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Abstract— Many communication solutions for low power 

wireless sensor networks (WSN) rely on monolithic 

implementations instead of Operating System (OS) features, 

properties and services. Such OS-less approach implements the 

timings, state-machines and functions into a single software 

including scheduling and synchronization. This means that 

porting a protocol on a new hardware requires the rewriting of 

major software parts and at least the low-level drivers and 

implies full re-testing. Using a low-resource, low footprint Real 

Time Operating System (RTOS) would instead allow for an easy 

and efficient implementation of applications, whose complexity 

is reduced by using the OS features and services who acts as a 

convenient abstraction layer. The general feeling is that, 

however, the presence of the OS would impact the performance 

of the wireless communication, in particular with respect to 

latency and power consumption. This paper describes the 

results obtained by integrating the µ111 RTOS with the ultra-

low power Medium Access Control (MAC) protocol for Wireless 

Sensor Networks WiseMAC [1], [2], showing that the impact of 

the OS in terms of energy consumption and hardware resources 

utilization is minimal if not null. 

Keywords— Wireless Sensor Networks, Network Protocols, 

Real-time operating systems, Performance analysis.  

I. INTRODUCTION 

Initially introduced at the beginning of years 2000, WSN can 
be defined as a self-configured wireless network composed of 
low-power embedded devices with limited computational and 
hardware resources commonly called Sensor Nodes or simply 
nodes. Each node can serve a variety of purposes, such as 
physical data collection (e.g., temperature, humidity), partial 
processing or actuation (e.g., start fan, open door). The data 
recorded from the different nodes is generally routed to a 
single point of collection (sink) that usually acts as a gateway 
to a computer or central server where the data is stored and 
analysed. Minimizing the energy consumption is of critical 
importance in WSN design, since replacing or recharging 
batteries is often impractical. Radio communication is often 
the main source of energy consumption, so a big number of 
dedicated communication protocols have been developed 
during the years to reduce energy usage while guaranteeing 
adequate performance in terms of packet delivery reliability 
and latency. Differently from the huge effort on the design and 
evaluation of communication protocols, the WSN research 
community never adopted a common framework for portable 
and easily repeatable solutions, in spite of the initial popularity 
of TinyOS [3], Contiki [4] or, more recently, FreeRTOS [5]. 
Most of the proposed protocols are based on monolithic 
programs that run on a specific hardware and are able of 
executing a single application. The main argument to avoid 
the use of an OS could be that it would increase the power 
consumption, or it would cause a delay in the protocol 
operations, which can result in an increase in the number of 
lost packets or in the latency. 

In this work we want to show that this is not the case. We 
implemented WiseMAC as both a monolithic program and as 
a process running on µ111 RTOS on the same hardware 
platform. We will show experimentally that differently from 
what one could expect, the introduction of an OS does not 
impact the power consumption nor the overall performance of 
the MAC protocol. Throughout the paper, we will put in 
evidence the several advantages of using an RTOS instead of 
an OS-less implementation, like the possibility of running 
multiple applications in parallel on the same processor (e.g.: a 
communication protocol can be run at the same time as a data 
collection application) or the reduction of the risk of 
introducing bugs thanks to the encapsulation of applications 
in a controlled environment. 

After this introduction, we review some of the past works on 
the subject of Mac protocols for WSN (section II.A) and we 
discuss why we chose WiseMAC for our test; an overview of 
operating Systems for WSN will be given in section II.B. 
Section III describes in a nutshell the µ111 RTOS we selected 
to run WiseMAC protocol, while the details of the protocol 
implementations on the OS-less environment and on µ111 are 
given in section IV. Section V contains our experimental 
analysis and performance evaluation of the protocol in its OS-
based version when compared to the OS-less version, while 
section VI concludes the paper and proposes some future 
research directions. 

