
An Analysis of Strengths and Weaknesses of TLS
Utilization in iOS Applications

Brian Krupp
Computer Science Department

Baldwin Wallace University
Berea, OH USA
bkrupp@bw.edu

Malik Matthews
Computer Science Department

Baldwin Wallace University
Berea, OH USA

mmatthew17@bw.edu

Josh Hadden
Computer Science Department

Baldwin Wallace University
Berea, OH USA

jhadden18@bw.edu

Abstract—Mobile applications are granted access to large
amounts of data both stored and sensed on a user’s device. While
the data stored on these devices can be protected with encryption,
where the private keys are protected through a combination
of biometric authentication and passcodes, it is important to
consider the security of data in transit and the many connections
applications make to different domains. Often, these domains are
unknown to the user where they can include third-party domains
and tracking services. In this paper, we investigate the current
state of transport layer security (TLS) utilization across the top
information sharing applications in the iOS App Store. Through
this study, we are able to better understand which domains
follow best practices and use recommended ciphers and TLS
versions. We also provide deeper insight into the prominent use
of tracking services and how they differ in their utilization of
TLS. Our study utilizes a proxy service to detect the domains
that applications communicate with and then uses OpenSSL
to analyze the supported ciphers, TLS versions, and certificate
details. We also leverage domain analysis from DuckDuckGo
Tracker Radar to differentiate tracking domains. From this study,
we analyzed 965 unique domains and found that 935 (96%) use a
cipher that is not recommended and only 23 (2%) of the domains
strictly followed recommendations on cipher and TLS utilization.
While most domains are utilizing recommended versions of TLS
and recommended ciphers, this study shows there are many that
still support vulnerable versions of TLS and vulnerable ciphers,
leaving the user’s data at risk.

Index Terms—mobile, TLS, SSL, certificates, security, encryp-
tion

I. INTRODUCTION

As the world wide web became mainstream, the need to
protect data in transit between clients and servers became a nec-
essary requirement. In early implementations, the main protocol
for providing secure communications was Secure Sockets Layer
(SSL). SSL provided a mechanism for protecting data in transit
by ensuring data was secure between a user’s web browser and
the web server. However, early implementations of SSL were
later discovered to contain significant vulnerabilities. While
SSL 1.0 was never published, SSL 2.0 was standardized in
1995 and contained several vulnerabilities that were discovered
later: message authentication used a weak hashing algorithm
(MD5), weak cipher suites exposed the connection to man-
in-the-middle attacks, and message integrity and encryption
used the same key which could have used a weak algorithm
[1]. SSL 3.0 was introduced a year later in 1996, however it

also has been deprecated due to vulnerabilities where due to
padding used in the cipher block chaining (CBC), SSL 3.0
is vulnerable to POODLE attacks [2]. Additionally, the key
exchange is also vulnerable to man-in-the-middle attacks [3].

To address these vulnerabilities in SSL, Transport Layer
Security (TLS) was introduced. Starting in 1999, TLS 1.0 was
defined [4] which specifically addressed how to prevent man-
in-the-middle attacks. However, TLS 1.0 also was discovered
to contain vulnerabilities and in 2006 was replaced with
TLS 1.1 which addressed issues in how initialization vectors
(IV) were implemented and padding errors handled to protect
against CBC attacks and other various attacks [5]. TLS 1.2
included further improvements such as adding strong cipher
suites and deprecating weak cipher suites [6]. Finally, TLS
1.3 improved upon 1.2 by prohibiting negotiation to insecure
versions and ciphers, dropping support for insecure features,
adding additional secure signature algorithms, and encrypting
all handshake messages [7].

At the time of this writing, the National Institute of Standards
and Technology (NIST) provides guidelines that recommend
at least TLS 1.2 is utilized [8] as versions of TLS from 1.1
and below are vulnerable to attacks such as POODLE [2]
and BEAST [9]. Even with this recommendation, TLS 1.2 is
recommended with only using specific ciphers [10], [11].

In this study, we are interested in how the domains that
mobile applications communicate with follow these recom-
mendations. With users spending on average over 5 hours
a day on their screens [12], their data may be at risk with
services not following the latest recommendations. We are
also interested in this study the differences in domains that
are known trackers and how they differ in their adoption of
TLS recommendations to those domains that are not trackers.
Given that the online advertising industry is very profitable
[13], there is a financial incentive to not adopt the stricter TLS
recommendations to support older clients so that both data
collection and advertising can be increased. In this paper, we
make the following contributions:

• We perform an analysis of 965 unique domains that are
utilized by 124 of the top information sharing applications
in iOS.

