPROACH

In this section, we present our proposed approach. We
propose to deploy line simplification methods to reduce the
irrelevant data from a big dataset and keep only the appropriate
data for the mobility learning model. Next, we use an RNN-
based model to find the repetitive patterns in the data and
predict the future trajectory of the user. Details regarding these
two steps are provided in the following.

A. Data reduction

The primary step of the mobility learning is choosing an
appropriate type of mobility data as movement history of
the user. There are several types of mobility datasets such
as GPS, Wi-Fi, cellular and location-based social networks
datasets. We chose GPS data since it has the highest location
accuracy. GPS dataset contains user location information in the
form of geographical coordinates (i.e., longitude and latitude).
However, raw GPS dataset is composed of user location
information at almost each second with a high sample rate.
All of this data is not necessarily needed for our purpose.
Removing the irrelevant data results in almost the same
performance accuracy but with much lower execution time.
Fig. 1 depicts a mobile user GPS trajectory. The black line
represents the actual path of the user and the raw information
of user trajectory. Red points on the line are the points that
we keep from the dataset and remove the rest. In this way, we
have a similar trajectory with much fewer number of points.

There are several techniques to eliminate the unnecessary
data. Here, we propose to apply line simplification methods
to the raw trajectories of users. The core concept of line
simplification approaches is to keep only the part of data that
is essential to form the trajectory and delete the rest of the
data points between them. Here, we provide a comprehensive
analysis regarding some of the preprocessing techniques for
data reduction and evaluate the impact of them on mobility
learning.

Objective: Given the trajectory of user b with the
length of n [C; — Cy — C5 — ... = C,,], we want to con-
vert it to a simplified trajectory with the length of m
[C; — Cy — C5 — ... » Cp], where m < n.

In the following, definitions of five line simplification meth-
ods are provided. It is worth mentioning that we hereafter refer
to a geographical coordinate of GPS data as a location in this
paper.

o nth Point: It is a naive algorithm that is relatively simple
and fast. It does not involve forming any mathematical
dependencies with the future or past locations in the
user trajectory. Given a predefined number of consecutive
locations (i.e., user trajectory), this algorithm keeps only
the nth location point plus one random point in the set
and removes the rest.

o Reumann—Witkam (R—W): Unlike nth point method,
this algorithm considers the correlation of consecutive
data points locally. It divides the trajectory into some
sections and investigates neighbour locations based on a
given threshold. In each section, it forms a line with the
first two points in the trajectory. All the points in the
section that are closer to the line more than a predefined
threshold are deleted from the trajectory. This process is
iteratively done for all the sections in the dataset.

e Lang: This method divides the trajectory into several
segments including neighbour locations and considers a
search region for each segment. For each point, if the
perpendicular distance of its neighbour point is more



Fig. 1. User raw GPS trajectory. Red points represents the necessary points
that forms the path.

than a predefined threshold, search region gets smaller
excluding the last point of the segment. Segmentation is
based on the first and last points in the current search
region. This procedure is repeated for all the search
regions in the entire trajectory.

o Visvalingam—W hyatt (V —W): This approach defines
effective areas for each location in the trajectory accord-
ing to the consecutive neighbours. Given the points in the
original dataset, effective areas for them are calculated. At
each iteration, any point in the dataset with the smallest
effective area is removed from the trajectory.

e Douglas — Peucker (D — P): It is a popular approach
that produces a highly accurate line as an output. How-
ever, it has a high time complexity. D-P has a global
routine in which the whole user trajectory is considered
during the data reduction procedure. It takes the first and
last points of the trajectory and draws a line. The farthest
point form the line is selected. Then, a line is defined
based on the first and farthest points. In this range, any
point lower than a predefined threshold from the line is
removed. This procedure is repeated for all the locations
in the trajectory.

All the mathematical details about these techniques are
provided in [15]-[19]. We deploy these techniques to prepare
the dataset (i.e., reduced version) for the next step which is
user mobility behaviour.

B. Learning user mobility behaviour

Objective: Given the modified trajectory of the user b
[C; = Cy = C5 — ... = Cp], we plan to predict the future
trajectory of the user for the next m time steps [Cryi1
= Crt2 = Crgz = oo = Crgem-

In this section, having the prepared movement history as
prior knowledge, we feed this data to an RNN-based model
to predict the future trajectory of user. The core concept is
to take the user past locations and investigate the correlation
between them in order to find repetitive patterns and predict
the future trajectory.

Cy Cy C3 e Cm
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Fig. 2. Overall procedure of the proposed method.