II. RELATED WORK 

To the best of our knowledge, this paper is one of the first to 
compare the same WSN protocol in an OS and OS-less 
environment on the same hardware platform. In this section, 
we quickly describe the subject of MAC protocols, we 
motivate why we chose WiseMAC, and we review available 
RTOS for embedded systems and.  

A. MAC Protocols for WSN 

As mentioned in the introduction, WSN have been around for 
more than two decades and saw an intense research activity, 
leading to the development of efficient communication 
protocols and low power solutions. The literature on the 
subject of WSN protocols is vast ([6] to [11]) and includes 
solutions ranging from the management of the MAC layer to 
the routing layer for multi-hop topologies. Our paper is not 
about a novel WSN protocol, so we believe that an exhaustive 
review of the existing solutions is beyond the scope of this 
paper. Interested readers can refer to the cited works and in 
particular to the most recent ones [6, 11] for more detailed 
information on the subject.  
In this section we rather explain the reasons why we chose 
WiseMAC for our experiments.  
Among the different families of MAC protocols, namely 
Time Division Multiple Access (TDMA), Frequency 
Division Multiple Access (FDMA) and Carrier-Sense 
Multiple Access (CSMA). We decided to focus on the latter This project is partly supported by the European Commission under the 
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category because when compared to TDMA and FDMA 
solutions, CSMA protocols present little constraints in terms 
of network synchronization; since this is a first experience in 
porting to an RTOS, we wanted to minimize the impact of 
external factors (e.g., clock management) to the performance 
of the protocol.  
CSMA refers to a family of protocols where nodes sense the 
channel before transmitting any data to avoid packet 
collisions. To send a packet, the node senses the channel and, 
if free, it enters a back-off phase before the transmission 
starts. The duration of the back-off is taken randomly in an 
interval that varies depending on the traffic intensity. Since 
the probability that two nodes will have the same duration of 
the back-off period is small, a collision is unlikely. The size 
of the interval is increased (usually multiplied by 2) with each 
collision to minimize the likelihood of a subsequent collision. 
The key advantage of this solution is the simplicity and 
scalability of implementation. The node can enter the 
network without any configuration. In addition, the CSMA 
solution has almost no overhead and full bandwidth can be 
used to send data. On the other hand, the radio of each device 
must be switched on continuously to receive packets and this 
causes a lot of passive (idle) listening as well as overhearing 
and has a negative impact on power consumption. Different 
solutions have been proposed (see [6] or [11] for detailed 
descriptions), and WiseMAC belongs to this family of 
protocols. The description of how WiseMAC works in 
principle will be given in section IV. As for the reasons why 
we selected this protocol, WiseMAC is a solution widely 
accepted by the WSN community as one of the reference 
protocols in the domain for low traffic applications 
(according to Langendoen [9] “The WiseMAC protocol 

showed a remarkable consistent behaviour across a wide 

range of operational conditions, always achieving the best or 

second-best performance”) and its complete software 
implementation is well-known and available to the authors, 
thus allowing a more complete analysis of the RTOS-related 
aspects. Finally, WiseMAC in its OS-less version, was 
already used and validated in several real-time scenarios and 
thus a good amount of data for comparison was available. 

B. Operating Systems for WSN  

As mentioned in the introduction, many wireless 
communication protocols for WSN were developed as 
monolithic solutions, following an OS-less approach. Early 
approaches to develop protocols in an OS-like way 
supporting time-critical tasks date back to the initial existence 
of WSN and include TinyOS [3], or SensorOS [12]. The 
interest for these solutions has dropped with the advent of 
significantly more powerful hardware and richer software 
environments which allows the execution of more complex 
systems usually indicated as RTOS.  
The term real-time often means that the operating system 
guarantees that the application it runs respects temporal 
constraints, such as durations, deadlines, synchronization, 
etc. In addition, it often provides the tools for building time 
aware services, which can for example notify the application 
in case the system does not meet the temporal requirements.  
The literature classifies RTOS based on characteristics such 
as scheduling algorithms, number of priority levels, threading 
model, interrupt and event handling, objects and mechanisms 
for inter-process communication & synchronisation, time 

