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Abstract—In this paper, we propose a trajectory-driven three-
dimensional (3D) non-stationary channel model for millimeter
wave (mm-Wave) single-input single-output (SISO) systems. The
proposed channel model is designed to model and simulate
the micro-Doppler characteristics of human walking activities
in indoor environments. We present an expression of the time-
variant (TV) channel transfer function (CTF), where its temporal
variation is determined by the trajectories of moving human
body segments. As moving human body segments, we study the
influence of the head, chest, and hips. We investigate the TV
Doppler characteristics of the proposed channel caused by the
motion of the person. To do so, we focus on the TV spectrogram
and the TV mean Doppler shift. To confirm the validity of
the proposed channel model, we conducted a measurement
campaign for human walking activities by using the Ancortek
2400T2R4 software defined radar kit operating at 24 GHz. The
TV trajectories of human body segments are collected during
the experiment by using the Rokoko smartsuit. The results for
the micro-Doppler signature obtained from the measurements
are compared with those of the trajectory-driven channel model.
The findings show a good match between the proposed channel
model and the real-world measurements.

Index Terms—Mean Doppler shift, mm-Wave propagation,
radar, spectrogram, time-variant channel models.

I. INTRODUCTION

According to the World Health Organization (WHO), the

global population over 60 is expected to double by 2050 [1].

This study also shows that one out of three persons over the

age of 60 suffers a fall at least twice a year. These facts

challenge healthcare services to adapt to an aging population

and advances in new technologies. This is crucial, especially

given the growing proportion of the elderly population want

to live independently in their homes [2].

In recent years, human activity recognition (HAR) systems

have gained considerable attention from both research institutes

and healthcare industries. Existing fall detection systems can

be categorized into three major groups, such as sensor-based

systems [3]–[5], computer vision-based systems [6], and radio-

frequency (RF)-based systems [7]–[9]. As was pointed out in

[9], RF-based systems have many advantages, which includes

privacy ensurence, cost efficiency, and better coverage, when

compared to the other two sensing technologies. In addition, RF-

based HAR systems do not require wearable devices or direct

user involvement with the system. For this reason, we focus in

this paper on HAR systems which utilize RF techniques. Such

methods extract the information from radio signals scattered

from the user’s body in a home environment.

In this context, several RF-based HAR systems have been

proposed in the literature [10]–[14]. Ding et al. [11] proposed

a dynamic range-Doppler model for detecting various human

activities, such as falling, stepping, jumping, walking, squatting,

and jogging. They analyzed the range-Doppler and radar

cross-section characteristics by using a frequency-modulated

continuous wave (FMCW) radar system. In [12], a hands-

free HAR system was proposed using millimeter wave (mm-

Wave) sensors, where the recorded data allows the replication

of human activity based on the motions of body segments.

In [14], Cheng et al. have investigated measurement-based

fall detection systems and evaluated the performance of

various deep learning methods to classify fall activities. They

concluded that long-term training of classifiers is required,

which is one of the drawbacks to be solved. The survey in

[15] reviewed channel state information (CSI)-based indoor

positioning systems to provide accurate location services. In

[16], a micro-Doppler signature-based analysis of a hand

trajectory has been presented. They extracted the hand motion

profile from the information contained in the received Doppler

signature of wireless communication links.

According to the aforementioned references, channel models,

which can accurately describe the impact of indoor human

activities on the Doppler characteristics are essential to design

efficient HAR systems. In this context, a 3D trajectory-driven

non-stationary channel model has been proposed in [17], where

the space-time correlation functions of the underlying channel

were studied under non-isotropic scattering conditions. Later,

Zheng et al. proposed a Wi-Fi-based recognition system to

estimate the velocity profiles of different gestures in [18]. It

was found that the proposed method is scenario dependent and

can hardly be generalized.

When a person is performing an activity, the motion of

the different human body segments introduces changes in

Doppler properties of the underlying non-stationary channel.

