
Multi-objective Computation Offloading for Cloud
Robotics using NSGA-II

Rihab Chaari
PRINCE Research Laboratory

University of Sousse
Sousse, Tunisia

rihab.chaari@coins-lab.org

Omar Cheikhrouhou
CES Laboratory

ENIS, University of Sfax
Sfax, Tunisia

omar.cheikhrouhou@isetsf.rnu.tn

Anis Koubâa
ISEP/IPP

Polytechnic Institute of Porto
Porto, Portugal

akoubaa@coins-lab.org

Habib Youssef
PRINCE Research Laboratory

University of Sousse
Sousse, Tunisia

habib.youssef@fsm.rnu.tn

Habib Hamam
Faculty of Engineering

University of Moncton, Canada
Canada

habib.hamam@umoncton.ca

Abstract—With the emergence of cloud robotics, computation
offloading presents a new trend in cloud computing that has been
applied to robots; to provide them with resources for performing
computationally intensive tasks. In most scientific research, the
main objectives behind computation offloading are reducing en-
ergy consumption and minimizing the execution time of robotics
applications. However, these two metrics are conflicting, and
optimizing them simultaneously is challenging. Reducing energy
consumption may lead to a rise in the completion time, and vice-
versa. In this paper, we consider the problem of optimization
of energy consumption and completion time in a cloud robotic
system. We formulated the offloading decision as a multi-objective
optimization problem. We further adapted the Non-dominated
Sorting Genetic Algorithm (NSGA-II) to find a set of Pareto-
optimal solutions. Through simulations, we demonstrated that
our offloading solution can save 80% of the robot’s energy
consumption; and reduce 70% of the application completion time.
We proved also the adaptability of the model against bandwidth
changes.

Index Terms—Cloud Robotics, Computation offloading, Of-
floading decision, Multi-objective optimization, NSGA-II

I. INTRODUCTION

In the last ten years, cloud robotics has emerged as a
promising approach where the combination of the Internet and
remote cloud resources are leveraged to improve the robots’
applications performance by providing them with more capa-
bilities and computation resources [1]. The cloud infrastructure
and the Internet can propose a lot of potential opportunities
to robots, including access to large volumes of data, accurate
remote computation, collective learning, information sharing,
to name a few.

Computation offloading is an approach to migrate the pro-
cessing of computationally intensive tasks from the robot to
external resources to reduce energy consumption and computa-
tion time. Although it can significantly tackle the limitations of
robots in terms of resources, achieving an efficient offloading
solution is still a challenging issue. An efficient offloading
solution should consider two primary conflicting performance
metrics for mobile systems:

• Completion time: From a cloud robotic perspective, the
completion time is the duration between sending data
to the cloud and receiving the result. For computation-
intensive robotic applications, it is crucial to reduce the
execution time and improve their responsiveness. When
the execution time increases for computation-intensive
tasks, the best strategy would be to offload these tasks
to the cloud to leverage its high-speed processing capa-
bilities. However, communication delays will also play
an adversary role in achieving real-time performance.

• Energy consumption: Energy consumption is another
aspect that must be considered in computation offloading.
It is due to both computation and communication. In the
case of a computation offloading scenario, communica-
tion will be the major component for energy dissipation
due to the transmission of heavy tasks (e.g. video stream)
from the robot to the cloud. In the case of local process-
ing, the onboard computation will be the main source of
energy consumption. It is therefore important to make the
best tradeoff to maximize the overall benefit.

Both energy consumption and response time are the most
concerning issues in robotic applications. By computation
offloading, we expect that both energy and time are optimized.
However, in some cases, it is not possible to achieve both
objectives. The optimization of one objective can influence the
other. For instance, cloud architectures distribute the computa-
tion on several data centers, which can save energy. However,
the path traveled between data centers and robots can result
in significant latency and can increase the delay of real-time
applications. This work is motivated by our previous work [2],
in which we designed a distributed cloud robotic architecture
for static computation offloading. The performance evaluation
of the architecture revealed a profit in resource utilization
including CPU, memory, and battery. But, it has increased
the latency because of communication delays between cloud
data centers and mobile robots.