constraint specification, memory management, etc. Beyond 
the core characteristics of an RTOS, other features make the 
life of the developers and users easier, such as upgradability, 
data communication, control, monitoring, device interfacing, 
data acquisition and signal processing, database interfaces 
and level of standardisation. Some applications require the 
compliance to specific standards such as POSIX, ISO or 
domain specific standards such as ECSS for space or 
RTCA/DO-17x for aeronautics.  
An interesting survey of potentially relevant OS for 
embedded devices is [18]. A partial list is also given below, 
to illustrate the diversity of solutions found on the market and 
that of the addressed requirements, both from commercial 
vendors and open-source initiatives. 
• ITRON is an open RTOS specification for embedded 

systems for which many implementations exist from 
Fujitsu, Hitachi, Mitsubishi, Miyazaki, Morson, NEC, 
Sony Corp., Three Ace Computer Corp., Toshiba, etc. 

• OSEK-VDX is an RTOS specification adopted by the 
automotive industry for their embedded systems. 

• QNX is a real-time, extensible POSIX compliant OS 
based on a micro-kernel, which was very popular in the 
90s and years 2000 and found a new home in IoT. 

• VRTX is an RTOS certified to RTCA/DO-178B 
standard for mission-critical aerospace systems. It is 
based on a Nanokernel. 

• Wind River VxWorks is a commercial RTOS with a long 
history in the market [11]. 

• Microsoft Azure ThreadX (formerly Express Logic 
ThreadX) is an RTOS available for ST, Microchip, NXP 
and Renesas microcontrollers and others, which smallest 
instance 2KB of code and 1KB of RAM. It is certified 
for IEC-61508 SIL 4, IEC-62304 SW Safety Class C, 
ISO 26262 ASIL D and EN 50128. 

• TI-RTOS, also known as SYS/BIOS features IPv4 and 
IPv6-compliant TCP/IP stack and tools such as DNS, 
HTTP, and DHCP. It includes the support for the 
wireless connectivity using Wi-Fi, Bluetooth LE and 
ZigBee. 

• LynxOS is a UNIX-compatible, POSIX-conformant 
real-time operating system for embedded applications. 
RTAI takes a unique approach of running Linux as a task 
(lowest priority) that competes with other real-time tasks 
for the CPU. 

We could continue this list (RTEMS, Nut/OS, µC/OS-II, 
embOS, TNKernel, ChibiOS/RT, RTLinux, pSOS….), but 
going further is beyond the scope of this work.  

III. U111 RTOS IN A NUTSHELL 

μ111 RTOS (simply μ111 in the rest of the paper) is a 
multitasking operating system developed at CSEM. µ111 is 
the latest incarnation of the fully customisable µKOS 
microkernel OS for offering a multitasking environment to 
low resource embedded systems. Its development started in 
1992. µKOS was originally designed and used for the Khepera 
mobile robot [13], [14] with the aim of controlling it. µKOS 
operated these robots in advanced space applications as early 
as 1997 at JPL [15] and numerous other miniature and low 
power systems at CSEM. The first implementation was 
written in the CALM assembler tool developed at EPFL, then 
ported to C in 1996 (with MPW in OS/9 on Macintosh, then 
with GNU-GCC). µ111 has been ported to many micro-
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controllers over the years and it now runs on the most recent 
RISC-V and ARM platforms, such as the NRF52 chip on 
which the present experiments have been performed. The 
main purpose of μ111 is to offer tools and platforms to 
develop real-time applications. The OS is also already 
available for a wide range of  microcontrollers (allowing 
simple application porting) and is highly customizable; a 
distribution of the OS is available for researchers or  
developers upon request (contact one of the authors).  