In this regard, analysing these TV Doppler effects allows

us to detect various daily activities, such as walking, sitting,

falling, and eating. More studies on this topic can be found in

[9], [11]. Traditionally, this task can be achieved through the

investigation of the spectrogram and the TV mean Doppler shift

of the channel [2], [19], [20]. Therefore, designing a generic

analytical propagation model that takes into account the TV

Doppler characteristics caused by moving body segments is

of great importance. Specifically, such models enable to get a

deeper insight into the individual contribution of distinct body
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segments using their TV trajectories.

The review of the literature shows that, to the best of

the authors’ knowledge, existing channel models do not

properly incorporate the non-stationary behavior of distinct

human body segments in indoor environments. Therefore, this

paper focuses on the analysis of a trajectory-driven channel

model for single-input single-output (SISO) radar systems

operating the mm-Wave frequency band. Here, we consider

a moving person, which is modelled by a cluster of moving

point scatterers. Each moving point scatterer represents the

center of mass (CoM) of a body segment described by a TV

trajectory. The trajectories of the cluster of point scatterers

are the inputs of the proposed trajectory-driven channel model.

Expressions for the TV channel transfer function (TV-CTF) and

the complex channel gains are presented. The corresponding

Doppler characteristics in form of the TV spectrogram and the

TV mean Doppler shift are analyzed. To validate the proposed

model, we conducted a real-world measurement campaign by

using a mm-Wave radar kit (Ancortek SDR-KIT 2400T2R4)

in an indoor environment. As an example of a human activity,

we consider a walking scenario. To obtain the TV trajectories

of the person’s body segments, such as head, chest, and hips,

we use the Rokoko smartsuit [21]. To assess the performance

of the proposed model, we compare the TV spectrogram of the

measured RF data with that of the trajectory-driven channel

model. The results of the spectrogram analysis ascertain a good

agreement between the measurements and simulation.

The organization of the paper is as follows. Section II

describes the investigated scenario. Section III presents the

proposed trajectory-driven SISO channel model. The Doppler

analysis is addressed in Section IV. Measurement and simu-

lation results are reported in Section V. Finally, Section VI

concludes the paper.

II. 3D GEOMETRICAL INDOOR CHANNEL MODEL

The 3D non-stationary indoor wave propagation scenario

investigated in this paper is illustrated in Fig. 1. For our analysis,

we consider a SISO radar system, consisting of a single trans-

mitter antenna AT and a receiver antenna AR. The antennas

AT and AR are located at the fixed positions (xT , yT , zT ) and

(xR, yR, zR), respectively. Moreover, a person is moving in

the indoor space. This person is modelled by N moving point

scatterers SM
n , n = 1, 2, . . . , N . Here, the point scatterer SM

n

describes the CoM of the nth human body segment, which

is represented by a red disc ( ). The TV position of the nth

moving point scatterer SM
n is described by the TV coordinates

xM
n (t), yMn (t), and zMn (t). We denote the TV trajectory of

SM
n as Cn(t) = (xM

n (t), yMn (t), zMn (t)). The TV Euclidean

distance dTn (t) between the transmitter antenna AT and the

nth moving scatterer SM
n can be expressed in terms of the TV

coordinates xM
n (t), yMn (t), and zMn (t) as

dTn (t) =
√
(xM

n (t)−xT )2+(yMn (t)−yT )2+(zMn (t)−zT )2.

(1)

Fig. 1. 3D geometrical model for a SISO radar system with M moving
point scatterers SM

n (n = 1, 2, . . . , N) and K fixed scatterers SF
k (k =

1, 2, . . . ,K).

Similarly, the TV Euclidean distance dRn (t) between the nth

moving scatterer SM
n and the receiver antenna AR can be

computed as follows

dRn (t) =
√
(xM

n (t)−xR)2+(yMn (t)−yR)2+(zMn (t)−zR)2.

(2)

There are several fixed objects in the room such as furniture,

decoration items, and walls. These objects are modelled by

K fixed point scatterers SF
k (k = 1, 2, . . . ,K). Each fixed

scatterer SF
k has a fixed position (xF

k , y
F
k , z

F
k ).

In the following, we investigate a 3D non-stationary indoor

channel model that is driven by the TV trajectories Cn(t) of

the body segments (moving point scatterers SM
n ).