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

978-1-6654-2854-5/21/$31.00 ©2021 IEEE 206

Our main objective is to optimize both the energy consump-
tion of robots and completion time, taking into account the
trade-off between both. In our offloading decision solution, we
aim to consider also the uniformity of the power consumption
of all the robots; since this is beneficial for the durability and
productivity of the set of robots working collaboratively as a
team. The main contributions of this paper are as follow:

1) We model the offloading decision problem as a MOOP.
We defined three objective functions: (1) reduce energy
consumption, (2) minimize completion time, and (3)
guarantee power uniformity among robots.

2) We propose an adaptive version of the Non-dominated
Sorting Genetic Algorithm (NSGA-II) to search the list
of Pareto front, that optimize both energy consumption
and completion time.

3) We propose a new chromosome encoding to present
the offloading decision that takes into consideration the
heterogeneity of the available resources.

The remainder of this paper is organized as follows. In
Section 2, we discuss the system model and the problem
formulation. In Section 3, an adaptive NSGA-II is proposed to
solve the multi-objective optimization problem. In Section 4,
simulations were performed to prove the effectiveness of our
proposed model. Finally, we conclude in Section 5.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we established the network model for a
proxy-based cloud robotic architecture. Then, we introduce the
energy and the time cost. Finally, we define the problem for-
mulation as an optimization of the total energy consumption,
the application completion time, and the remaining power of
the robots.

A. Network Model

We consider a cloud robotic network that contains a team
of robots and cloud servers working collaboratively to execute
a defined application, which are organized in a proxy-based
model, as depicted in Figure 1. The robots communicate
with each other and with the proxy server through wireless
communication, while the proxy communicates with the cloud
servers through wired communication. Each robot defines a set
of n tasks to be executed locally or offloaded to the cloud. The
proxy performs the offloading decision and shares it with all
the roots and cloud servers.

We define the infrastructure I = (R,S), where R is the set
of robots available to accomplish the mission, and S represents
the set of servers available in the cloud. The set of robots R is
presented as R=(R1, R2, ... , RM) with M is the total number
of available robots. The set of cloud servers is presented as
S=(S1, S2, ... , SK) with K is the total number of available
cloud servers.

Each robot is defined as Rm=(IdRm
, CPIRm

, SRm
, VRm

,
PtRm

) with IdRm
is the identifier of the robot Rm, CPIRm

is
the number of clock cycles per instructions, SRm is the clock
speed of the robot processor, VRm is the robot velocity, and
PtRm

is the total available power.

Cloud Layer
Cloud
server1 Cloud

server k

Mobile robots

Cloud
server2

Proxy

Robot1 Robot2 RobotM

Wireless communication

Wired communication

Local
Offloaded

n tasks

Fig. 1. The proposed system model of a cloud robotic network (with K cloud
servers and M robots)

Each cloud server is defined as Sk=(IdSk
, CPISk

, CPSk
)

with IdSk
is the identifier of the server Sk. CPISk

is the
number of clock cycles per instructions. CPSk

present the
number of available core processors.

We define also D the offloading decision vector presented
by D={d1, d2, ... , dn}, where n is the total number of tasks.
Each decision di ∈ D is a tuple (ti, rj) where the task ti will
be executed on resource rj with rj ∈ {IdR1 , IdR2 , ..., IdRm ,
IdS1 , IdS2 , ..., IdSk

}.
In this paper, the robot’s application is modeled into tasks

T={t1, t2, ... , tn} with n the total number of tasks. We present
the set of tasks as a Directed Acyclic Graph (DAG) G =
(V,E). Vertices V represent the set of tasks and edges E
present the execution dependency between tasks. Each edge
ei ∈ E is the link between task ti and task ti+1. We assume
that:

• Task preemption is not allowed: once an agent (whether
a robot or a cloud server) starts the execution of a task,
it must finish it without interruption.