A. General architecture 

μ111 can run multiple tasks (processes) in parallel and 
offers then a multithreading environment. Its architecture is 
based on hierarchical layers of modules. At the top of the 
architecture there is the Application layer (the high-level 
modules capable of exploiting the hardware and the software 
resources of the system). This layer is organized into families 
of modules. Under the Application layer there is the Library 
layer. This layer allows the interface between the Application 
layer and the different managers (BIOS). The Manager layer 
is the HAL (Hardware Abstraction Layer) implementing the 
interface between the system call functions and the physical 
world (chips, interfaces, electronics, etc.). Moreover, it 
reduces the effort for porting the system onto other platforms. 
In parallel, this also increases the ease of portability and 
debugging of additional components of the RTOS, such as 
communication protocols. 

 
Figure 1: system architecture of µ111 

A detailed description of a the different components is 
beyond the scope of this paper, but a few details about the 
Application Layer, which is the one we mostly used to realize 
our porting, are reported in the remainder of this section. 
The Application layer is composed of families of modules 
designed to have a specific behaviour. Essentially, the boot 
procedure deals with starting the kernel processes (called 
Daemons) needed to run the basic operations of the OS. Once 
the kernel is up and running, the user can start from the 
Startup Console (typically a UART connection to a terminal 
on a PC, or in some cases a wireless console) any needed 
process, including wireless protocols like WiseMAC.  
Process execution is governed by a system of priorities and 
in normal conditions the switch between processes occurs at 
a timeout or when a particular event happens (e.g., peripheral 
interruption). The OS kernel provides different mechanisms 
so that processes can interact with each other and with the 
kernel (presented in Section III.B). Peripherals can generate 
interruptions that are executed at a high priority level and 
interrupt the execution of any process. 

 
Figure 2: µ111 families of modules 

B. Kernel functionalities for wireless operations 

Among the services proposed by the RTOS, there are two 
functionalities which are of critical importance for our 
wireless protocol: 
1. Semaphore: a functionality designed to guarantee 

exclusive access to shared resources. They are used to 
prevent two or more processes to simultaneously access 
the same resource. Since our wireless protocol needs to 
co-exist with other processes running on the OS, this 
functionality is essential to guarantee that critical 
resources like for example the radio are available and its 
usage is guaranteed to be exclusive. 

2. Signal and precise signal: Signals allow processes to be 
synchronized with one or more events. A process can 
wait for a signal coming from another process or an 
interruption. A special class of signals is called precise 
signals. They allow the process to set up a signal that will 
be signaled after a specified amount of time. This 
functionality is maintained by means of a node’s real-
time clock that allows good precision. The event is 
signaled by an RTC interruption. The process that waits 
for a precise signal should have a high priority in order 
to ensure that it is scheduled by the OS when the event is 
signaled. 

IV. WISEMAC: PRINCIPLES AND IMPLEMENTATIONS 

In this section we describe in general terms how WiseMAC 
works and how it was implemented first on its OS-less 
original implementation and then on its µ111 version, 
focusing on the main difference between the two versions and 
the expected impact on the overall behaviour of the protocol. 

A. WiseMAC principles 

As mentioned before, WiseMAC [1] is a low-power protocol 
for WSN introduced in 2004 which belongs to the CSMA 
family of protocols with periodic preamble sampling.  
The basic idea is that all the nodes belonging to the network 
periodically sample the channel (an extremely low power 
operation) and if there is no traffic for them to receive, they 
go back to their lowest consumption mode (sleep). The 
sampling schedule offsets are independent, meaning that 
when a transmitter wants to send a packet to an unknown 
node, it must use a so-called Long Preamble, i.e., it should 
transmit multiple copies of the same packet for a time interval 
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greater than the defined preamble sampling interval. On the 
receiving side, as soon as a node detects a transmission 
intended for it, it stays awake until the reception of the last 
copy of the message; if the packet is not intended for it, a 
listening node can detect this after the first received copy and 
go to sleep thus reducing the time of overhearing. This 
communication scheme is pretty expensive on the transmitter 
side, because a transmission should last for a relatively long 
time. To mitigate this issue, when the receiver receives the 
last copy of the packet, it acknowledges the correct reception 
to the transmitter and it additionally includes an information 
about its next wake-up interval. With this information, the 
original sender can now include the receiver in its local list of 
known neighbours, and it will be able to send an eventual 
future packet using a shortened wake-up preamble named 
Short Preamble, i.e., multiple copies of the packet for an 
interval which is only taking into account the drift of local 
clocks and not the entire preamble sampling interval (Short 