For an RNN, given Cj(t) as the past trajectory of the user
b at time step ¢, hidden layer function h(t) and output vector
y(t) are obtained by

h(t) = tanh(b+ Wh(t — 1) + UCy()), (1
y(t) = softmax(by + Vh(t)), (2)
where W, U, V are weight matrices and b, b, are bias vectors
[20].
The overall steps to process the prior information of user
past location with an RNN are summarized as follows:
Step 1: We take the prepared data [C} — Cy — C3 — ... —

C)n], which is the past mobility trajectory of the user, as the
input of the mobility model.

Step 2: We initialize the weights and biases in the neural
network.

Step 3: For the forward direction, at each step, we complete
the forward pass of the network for hidden layers.

Step 4: We complete the forward pass for the output layer.
Step 5: We evaluate the prediction error.

Step 6: The calculated error is backpropagated to updated
the parameters of the network.

Step 7: We have the future trajectory of the user for the
next m time steps ahead [Cr41 — Ci2 = Cs — .. —
Cm—i—m]-

Unfortunately, RNNs face the major problem of vanishing
or exploding gradients in which the model error increases
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Fig. 3. Impact of different thresholds on (a) data reduction, (b) execution time and (c) model performance.
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Fig. 4. Applying line simplification technique to the user trajectory to choose
the necessary data points.

dramatically after a number of iterations. To solve this issue,
gated RNNs are introduced including GRUs and LSTMs [20].

The key difference is the fact that GRU adds two new gates
to the network: update u(t) and reset r(t) gates. These gates
help the model to only keep the useful information about user
past locations. The activation layer function in this case is
given by

h(t) = u(t — Dh(t — 1) + (1 — u(t — 1))
o(b+ UCy(t — 1) + Wr(t — 1)h(t — 1)),

where u(t) and r(t) are update and reset gates.

In LSTM, the main difference is adding a cell state unit s(¢)
and a forget f(¢) gate to the model. In this case, the activation
layer function is expressed as

h(t) = tanh(s(t))q(t),

where s(t) is cell state unit and ¢(¢) is LSTM output.

Fig. 2 represents the overall procedure of the proposed
approach. First, we take the raw data with the length n and
convert it into a optimized data with the length of m using
line simplification techniques. Next, we feed the prepared data
to the RNN-based pattern learning step. Finally, we have the
predicted future trajectory of the user in the output.

3)

“4)

IV. SIMULATION RESULTS

In this section, we conduct a series of experiments to
analyze the impact of different line simplification methods

TABLE I
APPLYING SIMPLIFICATION METHODS TO USER TRAJECTORY.

Methods ~ Threshold Reduction Time (s)
V-W le —4 2087853 — 121294 4.70
R-W le —4 2087853 —670009 10.53

nth Point n=3 2087853 —695952 0.03
Lang le — 4 2087853 —21420 5.72
D-p le — 4 2087853 — 837544  2239.16

on user mobility learning. We used a GPS dataset called
“Geolife” for our experiments [21]. This dataset contains GPS
trajectories (i.e., longitude and latitude) for 182 users. Geolife
was collected over a period of almost five years (2007-2012).
The length of trajectory (amount of available data) varies from
user to user. We use these trajectories as movement history
(i.e., prior knowledge) to learn the mobility behaviour of the
user in order to make future location prediction. We employed
Keras library (i.e., open source library in Python) to conduct
our simulations, using an Intel core i7-6700k CPU, a 32 GB
RAM and 4.00 GHz. In the following, first, we discuss the
results regarding data reduction step. Then, we investigate the
impact of data reduction on mobility learning.

A. Data reduction

Here, we chose the trajectory of the user number 153
for a period of approximately five years (from July 2007
to June 2012). Table I summarizes the results of applying
simplification methods to the user trajectory. We considered
n = 3 for the naive algorithm and the same threshold for
the other methods. The original data contains 2, 087,853 data
points. The threshold for each method, amount of the reduced
data and execution time for each method are presented in
Table 1. As is shown, all the methods significantly reduced the
amount of original data. D-P has the highest time complexity
in comparison with the other algorithms. For D-P algorithm,
worst case scenario time complexity is o(n?).

Fig. 3 depicts the impact of different thresholds of data
reduction algorithms on three parameters. Fig. 3(a) shows how
data reduction procedure works as we increase the threshold



value. It is shown that data reduces noticeably with higher
thresholds. In Fig. 3(b), we can see the effect of different
thresholds on execution time (i.e., data reduction and mobility
learning steps). Logically, as we increase the threshold and
obtain smaller dataset, the execution time reduces significantly
as well. Lastly, Fig. 3(c) demonstrates that how data reduction
affects model performance (i.e., loss value of the learning
algorithm). It is evident that reducing data for some thresholds
does not result in model performance degradation. However,
for higher thresholds (e.g., le-2, le-1), data reduction has
disruptive effect on the performance. It is reasonable due to
the fact that too much data is removed and much lower data
is fed to the learning algorithm.