III. CHANNEL MODEL

In this section, we present the TV-CTF of a SISO channel.

As depicted in Fig. 1, the radio signal propagates from the

transmitter antenna AT to the mobile scatterers SM
n and fixed

scatterers SF
k , respectively, and impinges at the receiver antenna

AR. The TV-CTF of the link from AT to AR can be expressed

as:

H(t, f ′) =
N∑

n=1

HM
n (t, f ′) +

K∑
k=1

HF
k (f ′) (3)

where HM
n (t, f ′) and HF

k (f ′) stand for the complex TV-CTF

corresponding to the nth moving scatterer SM
n and the kth

fixed scatterer SF
k , respectively. From (3), we can see that the

terms HM
n (t, f ′) (n = 1, 2, . . . , N ) are TV, while the terms

HF
k (f ′) (k = 1, 2, . . . ,K) are time invariant. The first (second)

term of the TV-CTF H(t, f ′) in (3) can be presented as a

superposition of N (K) components caused by mobile (fixed)

scatterers. ACcording to [22], the nth and kth terms of the

complex TV-CTFs HM
n (t, f ′) and HF

k (f ′) can be presented

as

HM
n (t, f ′) = cMn (t)ej[θ

M
n −2π(f ′+fc)τ

′M
n (t)] (4)

and

HF
k (f ′) = cFk e

j[θF
k −2π(f ′+fc)τ

′F
k ] (5)
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respectively. The symbol fc stands for the center carrier

frequency. In (4), the nth component of the TV-CTF HM
n (t, f ′)

associated with the nth moving scatterer SM
n takes into account

a TV path gain cMn (t), a constant initial phase θMn , and a TV

propagation delay τ
′M
n (t). Based on the free-space path-loss

model, the TV path gain cMn (t) of SM
n can be expressed as

[23]

cMn (t) = an[d
T
n (t) · dRn (t)]−γ/2 (6)

where an is a parameter that depends on the radar trans-

mit/receive antenna gain, wave length, and the transmission

power. The symbol γ is the path-loss exponent. The TV

propagation delay τ
′M
n (t) of the radio signal travelling from

AT to AR via the nth moving scatterer SM
n can be obtained

by using the Euclidean distances dTn (t) and dRn as:

τ
′M
n (t) =

dTn (t) + dRn (t)

c0
(7)

where c0 represents the speed of light. It is obvious that the

TV propagation delays τ
′M
n (t) are determined by using the TV

trajectories Cn(t) = (xM
n (t), yMn (t), zMn (t)) via the TV radial

distances given in (1) and (2).

Analogously, the kth component of the CTF HF
k (f ′) corre-

sponding to the fixed kth scatterer is defined by the constant

path gain cFk , constant phase θFk , and constant propagation

delay τ
′F
k . In this model, we assume that both phases θMn and

θFk are modelled as independent and identically distributed

(i.i.d.) random variables, where each of them is uniformly

distributed over the interval between −π and π.

In this paper, our primarily focus is to investigate the impact

of moving scatterers (body segments) on the TV Doppler

characteristics of the 3D non-stationary indoor channel. In this

regards, we apply high-pass filtering to mitigate the contribution

of the fixed scatterers (objects) to the overall propagation

phenomenon. Hence, the second term of (3) will be neglected

in the following analysis.

IV. SPECTROGRAM ANALYSIS

This section presents the spectrogram capturing the effects

of the body segments of a moving person in an indoor

environment. In our analysis, we compute the spectrogram and

the corresponding TV mean Doppler shift. The spectrogram

associated with the propagation link between AT and AR is

represented by S(f, t).

To determine the spectrogram S(f, t), we first need to

compute the channel impulse response h(t, τ ′) by taking the

inverse Fourier transform (IFFT) of the complex CTF H(t, f ′)
with respect to frequency f ′. Then, by integrating the channel

impulse response h(t, τ ′) over delay τ ′ from 0 to the maximum

propagation delay τ ′max, we obtain the following solution of

the complex channel gain μ(t) [24, Eq. (14)]

μ(t) =

N∑
n=1

cMn (t)e
j
[
θM
m −2πfcτ

′M
n (t)

]
. (8)

The spectrogram S(f, t) is equal to the squared value of the

short-time Fourier transform (STFT) X(f, t), i.e.,

S(f, t) = |X(f, t)|2 (9)

where the STFT X(f, t) is defined as

X(f, t) =

∞∫
−∞

μ(t)w(t′ − t)e−i2πft′dt′ . (10)

In (10), w(t) is a window function.