Preamble << Long Preamble). The knowledge of the 
sampling scheme of each direct neighbour is updated during 
every data exchange, and since a node is expected to have just 
a few direct neighbours, even nodes with limited memory are 
capable of storing this information. This communication 
scheme is depicted in Figure 3. 

 
Figure 3: WiseMAC basic operations 

When Node 1 sends a packet to the Sink for the first time, it 
uses a Long Preamble (leftmost red squares); when 
performing a second communication to the same node, a 
Short Preamble is used (rightmost red squares). 
For the interested reader, the work in [16] contains a detailed 
analysis of the power consumption needed to perform the 
main operations of WiseMAC. 

B. OS-Less Implementation 

WiseMAC operations are based on a state machine, with a 
state transition happening in one of two cases: a timer firing 
or a radio interruption. Since its first version in 2004, 
WiseMAC was implemented in an OS-less fashion, with a 
basic scheduler, essentially implemented as two FIFO (First 
in First Out) queues: a high priority queue and a standard 
priority one. This code is entirely based on interrupts to 
manage the radio operations and there is no possibility of 
multithreading. Pre-emption is possible by a proper 
configuration of interrupt priorities.  
When running the code, the OS-less implementation features 
an infinite loop where the system periodically runs the next 
event present in the queues (it first checks the high priority 
queue, then the standard one) and if there is no event 
scheduled, then the processor goes in sleep mode. All the 
transactions required by the state machine of the protocol are 
represented as events to be placed in the queue that will be 
run at a later time by the scheduler. In case of an interrupt 
(timer, radio, etc.), the relative interrupt routine will be 
executed according to the state machine indications. 

C. µ111 Implementation 

The key point to address when porting the code to µ111 was 
to rewrite part of the core functionalities of the protocol to 
make them interact in the correct way with the RTOS blocks. 
This implied, namely 
• Rewriting the radio driver according to µ111 format and 

keep it compatible with the protocol state machine.  
• Protect the radio operations from concurrent access from 

other processes (Section III.B – Semaphores) 
• Replace the timers of the OS-less version with the system 

calls available on µ111 (Section III.B – Signals) 
• Interface the protocol with µ111 scheduler to have it 

work in a multithreading environment. 
These operations need to respect three key constraints 
imposed by the protocol itself, without which the porting 
would be a useless exercise: 
• Respect the timing constraints imposed by WiseMAC 

operations 
• Limit the code executed in the interruption routines to 

not disrupt the multithreading structure of the RTOS 
• Keep CPU operations and power consumption at their 

lowest possible value. 
In the current implementation, WiseMAC protocol is 
executed as a µ111 process; it consists essentially of an 
infinite loop that waits for signals. While the process is 
waiting for the next signal, the OS scheduler can run another 
process or put the system in sleep mode to avoid unnecessary 
power consumption.  Each signal has an associated callback 
that is executed by the process. Similarly, to the OS-less 
implementation, the state transitions are signaled by timeout 
and radio interruption.  The timers are implemented with the 
precise signals presented in section III.B. The process is set 
to the highest level of priority to ensure its execution when a 
signal is signaled. Ideally other applications that run in 
parallel should have a lower priority and minimized the code 
that is executed with disabled interruption. The main 
difference with the OS-less version is the absence of the FIFO 
queues, which have been replaced by the OS-Scheduler, 
while WiseMAC became a stand-alone process which is part 
of the OS environment. 