• Each task should be accomplished by a single computing
unit (a robot or a cloud server). If a task requires some
services from other agents, it must be divided into more
tasks according to these requirements.

• All the tasks are available on the cloud servers as Appli-
cation Programming Interface APIs or can be downloaded
from another site or server through a high network speed.

• Each robot is connected to a cloud server. In turn, a single
cloud server can serve the offloading request of more than
one robot. The robot is a mono-task computing unit, while
cloud servers are multi-task.

B. Cost Model

All the parameters required for the definition of the energy
and completion time cost models are depicted in Table I.

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

207

TABLE I
NOTATIONS USED IN ENERGY AND COMPLETION TIME MODELS

Notation Description
CPI The number of clock cycles per instruction
Pex The computation power
N(ti) The number of instructions for task ti
Sr The clock speed of the robot processor
Pmov The movement power
Vr The robot velocity
dc(ti) The amount of data collected for task ti
PData The data collection power
Tr The data transmission rate
Pidle The power when the robot is idle
Sc The clock speed of the cloud server
Ptrans The power used for data transmission
dt(ti) Data to be transmitted to the cloud for completion of task ti
B The network bandwidth
P (ti) The power required to execute task ti
P (rj) The power available on resource rj

The total energy consumed by the robot for executing a task
ti ∈ T is denoted as Etotal(ti), which can be presented by
either Elocal

total (ti) or Ecloud
total (ti). A task should be executed by

a single resource: whether on the robot or offloaded to the
cloud.

Etotal(ti) =

{
Elocal

total (ti) if di ∈{IdR1 , IdR2 , ..., IdRm}
Ecloud

total (ti) if di ∈{IdS1 , IdS2 , ..., IdSk
}

Elocal
total (ti) is the overall energy consumed by the robot for

the completion of task ti. It contains the energy for com-
putation Elocal

comp(ti) (Equation (2)), the energy for movement
Elocal

mov (ti) (Equation (3)), and the energy for data collection
Elocal

Data(ti) (Equation (4)).

Elocal
total (ti) = Elocal

comp(ti) + Elocal
mov (ti) + Elocal

Data(ti) (1)

Elocal
comp(ti) = CPI ∗ Pex ∗N(ti)/Sr (2)

Elocal
mov (ti) = Pmov ∗

√
(x1− x2)2 + (y1− y2)2/V r (3)

Elocal
Data(ti) = dc(ti) ∗ PData/Tr (4)

If the task ti requires from the robot to move from one
location to another, the energy consumed for movement is
presented by Equation (3), where the robot is moving from
the initial point P1(x1, y1) to the destination point P2(x2, y2).
Here, we suppose that all the points are in the same zone
area. Besides, the energy cost of data collection is presented
by Equation (4). In this equation, we consider dc(ti), Tr,
and PData to be the amount of data collected for task ti,
the data transfer rate, and the power used for data collection
respectively.
Ecloud

total (ti) is the energy consumption for offloading task ti
to the cloud. Offloading a task to the cloud brings additional
energy consumption cost: the energy of data transmission to
the cloud Ecloud

trans(ti) and the energy when the robot is idle
during cloud computation Ecloud

idle (ti).

Ecloud
total (ti) = Ecloud

idle (ti) + Ecloud
trans(ti) (5)

Ecloud
idle (ti) = CPI ∗ Pidle ∗N(ti)/Sc (6)

Ecloud
trans(ti) = Ptrans ∗ dt(ti)/B (7)

The total time required to complete task ti is presented by
Ttotal(ti), which can be equal to either the robot completion
time T local

total (ti) or the cloud completion time T cloud
total (ti) ac-

cording to the offloading decision.