• We analyze each domain to understand what versions and
ciphers of TLS they support to understand how strictly

2021 Fourteenth International Workshop on Selected Topics in Mobile and Wireless Computing

978-1-6654-2854-5/21/$31.00 ©2021 IEEE 68

they follow recommendations.
• We detect various personal data such as the location, con-

tacts, and photos from the device to better understand how
domains that collect this data follow recommendations.

• We compare these results with domains that are known
trackers using DuckDuckGo’s Tracker Radar to understand
what differences exist between tracking and non-tracking
domains.

From this study, we find that a vast majority of domains
do not follow the current recommendations for implementing
TLS. They either use an insecure version of TLS that is
susceptible to well-known attacks or a weak cipher that is
no longer recommended. Additionally, we find that certificates
commonly exceed the maximum recommendation time of 366
days for a certificate to be valid. Finally, we found that a
majority of domains that are trackers that are frequently used
by mobile applications also do not follow the most recently
recommendations of TLS where in our study we found these
trackers to receive personal data such as the user’s location.

The paper is organized as follows: Section II describes the
system design we utilized to perform the study. Section III
provides the methods we used to conduct the experiment. Sec-
tion IV describes the findings from the analysis we performed.
Section V describes related work. Section VI discusses potential
limitations in the study and items to consider in future studies.
Finally, Section VII summarizes our conclusions of the study.

II. SYSTEM DESIGN

To capture the domains that are utilized by iOS applications,
we utilize a web proxy. The proxy is designed to not only
capture HTTP requests, but it also detects personal data that
is transmitted from the application to a domain [14]. To
intercept traffic that utilizes TLS, a unique certificate authority
(CA) is generated which is installed on the iOS device as a
root certificate. This allows a man-in-the-middle attack to be
performed where the proxy dynamically generates certificates
based on the domain the mobile application is attempting to
connect to and sign certificates for each domain using the
trusted root certificate. Frequently generated certificates are
stored in a cache to improve performance. By intercepting
traffic over TLS, this also allows the proxy service to inspect
traffic to discover personal data that may be sent to the domain.
As the mobile application is tested, the proxy service logs each
domain to an activity log with details such as whether or not
TLS is being utilized and if personal data was discovered in
the request.

Once domain information is captured, an automated process
using OpenSSL examines support for TLS and checks each
domain for support of both recommended and not recommended
ciphers. Additionally, certificate details are collected including
period of validity and key length. This analysis also uses domain
information from the DuckDuckGo Tracker Radar project [15]
to determine if a domain is a known tracker and what tracking
categories it exists in. This overall process is depicted in Figure
1.

Mobile
Device

www.d1.com

www.d2.com

www.d3.com

Activity Log

TLS
Analysis

Proxy Service

Certificate Cache

Internet

DDG Tracker
Radar

Fig. 1: System design to perform TLS analysis

III. EXPERIMENT DESIGN

A. Application Testing

This study focused on the top mobile applications in the iOS
App Store that can be classified from information sharing
categories. This criteria targeted applications in categories
where user data is more likely to be transferred from the
device to a particular domain. From this criteria, the top ten
free applications were selected from the below categories:

• Business
• Education
• Kids
• Lifestyle
• Magazine and Newspapers
• News
• Reference
• Social
• Sports
• Weather
Automated analysis of applications without requiring a

jailbreak of the device is limited in iOS as it is a closed
source operating system. Additionally, as part of the study, our
goal was to understand how applications behave on unmodified
operating systems as a normal user would use the application.
Therefore, testing of each application was performed manually
where the tester followed strict steps outlined below:

1) Disable HTTP proxy to download applications to be
tested.

2) Download each application to be tested.
3) Disable Background App Refresh.
4) Enable proxy in Wi-Fi settings.
5) Open application. Wait 2 minutes before interacting with

main UI. Immediately accept any permission requests.
During this period, verify data is being captured.

6) If application requires an account to access application,
create account using provided test account.