V. PERFORMANCE EVALUATION 

The purpose of our analysis is to quantify the impact of using 
an OS on the performance of WiseMAC. 
Our analysis is performed by running a series of identical 
tests on the same reference hardware, and by collecting and 
comparing the results of 4 metrics: 
1. Energy Consumption: what is the difference (if any) 

between the two versions of the protocol? 
2. Memory Footprint: in terms of memory space, is there 

any difference between the two versions? 
3. Latency: measured from the moment when the packet is 

placed in the transmission queue to when it is delivered 
to the application layer of the receiver, what is the 
difference between the two versions? 

4. Packet Delivery Ratio (PDR): is the overall number of 
correctly delivered packets affected by the RTOS or not? 

Our experiments were performed on a Wisenode VXI board 
(WN), a custom hardware designed at CSEM. The WN 
features a Nordic Semiconductor NRF52840 CPU with 
integrated 2.4 GHz radio transmitter [17], a few onboard 
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sensors and an external 868MHz radio (not used either). To 
keep the evaluation as simple as possible in terms of energy 
consumption, we implemented our protocol to use the 
internal radio of the NRF52840, while all the other elements 
on the board are switched off, so the only component 
consuming energy is the processor itself with its integrated 
radio. 
To avoid concurrent processes biasing the evaluation, during 
the experiments we executed WiseMAC as the only running 
process. 

A. Energy Consumption 

The consumption of the WN was measured using a Keysight 
CX3324A Current Analyzer, with an external power supply 
voltage of 3V. The radio transmission power is set to 0dBm. 
We identified the following 5 main operations of WiseMAC 
expected to consume most of the energy: 
• Idle, which does not consume a lot but it is the base 

operation running for > 99% of the time (IDLE) 
• Sampling, short periodic operation implying the 

activation of the radio (SAMPLE) 
• Transmission using a long preamble (TX-Long) 
• Transmission using a short preamble (TX-Short) 
• Reception of short preambles (RX) 
We decided to not consider the energy needed for the 
reception of a long preamble because its value strongly 
depends on the random moment when the receiver starts 
listening to the transmitted packet with long preamble, thus 
its value is always biased by this unpredictable factor. 
In the following table, we report the values we measured for 
the 4 operations we mentioned above. For each operation we 
indicate the average power consumption expressed in µA 
over a duration of 1 second. Each value is the result of an 
average over 10 different measurements. 
 

Table 1: Energy consumption comparison 

Consumption (µA) OS-less µ111 

IDLE 46.7 46.7 

SAMPLE 184.2 186.9 

TX-Long 3397.7 3381.5 

TX-Short 592.4 599.4 

RX 372.3 380.5 

 
As we can see, the consumption is very similar in both the 
OS-less and µ111. The difference we recorded between the 
two versions are so small that they are imputable more to 
randomness rather than indicate a real pattern, so we can 
conclude that the introduction of the RTOS has no impact on 
the overall energy consumption of WiseMAC. 

B. WiseMAC performance 

To evaluate the PDR and the latency we considered two 
different scenarios. We remind that WiseMAC is meant to be 
used in scenarios implying low traffic and quick reaction, as 
for example periodic monitoring applications with the 
possibility of quickly raising alarms in case of 
abnormal/dangerous values.  
For both scenarios, each run of the experiment corresponds 
to the transmission of 100 packets, and we executed 5 runs 
for each version (OS-less or OS-based) to average results. 
The WiseMAC sampling period for each node is set to 

250ms. The measures were performed in a controlled 
environment without any forced interference, apart from the 
Wi-Fi network of the office (one access point, one laptop 
connected to it) which has a negligible impact on the 
WiseMAC experiments. 
In the first scenario, 2 WN are used with 1 node acting as the 
transmitter and the other as receiver. The transmitter emits 
packets at the rate of 1 packet/second. Results are 
summarized below. 
 