Fig. 4 shows a trajectory based on geographical coordinates
(i.e., latitude and longitude). It represents the result of applying
data reduction technique to choose the necessary data points.
Here, we applied D-P algorithm.

B. Mobility learning

Here, we chose a part of the trajectory of the user number
153 for a period of approximately 13 months. We deployed a
network composed of 3 layers with 100 neurons in each layer.
Also, we used a learning rate of 0.001 and deployed Adam
optimizer. Table II presents the impact of each data reduction
algorithm on the performance of user mobility learning. We set
the value of the thresholds in a way that the reduced data has
almost the same size for all the line simplification methods.
This is due to the fact that learning performance is highly
correlated to the amount of data. When we have approximately
the same size of data (length of trajectory) as input for the
learning algorithm, we can compare the effect of different data
reduction approaches on the overall performance. Time refers
to the execution time of the both data reduction and learning
algorithm. In Table II, mean square error (MSE) for the RNN
model is reported. We chose this metric since our work is a
regression-based task. Considering «x, y(x) and y(x) as orderly
input data, real output and estimated output, for m samples
out of k sample, mean square error is calculated by

MSEq,(9)

1k (y(@) — y(2)2. )
=1

This metric gives us an idea of how well the predictor works.
Obviously, lower values of MSE is better and in an ideal
situation MSE is equal to zero. As is shown, for this user,
mobility learning without any data reduction results in 0.16
error loss value in 2245 seconds. Applying data reduction
methods, D-P and Lang obtain respectively the best and worst
performances with 0.12 and 0.23. It is evident that exploiting
a proper data reduction method, not only does not cause
performance degradation but also it may effectively improve
it. This implies that during data reduction phase, some of the
noisy data is removed as well. However, time complexity of D-
P is noticeably higher than other methods. It is worth noting,
the results may be different for a another user with a different
mobility behaviour.

TABLE II
IMPACT OF DIFFERENT PREPROCESSING TECHNIQUES ON MOBILITY
MODEL PERFORMANCE.

Methods Threshold  Reduction  Time (s)  Error
No reduction - — 2245 0.16
V-W 52e — 6 28163 466 0.19
R-W 85e — 6 28185 432 0.22
nth Point n=2>5 28111 448 0.17
Lang 58e — 6 28150 471 0.23
D-P 16e — 5 28115 582 0.12

Next, we want to investigate the impact of each line
simplification approach as a prepossessing step for the three
mobility learning models. Table III summarizes model loss
values and execution times for RNN, GRU and LSTM. It
is shown that LSTM model achieves the lowest error value
among other mobility models. We can see that using data
reduction techniques results in small performance degradation
and in some cases even performance improvement but it can
remarkably reduce execution time.

Fig. 5 shows train and test performances of the mobility
learning model without (Fig. 5(a)) and with (Fig. 5(b)) data
preprocessing. Here, D-P algorithm is deployed as reduction
technique to remove the irrelevant data. As is shown, both train
and test errors dramatically decrease after almost 40 epochs.
It is noticeable that the average test error is much lower when
using prepared data. Also, we can see that the model does not
overfit and trains rapidly.

V. CONCLUSION

In this paper, we investigated several line simplification
approaches as a potential preprocessing step for a mobility
learning model in mobile networks. We proposed to deploy
a line simplification method to reduce the irrelevant data
from a big dataset and keep only the appropriate data for
the mobility learning model. We analyzed the performance
of the five data reduction techniques including nth point, R-
W, Lang, V-W and D-P. Then, we used the reduced version
of data for learning user mobility behaviour. We exploited
RNN, LSTM and GRU models to find the repetitive patterns
in user’s movement history and predicted future trajectory of
the user. Simulations results showed the effectiveness of the
data reduction step. Using reduced data results in mobility
model performance improvement. Moreover, it can remarkably
reduce the execution time of the train and inference phases
since we are dealing with smaller dataset. D-P algorithm
produced the lowest mobility model error performance and the
highest time complexity with respectively 0.10 and 733s while
the model loss and execution time using the original dataset
results in orderly 0.13 and 3057s. Among learning algorithms,
LSTM model results in the most accurate trajectory prediction.
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