7) Continue to test application for 5 minutes. Navigate main
components: if it is a tab bar, access each component
in tab, if it is a hamburger type navigation, access each
component.

8) Open utility application and tap on “Complete Testing”
button.

2021 Fourteenth International Workshop on Selected Topics in Mobile and Wireless Computing

69

If an application existed in multiple categories, it was skipped
if it was already tested. Applications that were non-functional
were still included in the study as the TLS connection that was
attempted was still captured. An application was determined to
be non-functional if messages displaying network connection
errors were shown in the application or screens would not
load during testing. Applications that utilize certificate pinning
[16] were not able to be tested using the proxy service as
trust could not be established if the pinned certificate within
the application was not presented. Still, the domain could be
captured when trust was attempted to be established. From this
criteria, we successfully gathered network communication of
124 iOS applications where we are able to analyze 965 unique
domains.

B. Analyzing TLS, Ciphers, and Certificates

To analyze a domain’s support for different versions of TLS
and ciphers, we utilized OpenSSL and a script to automate the
analysis. We first examined the support of TLS versions 1.0
to 1.3 without specifying the cipher to discover what versions
of TLS each domain supports. Below is an example of testing
the domain ad.doubleclick.net using TLS 1.2:

openssl s_client -connect ad.doubleclick.
net:443 -tls1_2

Once we were able to determine each version of TLS that a
domain supports, we then examined each cipher. Below is an
example of testing the the same domain with TLS 1.2 using
the ECDHE-ECDSA-AES256-GCM-SHA384 cipher:

openssl s_client -connect ad.doubleclick.
net:443 -tls1_2 -cipher ECDHE-ECDSA-AES256
-GCM-SHA384

We did not examine cipher support for TLS 1.0 or TLS 1.1
as both versions are no longer recommended. We did however
examine cipher support for TLS 1.2 as only specific ciphers
are recommended. The ciphers we examined for support were
the following based on recommendations from both Mozilla
[10] and the Open Web Application Security Project [11]:

• ECDHE-ECDSA-AES256-GCM-SHA384
• ECDHE-RSA-AES256-GCM-SHA384
• DHE-RSA-AES256-GCM-SHA384
• ECDHE-ECDSA-CHACHA20-POLY1305
• ECDHE-RSA-CHACHA20-POLY1305
• ECDHE-ECDSA-AES128-GCM-SHA256
• ECDHE-RSA-AES128-GCM-SHA256
• DHE-RSA-AES128-GCM-SHA256

We also examined support for ciphers that are not recom-
mended which are packaged with OpenSSL and included
21 ciphers. This allowed us to examine if domains also
supported not recommended ciphers such as AES128-SHA256.
To examine certificates for each domain, we also used OpenSSL
to extract the X.509 certificate and store it in a text file to
examine:

TABLE I: Domains supporting TLS versions from 1.0 to 1.3

TLS Version # of Domains
TLS 1.0 701
TLS 1.1 720
TLS 1.2 965
TLS 1.3 369

openssl s_client -servername ad.
doubleclick.net:443 -connect ad.
doubleclick.net:443 2>/dev/null | openssl
x509 -text > cert.txt

From this file, we are able to extract the intermediate and
root certificate authority, certificate validity, key sizes, and
signature algorithms.

C. Analyzing Tracking Domains

To determine if a domain is classified as a tracker, we
utilize the DuckDuckGo Tracker Radar dataset. To utilize this
dataset, we mapped each of the 965 unique domains using the
domain_map.json file that was provided. From this, we
are able to extract information for each domain by removing
subdomains and using the domain’s name as the filename.
For example, with the domain ad.doubleclick.net, domain
information would exist in doubleclick.net.json. From
this, we are able to extract if the domain is a known tracker
and what tracking categories it exists in. For the purposes of
this study, if a domain existed in any tracking category such as
Category Advertising or Category Analytics, it was determined
to be a domain that performs tracking.

IV. RESULTS

From the 965 unique domains that we gathered in this
study, we breakdown our findings here by analyzing support of
different versions of TLS, which ciphers are utilized and the
domains that follow recommendations, how do trackers differ
in their use in ciphers, and key characteristics of certificates.