Ttotal(ti) =

{
T local
total (ti) if di ∈{IdR1 , IdR2 , ..., IdRm}
T cloud
total (ti) if di ∈{IdS1 , IdS2 , ..., IdSk

}

The robot completion time T local
total (ti) includes the time for

computation of the task on the robot T local
comp(ti), the time

for data collection T local
Data(ti), and the time for movement

T local
mov (ti). Computation in the cloud comes with additional

time: the communication time T local
trans(ti).

T local
total (ti) = T local

comp(ti) + T local
Data(ti) + T local

mov (ti) (8)

T cloud
total (ti) = T cloud

comp (ti) + T cloud
trans(ti) (9)

The execution time of task ti on the robot and on the cloud
are respectively presented by Equation (10) and Equation (11).

T local
comp(ti) = N(ti) ∗ CPI/Sr (10)

T cloud
comp (ti) = N(ti) ∗ CPI/Sc (11)

Equations (12),(13), and (14) are respectively the movement
time, data collection time, communication time.

T local
mov (ti) =

√
(x1− x2)2 + (y1− y2)2/V r (12)

T local
Data(ti) = Data(ti)/Tr (13)

T cloud
trans(ti) = dt(ti)/B (14)

We consider a cloud robotic network, where every single
robot has limited power that we denote as Pm for the robot Rm

with m ∈ {1, 2, ...,M}. An appropriate offloading decision
should balance the power consumption between the robots.
The standard deviation (SD) [3] is the commonly used measure
of dispersion. SD will be used in our model to evaluate the
power level of the robotic network. Equation (15) presents the
formula of the power level, with P̄ is the mean value of the
power of all the robots in the network.

PSD =

√√√√(1/M − 1) ∗
M∑

m=1

(Pm − P̄)2 (15)

C. Problem Formulation

Our main objective is to minimize the total energy con-
sumption, reduce the total completion time, and balance the
remaining power of the robots. The search for an optimal
offloading decision is constrained by multiple conditions, in-
cluding interdependence between tasks and their requirements
in terms of resources, the available bandwidth, etc. Taking
into consideration these constraints, the resource allocation for
tasks in a cloud robotic network turns into a multi-objective
optimization problem.

minimize (Etotal, Ttotal, P
SD) (16)

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

208

where Etotal =
∑
ti∈T

(Etotal(ti)) (17)

and Ttotal =
∑
ti∈T

(Ttotal(ti)) (18)

subject to. Ttotal <= Tdeadline (19)

Tti <= δ ∀ti ∈ T (20)

P (ti) <= P (rj) if di = IdRj
(21)

The formulation of the multi-objective optimization problem
for the proposed cloud robotic model is expressed in Equation
(16). Having a set of available resources (robots and cloud
servers) and a workflow, we aim to simultaneously minimize
the total energy consumption, the completion time, and the
power level. However, this is subject to some constraints:
• Time constraints: The execution time of a task should

not exceed a tolerable execution time δ (Equation (20)).
Besides, the total completion time of the workflow should
not surpass a tolerable deadline (Equation (19)).

• Power constraint: A task is assigned to a robot for
execution only if its power is sufficient to execute it
(Equation (21)).

III. PROPOSED SOLUTION

NSGA-II was proposed by Deb et al. in [4]. It is the most
popular multi-objective evolutionary algorithm. It is mainly
based on two concepts: the nondominated sorting and the
crowding distance. The non-dominated sorting concept is used
to rank the solutions. While the crowding distance estimates
the density of solutions around the set of Pareto front.

The NSGA-II algorithm can be summarized in the following
steps: an initial population is generated based on the problem
constraints. Then, the individuals are sorted in descending
order according to their objective functions. Once the sorting
is completed, individuals are selected based on their crowding
distance and rank. Next, a binary tournament selection is
applied to select individuals to perform genetic operators.
Finally, the offspring population and the current population are
merged and the individuals of the next generation are collected
by selection. The algorithm stops until some stopping criteria
are reached.

Seen the heterogeneity of our system model, we adopted a
new chromosome encoding. In what follows, we present the
proposed new chromosome encoding for our model.