The TV mean Doppler frequency B
(1)
μi,j (t) is defined as

the first-order moment of the spectrogram S(f, t) and can be

obtained according to [22]

B(1)
μ (t) =

∞∫
−∞

fS(f, t)df

∞∫
−∞

S(f, t)df

. (11)

V. MEASUREMENT AND SIMULATION RESULTS

This section presents the measurement campaign and simu-

lation results for the Doppler characteristics influenced by a

walking person. Since walking is one of our mostly performed

daily activities, we consider this in our experiment. The mea-

surement campaign was carried out in an indoor environment

as illustrated in Fig. 2. Compared to the analysis presented

in [25], where the impact of the antenna positions has been

investigated, the current study aims at validating the proposed

trajectory-driven channel model for human activity recognition.

For this reason, we consider a SISO communication system

with collocated antennas. In this regard, for the measurement

campaign, we use the Ancortek SDR-KIT 2400T2R4 radar

system operating at the 24 GHz frequency band in SISO mode.

The radar kit transmits chirp signals with 1 ms chirp duration

and 250 MHz bandwidth. The transmitter and the receiver

antennas are collocated and placed at a height of 1.1 m as

depicted in Fig. 2.

In our experiment, we also use the Rokoko smartsuit [21],

which has 19 sensors attached to it that allow us to record the

trajectories of human body segments, e.g., head, chest, hips,

lower/upper arms, and lower/upper thighs. The radar system

is located in a corridor of 10 m length, 3.8 m width, and

2.5 m height. The person moves 4.6 m away from the radar

system, makes a U-turn, and then walks back toward the radar

system. The sensors of the Rokoko smartsuit are connected

to a main hub. To record and store the trajectory data, the

main hub transmits the collected data to the Rokoko Studio

software [21] via a WiFi connection (see Fig. 2). The recorded

data can be analyzed and processed by animating the avatar

or skeleton of the person. Figure 3 shows the walking person,

the corresponding avatar, and its skeleton obtained from the

Rokoko studio software. Finally, the received trajectory data

can be exported in various file formats, such as FBX1, BVH2,

1Filmbox.
2Bounding volume hierarchy.
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Fig. 2. Measurement setup for collecting RF sensing data and the trajectories
of body segments during human walking experiment.

(a) (b) (c)

Fig. 3. Illustration of (a) the walking person, (b) avatar, and (c) skeleton of
the avatar.

and CSV3. For our analysis, we used the BVH file format that

contains the trajectory information (x, y, z positions) of each

body segment and its corresponding time stamps.

In this specific scenario, we observed that the main body

segments influencing the Doppler phenomenon are the head,

chest, and hips. The effects of these body segments on the

Doppler characteristics of the indoor non-stationary channel

model are therefore the focus of the following analysis.

The TV trajectories along the x-axis, y-axis, and z-axis of

the head, chest, and hips of the moving person are illustrated in

Figs. 4−6, respectively. Figure 4 shows that the person walked

a distance of approximately 4.8 m. It is also interesting to see

that the TV trajectories x1(t), x2(t), and x3(t) of the head,

chest, and hips, respectively, are almost identical. However,

Fig. 5 demonstrates a small drift in the direction of the y-

displacement. According to the manufacturer of the smartsuit

[26], this can be the result of the impact of the electromagnetic

field surrounding the sensors. Therefore, it is critical to operate

in a magnetic safe zone when using the smartsuit. Finally, we

can see that the z-displacements of the head, chest, and hips are

3Comma-separated values.

0 5 10 15 20
-1

0

1

2

3

4

5

Fig. 4. TV x-displacement xn(t) of human body segments: head (n = 1),
chest (n = 2), and hips (n = 3).