A. TLS and Cipher Analysis

Analyzing the support of different versions of TLS, all of the
965 domains that were analyzed support TLS 1.2. Of these, 720
supported TLS 1.1 and 701 supported TLS 1.0. It is important
to note that TLS 1.0 and 1.1 are no longer recommended. The
latest version of TLS 1.3 was supported by 369 of the domains.
These results are shown in Table I.

In this study, we examined which domains supported
recommended ciphers to be used with TLS 1.2 [10]. Of the
recommended ciphers ECDHE-RSA-AES128-GCM-SHA256
and ECDHE-RSA-AES256-GCM-SHA384 were the most
popular with 938 and 927 domains utilizing these ciphers
respectively. A breakdown of the number of domains that
utilized recommended ciphers is shown in Table II. We were
also interested in the ciphers that were supported in TLS 1.2
but not recommended for use. Table III shows a summary of
ciphers that are no longer recommended but were supported.

2021 Fourteenth International Workshop on Selected Topics in Mobile and Wireless Computing

70

TABLE II: Recommended Ciphers Supported by Domains

Cipher Domain Count
ECDHE-RSA-AES128-GCM-SHA256 938
ECDHE-RSA-AES256-GCM-SHA384 927
ECDHE-RSA-CHACHA20-POLY1305 535

ECDHE-ECDSA-AES128-GCM-SHA256 350
ECDHE-ECDSA-AES256-GCM-SHA384 349
ECDHE-ECDSA-CHACHA20-POLY1305 326

DHE-RSA-AES128-GCM-SHA256 126
DHE-RSA-AES256-GCM-SHA384 125

TABLE III: Not Recommended Ciphers by Domains

Cipher Domain Count
AES128-GCM-SHA256 883
AES256-GCM-SHA384 763

ECDHE-RSA-AES128-SHA256 687
ECDHE-RSA-AES256-SHA384 683

AES128-SHA256 553
AES256-SHA256 536

ECDHE-ECDSA-AES256-SHA384 193
ECDHE-ECDSA-AES128-SHA256 193

DHE-RSA-AES128-SHA256 107
DHE-RSA-AES256-SHA256 106

DHE-RSA-CHACHA20-POLY1305 47

B. Recommendation Analysis

In examining the domains that follow recommendations
of both TLS support and cipher support, we found that 935
domains use a cipher that is not recommended and 961 use a
recommended cipher. This leaves 4 domains that utilize TLS
1.2 but do not support any of the recommended ciphers. In
our analysis, only 23 domains followed the recommendations
strictly, meaning, they supported TLS 1.3 or used a recom-
mended cipher with TLS 1.2, and did not support ciphers that
were no longer recommended. These domains also did not
support TLS 1.0 or TLS 1.1.

C. Tracking Analysis

Of the 965 domains that were analyzed, 196 of the domains
are classified as trackers using the dataset from DuckDuckGo’s
Tracker Radar [15]. Of these, 195 of the domains supported
TLS 1.3 or TLS 1.2 with recommended ciphers, while 187
supported ciphers that were no longer recommended or TLS 1.0
or TLS 1.1. A breakdown of domains within tracking categories
that followed or did not follow recommendations is provided in
Table IV. Motivated Tracking, Advertising, and Analytics were
the most common categories. There are additional categories
such as Malware and High Risk Behavior that we did not
discover any domains existing within, however, it is important
to note that we did find domains that existed within the Ad
Fraud category. We additionally examined which domains
were trackers where the proxy detected personal data within
the request. The personal data that was detected was either
the user’s location, contacts data, or a photo. An example of
location discovered in a HTTP POST request is included below
where a precise location along with other identifiers is sent
from the NOAA Weather Radar iOS application to the domain
api2.amplitude.com, which is a known tracker:

TABLE IV: Trackers Following Recommendations

Tracking Category Recommended Not Recommended
Motivated Tracking 146 142

Advertising 136 132
Analytics 108 100

Audience Measurement 75 72
Third Party Analytics Marketing 68 63

Social Network 31 30
Action Pix 29 28
Ad Fraud 27 25

Session Replay 8 4

api_properties":{"location":{"lat
":41.374237060546875,"lng
":-81.850124411094953},"ios_idfv":"7
F83E3CB-5901-437E-9420-0996A0ED56E9"},"
device_id":"7F83E3CB-5901-437E-9420-0996
A0ED56E9","event_properties":{"Search
Symbols Entered":"4","Time Elapsed":"0"},"
uuid":"28664B9B-A15D-4EB1-9E33-
D665734B2EA9","device_manufacturer":"Apple
","version_name":"4.10.2

From this analysis, we found 83 domains that are trackers
that received personal data and 82 of these followed recommen-
dations in supporting TLS 1.3 or 1.2 with recommended ciphers.
However, 81 of the 82 domains used a not recommended
version of TLS or a not recommended cipher.