Chromosome encoding. The chromosome encoding, used in
this system model, is composed of two fields: a set of tasks
{ti|1 <= i <= n} and a set of available resources (robots or
cloud servers). The tasks are mapped to the associated resource
according to the encoding string. An example chromosome is
presented in che, which present a problem with ten tasks. We
adopted this chromosome presentation to guarantee uniformity
of energy consumption among robots.

Fitness function: In this paper, we consider three objective
functions: the energy consumption, the total completion time
and the power level. These fitness values are calculated for

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10Tasks

Chromosome c1 c2 r3 r1 c3 r2 c1 c1 c4 r4

Fig. 2. Chromosome structure for a problem with ten tasks

each individual in the population with respect to the constraints
explained by Algorithm 1.

Algorithm 1: Fitness functions calculation

Result: Etotal, Ttotal, PSD

initialization Etotal, Ttotal, PSD ;
define Pc, PM ;
for each task ti ∈ T do

find id resource allocation di ∈ (R ∪ S) ;
if di ∈ R then

Elocal
total (ti) = Elocal

comp(ti)+Elocal
mov (ti)+Elocal

dc (ti);
T local
total (ti) = T local

comp(ti) + T local
dc (ti) + T local

mov (ti)
;
Etotal=Etotal+Elocal

total (ti) ;
Ttotal=Ttotal+T local

total (ti) ;
measure Pcti as the power consumed by task
ti ;

else if di ∈ S then
Ecloud

total (ti) = Ecloud
idle (ti) + Ecloud

trans(ti) ;
T cloud
total (ti) = T cloud

comp (ti) + T cloud
trans(ti) ;

Etotal=Etotal+Ecloud
total (ti) ;

Ttotal=Ttotal+T cloud
total (ti) ;

measure Pcti as the power consumed by task
ti ;

else
continue ;

for each robot Rj ∈ R do
if id == j then

update (PtRj) the power of robot Rj ;
for each task ti ∈ T do

measure
Powermedian =

∑
Rj∈R(PtRj) ;

append Powermedian to PM ;
append Pcti to Pc ;

end
end

end
measure
PSD =

√
(1/M − 1) ∗

∑
ti∈T (Pm(i)− PM(i)2 ;

Genetic operators: As with any evolutionary algorithm, an
initial population is first generated. Then, genetic operators
are used for better search in the space of solutions. For that,
some individuals from the initial population are selected for
crossover. In the crossover phase, we proceed as follows. We
randomly select two individuals from the population. Then,
we generate a sequence of different crossover points, whose
number is determined by the length of the chromosome (see
Equation (22)) to adapt the crossover operation to different

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

209

workflow size. We select crossover points, provided that two
consecutive points are separated by at least 3 genes. Then, we
make the crossover as explained in Figure 3.

NumbrecrossoverPoints = chromosome−length÷10+2
(22)

r1 c2 c1 c3 c5 r2 c4 c1 r5 c2 c1 r3 c3 c5 c1 r4 c1 c2 c4 c4

Chromosome 1

c1 c5 c2 c3 c4 r5 r1 c2 c3 r3 r2 r4 c1 c1 c5 c4 c3 c2 c2 c5

Chromosome 2
Crossover points

r1 c2 c2 c3 c5 r5 c4 c1 r5 c2 c1 r4 c3 c5 c1 r4 c1 c2 c2 c4

Chromosome 1

c1 c5 c1 c3 c4 r2 r1 c2 c3 r3 r2 r3 c1 c1 c5 c4 c3 c2 c4 c5

Chromosome 2

Crossover phase

Fig. 3. Crossover phase in the proposed NSGA-II solution

Once the crossover phase is completed, an individual is
randomly selected for mutation. We count the number of tasks
executed on the robots and those offloaded to the cloud. If the
number of tasks executed locally is higher than the number of
offloaded tasks, we change the chromosome by changing the
execution from the robot to the cloud-based on the mutation
probability.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we evaluate the performance of our multi-
objective offloading decision approach. We conducted our
experiments in Matlab using the parameters presented in Table
II. These parameters were carefully chosen based on research
works [5], [6], [7]. We used robots with 3.2 GHz clock
speed, 20 cycles per instruction, and 8 bits per instruction.
The power consumed by the robot is distributed as follow:
Pex = Pidle = 50 watt, Pdc = 35 watt, Pdt = 80 watt, and
Pmov = 80 watt. The data transmission rate is set to 11 Mbit/s
according to the IEEE 802.11 standard.