Table 2: WiseMAC performance for scenario 1 

Settings Packet 

Delivery Ratio 

Latency 

(ms) 

µ111 WiseMAC 100% 546 

OS-Less WiseMAC 100% 626.2 

 
As we could expect in such a simple scenario, the PDR was 
perfect in each test, thanks to the reliability of WiseMAC and 
to the fact that there are no interference or collisions because 
only 2 nodes where considered. There is on the other hand an 
interesting indication for what concerns the latency: the OS 
version is quicker in delivering packets (about 80ms less). We 
will discuss this result in more details after the presentation 
of the second set of experiments. 
In the second scenario, we used 1 node as receiver (sink) and 
4 transmitter nodes.  Each transmitter generates packets at the 
rate of 0.5 packets/second.  
 

Table 3: WiseMAC performance for scenario 2 

Settings Packet 

Delivery Ratio 

Latency 

(msec) 

µ111 WiseMAC 99.9% 615.5 

OS-Less WiseMAC 99.7% 652.1 

 
As we can see by comparing the results from the two 
scenarios, the PDR remains pretty high in both cases, with the 
OS version performing slightly better than the OS-less one, 
but the difference (0.2%) is not significant. 
For what concerns latency, on the other hand, we can notice 
that the use of an OS allows a reduction of the latency of 
about 12% in the first scenario and about 5% in the second. 
We can explain the lower improvement in the second case as 
follows. The overall latency is due to two factors: the rapidity 
of the protocol and all the software application in managing 
the packets and the communications and the charge of the 
whole WSN which causes collisions and thus retransmissions 
of packets. In the first scenario, we do not expect any 
collision, so the latency value is essentially due to the 
responsiveness of the application. In the second scenario, the 
latency value is increased by the charge of the network. We 
can conclude that the RTOS application is about 12% quicker 
in managing packets and delivering them to the intended 
destination. This advantage diminishes when the impact of 
the charge of the network becomes the predominant factor in 
the overall latency. The lower processing latency of the OS 
can be explained by the fact that the OS guarantees a higher 
efficiency in terms of scheduling and inter-process 
communication.  
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C. Memory footprint 

 

VI. CONCLUSIONS AND FUTURE WORK 

In this work we presented our porting of the well-established 
WSN protocol WiseMAC on a low-power RTOS (µ111). The 
vast majority of proposed WSN protocols were normally 
presented to the community as monolithic blocks of code, 
with no or little possibility to perform multiple operations at 
the same time. It is a common belief that an operating system 
will generally introduce a significant overhead to the core 
functions of the WSN nodes. Our experience shows that such 
a statement is at least misleading, since the performance of 
WiseMAC combined with µ111 is similar than that of an OS-
less implementation. An interesting observation, which 
confirms the aims of an OS is that the OS implementation 
exhibits a lower latency and higher packet delivery ratio than 
the OS-less implementation. The reason is still under 
investigation, our assumption being that the µ111 RTOS is 
more thoroughly tested and debugged from a temporal point 
of view. 
The possibility of running a protocol in a multitasking 
environment opens the possibility to run other application in 
parallel, like for example an automatic tool to analyse the 
network traffic or any other automatic process that could 
improve the quality of the proposed solution. 
Apart from the additional memory required by the OS, using 
the µ111 OS has little to no impact to the protocol, both in 
terms of energy consumption and in terms of protocol 
performance.  
After this promising outcome, µ111 will include in the future 
other types of WSN protocols in addition to WiseMAC, such 
as WiseMAC-HA (high availability, developed to guarantee 
an improved responsivity [19]), a TDMA protocol and hybrid 
solutions like WiseTOP (automatic switching between 
CSMA and TDMA [16]). WiseMAC itself will be improved 
by introducing the novelties brought by recent asynchronous 
WSN protocols, such as FAWR [20]. 
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