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

Fig. 5. TV y-displacement yn(t) of human body segments: head (n = 1),
chest (n = 2), and hips (n = 3).

well captured as shown in Fig. 6. It is noteworthy to mention

that the results in Fig. 6 are in accordance with the position of

the sensors with respect to the height of the walking person.

This confirms the validity of the recorded trajectory data. The

sinusoidal fluctuation of the z-displacement corresponds to

the walking activity, which is in accordance with the results

reported in [27]. From the results illustrated in Figs. 4−6, we

can also track the person’s walking activity. For example, at the

beginning of the recording, the person does not move, which

is translated by time-invariant displacements for a period of

almost 4.8 s. Then, the person starts walking away from the

radar kit for about 4.8 m and stops to make a U-turn to return

to the radar kit. The U-turn motion takes approximately 3 s

(seen between 10 s and 13 s). Finally, the person returns to the

radar kit, which takes 5 s and is almost equal to the time it

takes to walk walk away from the radar unit.

Next, we compute the spectrogram of the complex channel

gain by following the steps described in (8)–(10). Without loss

of generality, we set an = 1/
√
N . Figs. 7(a) and (b) depict
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Fig. 6. TV z-displacement zn(t) of human body segments: head (n = 1),
chest (n = 2), and hips (n = 3).

the spectrogram S�(f, t) of the measured received radar signal

and the spectrogram S(f, t) of the trajectory-driven simulation

model, respectively. A good match can be observed between

both spectrograms S�(f, t) and S(f, t). This reflects the similar

walking patterns shown in Figs. 4–6. For example, when the

person walks away from the radar system, we see negative TV

Doppler frequencies in the spectrograms. By contrast, going

towards the antennas results in positive TV Doppler frequencies.

In addition, the same number of walking steps corresponding

to the number of peaks can be counted from both spectrograms

S�(f, t) and S(f, t).

Fig. 8 illustrates the TV mean Doppler shift B
(1)�
μ (t) of the

measured received radar signal together with the TV mean

Doppler shift B
(1)
μ (t) of the trajectory-driven simulation model.

Overall, there is a good agreement between the measured and

simulated TV mean Doppler shifts. However, it should be noted

that the quality of the fit degrades during the observation time

between 13 s and 20 s. This can be explained by the fact that

the displacement along the y−axis experiences a drift during

the same time intervals (see Fig. 5). Note that this drift does

not impact the overall trend of the TV mean Doppler shift.

VI. CONCLUSION

In this paper, we have proposed a non-stationary indoor

trajectory-driven channel model for HAR systems in the

presence of a moving person. The dominating body segments

have been modelled by a cluster of moving point scatterers.

In this regard, we have presented expressions for the TV-CTF

and the complex channel gain, where the inputs are the TV

trajectories of human body segments. We have investigated the

TV Doppler characteristics of the proposed trajectory-driven

channel model. The validity of the proposed model has been

confirmed by real-world measurement data collected during

a walking scenario. The RF data has been collected utilizing

a SISO radar kit operating at 24 GHz. The novelty of this

paper is that the TV trajectories of the body segments have

been obtained by means of the Rokoko smartsuit. Then, these

0 5 10 15 20
-400

-300

-200

-100

0

100

200

300

400

(a)

(b)

Fig. 7. (a) TV spectrogram S�(f, t) of the measured received radar signal
and (b) TV spectrogram S(f, t) of the trajectory-driven simulation model.

trajectories have been fed to the channel model. A comparison

between the Doppler properties of the measured RF signals and

those corresponding to the trajectory-driven channel model has

been performed for a forward/backward walking scenario. The

results demonstrate a good agreement between the Doppler

characteristics of the measured data and those of the proposed

method. It has been found that the presence of a drift in the TV

trajectories impacts the resulting Doppler properties. Therefore,

it is important to consider the effect of drifts when evaluating

the performance of sensor-based systems. This work can serve

as a basis for analyzing more complex indoor activities for

future real-life applications, such as remote healthcare and

independent living.
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Fig. 8. Comparison of the TV mean Doppler shift B
(1)
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driven simulation model and that obtained from the measured received radar
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