TABLE II
SIMULATION PARAMETERS

Parameter Value
Population size 50
Crossover probability 0.6
Mutation probability 0.4
Bandwidth 0.512(Mbit/s)
The number of tasks in the workflow 30-60
The number of available computing resources 10-30
The number of instructions in each task 5*106 − 107

The clock speed of the cloud servers 50-100 Ghz
The allowable completion time interval [4000-8000]ms

Experiment 1: Benefits of the proposed solution
In the following experiments, we define three computation

policies: i.) Computation in the Cloud Policy (CCP) where

the computation of all tasks will be offloaded to the cloud,
ii.) Computation on the Robot’s Policy (CRP) where all tasks
will be executed on robots, and iii.) Computation Offloading
Policy (COP) where tasks computation follow the proposed
offloading strategy. We compared the average fitness value
of the energy consumption and the completion time of our
computation offloading policy with (CRP) and (CCP) policies.
In this experiment, we set the number of iteration to meet
stopping criteria to 300 iterations, and the number of tasks
to 40 tasks. We used 20 robots in the computation on the
robot’s policy, 20 cloud servers in the computation in the cloud
policy, and 10 robots and 10 cloud servers in the computation
offloading policy.

0

200

400

600

800

1000

1200

1400

1600

1800

40 60
En

e
rg

y
co

n
su

m
p

ti
o

n

Number of tasks

COP

CRP

CCP

Fig. 4. Comparison of average energy consumption with CCP, CRP, and COP

From Figure 4, we can observe that computation on the
robots consumes more energy compared to the CCP and COP.
Computation in the cloud and computation using our proposed
solution can significantly reduce the energy consumption since
computation is done remotely and the energy consumed by
the robots for cloud transmission is much less than the energy
consumed for computation. Besides, our proposed solution has
further improvements in energy consumption since it takes into
consideration the completion time of the tasks and the power
uniformity among robots to optimize energy consumption.
Using our offloading solution, we can approximately optimize
80% of the total energy consumption of the robots.

Figure 5 proves that even the completion time is optimized
using the offloading decision approach. We can see that the
completion time in the COP policy is less than the completion
time of the other policies. Using our offloading solution, the
total completion time can be reduced to up to 70%. To process
and transfer tasks in the cloud take less time than computation
on the robots, due to the powerful processing capabilities of
the cloud.

Experiment 2: Adaptability to network bandwidth
In this experiment, we tested the adaptability of our solution

to the changes in bandwidth. In this experiment, we used
5 robots and 5 cloud servers, and 40 tasks. We varied the

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

210

0

5

10

15

20

25

40 60

C
o

m
p

le
ti

o
n

 t
im

e

Number of tasks

COP

CRP

CCP

Fig. 5. Comparison of average completion time with CCP, CRP, and COP

bandwidth value, and we measured the number of offloaded
tasks.

Fig. 6. The adaptability of the NSGA-II based solution to bandwidth changes

The results of the adaptability to the changes in bandwidth
in Figure 6 shows a clear progression in the number of
offloaded tasks with the rise in the bandwidth. This involves
that better bandwidth allows offloading more tasks to the
cloud; therefore increase in the total energy consumption.

Experiment 3: Comparison with the original version of
NSGA-II

In this experiment, we compare the proposed version of
NSGA-II with the original one. For that, we used two metrics:
Best Frontier Members (BFM) and Average Frontier Fitness
(AFF). BFM presents the best fitness value for each OF in the
set of the Pareto frontiers. AFF is measured as the average
fitness value in the list of Pareto frontiers for each OF. In
this experiment, we used 10 robots and 10 cloud servers. We
set the number of iteration to meet stopping criteria to 300
iterations.

From Table III, we can notice that the modified NSGA-II
surpasses the original version of NSGA-II according to the

TABLE III
COMPARATIVE RESULTS BETWEEN THE ORIGINAL AND THE PROPOSED

NSGA-II

Number of tasks BFM AFF
Original NSGA-II Modified NSGA-II Original NSGA-II Modified NSGA-II
Energy Time Energy Time Energy Time Energy Time

40 208.82 0.82 208.89 0.81 228.94 2.27 222.18 2.06
50 230 1.04 228.97 1.04 253.19 2.77 244.41 1.97
60 256.5 1.94 251.39 1.61 271.34 2.9 270.3 2.88
70 370.21 2.38 353.48 2.06 383.41 3.79 377.14 3.33
80 385.85 2.65 375.65 2.63 402.74 4.35 397.42 4.02

BFM metric. The deviation of the original NSGA-II increases
as long as the number of tasks increases. For the first objective
function, the average deviation of the original NSGA-II is
5.6%, while the deviation is insignificant for the second OF.
Besides, AFF in the proposed version of NSGA-II surpasses
the original NSGA-II for the first OF. The average deviation
of the first OF is 5.6%, and 0.36% for the second OF.

V. CONCLUSION

The main objective of this paper is to optimize the robot’s
energy consumption and application completion time. Because
Energy consumption and completion time are contradictory
objectives, we formulated the offloading decision as a multi-
objective optimization problem. Accordingly, we developed
an adaptive version of the NSGA-II algorithm to find the
set of non-dominated solutions. Simulation results proved that
the proposed offloading solution optimizes both metrics (the
energy consumption and the completion time) when compared
with computation on robots or clouds.

Security is an important dimension of performance in all
networked robotic scenarios. Communication and transferring
data between robots and remote computing resources can
result in some security threats, namely: alteration, denial of
service, and information disclosure. In our future work, we
aim to propose an offloading decision that optimizes security
threads in addition to the energy consumption and completion
time.

REFERENCES

[1] Chaâri, R., Ellouze, F., Koubâa, A., Qureshi, B., Pereira, N., Youssef, H.,
Tovar, E. (2016). Cyber-physical systems clouds: A survey. Computer
Networks, 108, 260-278.

[2] Chaari, R., Cheikhrouhou, O., Koubâa, A., Youssef, H., Hmam, H.
(2019, June). Towards a distributed computation offloading architecture
for cloud robotics. In 2019 15th International Wireless Communications
Mobile Computing Conference (IWCMC) (pp. 434-441). IEEE.

[3] Högel, J., Schmid, W., Gaus, W. (1994). Robustness of the standard
deviation and other measures of dispersion. Biometrical journal, 36(4),
411-427.

[4] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. A. M. T. (2002). A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions
on evolutionary computation, 6(2), 182-197.

[5] Afrin, M., Jin, J., Rahman, A., Tian, Y. C., Kulkarni, A. (2019). Multi-
objective resource allocation for Edge Cloud based robotic workflow in
smart factory. Future Generation Computer Systems, 97, 119-130.

[6] Rahman, A., Jin, J., Cricenti, A. L., Rahman, A., Kulkarni, A. (2018).
Communication-aware cloud robotic task offloading with on-demand
mobility for smart factory maintenance. IEEE Transactions on Industrial
Informatics, 15(5), 2500-2511.

[7] Rahman, A., Jin, J., Cricenti, A., Rahman, A., Panda, M. (2017,
December). Motion and connectivity aware offloading in cloud robotics
via genetic algorithm. In GLOBECOM 2017-2017 IEEE Global Com-
munications Conference (pp. 1-6). IEEE.

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

211