D. Certificate Analysis

In analyzing certificates, we were interested in the public key
algorithm, public key size, and the the validity of certificates.
From our analysis, a majority of domains used RSA with 651
domains total, and 314 domains used Elliptical Curve as their
public key algorithm. The most common key size for those
that used RSA was a 2048 bit key with 648 domains, and 3
domains using a 4096 bit key. For those that used Elliptical
Curve, all 314 domains used a 256 bit key size.

In examining certificate validity, the most common certificate
length was 365 days with 193 certificates having this length.
However, this only accounts for 20% of the domains. 481 of
the domains had certificates expire over a year, which does
not follow the recommendation of a certificate being valid for
at most 366 days and now recommended for 90 days where
220 domains followed the newer recommendation [10]. Figure
2 shows the distribution of certificates by the number of days
they are valid.

V. RELATED WORK

To our knowledge, a study that specifically targeted studying
the use of TLS in the iOS ecosystem does not exist. However,
there has been research targeting Android and the overall
use of TLS and certificates. The most directly related work
that studied usage of TLS on Android focused on what APIs
applications used to incorporate TLS and found that most
use the default libraries [17]. The study also investigated how
applications verify certificates and the use of certificate pinning
where they found high risk applications were less likely to

2021 Fourteenth International Workshop on Selected Topics in Mobile and Wireless Computing

71

N
um

be
r o

f D
om

ai
ns

20

40

60

80

100

120

140

160

180

200

Certificate Validity Duration
22 92 192 347 365 374 395 432 543 732 749 785 807 824

Fig. 2: Distribution of certificate validity length by days.

deploy additional verification. Another study that focused on
Android apps discovered that significant differences existed
in implementation both with developers in creating mobile
applications and server configuration for utilizing TLS [18].

Along with implementing TLS in Android, one study
investigated how the trusted root certificate store in Android
can be exploited where TLS interception can be performed
[19]. Their study found that certificate stores are bloated
where devices are more susceptible to attacks. Similar research
also discovered the ability to steal credentials based on how
mobile applications trust certificates that are presented to them
[20]. Other research focused on studying the implementation
of certification validation in how they are used in Android
applications with third party libraries. They found that popular
mobile applications such as banking are susceptible to man-
in-the middle attacks where developers that use standardized
libraries often perform certificate validation incorrectly [21].
Similar research focused on studying Android applications that
were susceptible to man-in-the-middle attacks and how users
perceive certificate warnings and security indicators [22]. In
this study, they were able to steal credentials from popular
payment and credit card applications.

Outside of mobile, research has also focused on analyzing
all certificates across the entire ecosystem where attributes
such as validity, key size, and issuers were analyzed [23],
[24]. In this research, it was discovered that a large number
of entities could sign certificates for any website. Along with
analyzing certificates, keys have also been the focus in how
they are used to establish trust and what steps vendors took
once vulnerabilities such as Heartbleed were discovered [25]–
[27]. From the study, many vendors never patched their servers
even though the keys they used could have been at risk due to
Heartbleed. Further analysis looked at Heartbleed where they
found that over 73% of certificates were never reissued and
87% were not revoked [28]. Additionally, the studies found
that certificate revocation is ineffective where mobile browsers
would not check if certificates were revoked. Research has also
looked at forged certificates and while they can be used for

antivirus software and corporate filters, they also found they
can be utilized in popular websites to intercept traffic and for
malware [29].

VI. DISCUSSION

Given that iOS is a close-sourced operating system, au-
tomating the testing of applications without jailbreaking the
device is limited. In this study, we were able to gather a large
enough sample (n=124) of applications in information sharing
categories that provides a representation of the current state of
the iOS app store. This sample allowed us to study 965 unique
domains with commonly used trackers. While applications may
be categorized in an incorrect category, a vast majority of the
applications that were tested did represent the categories they
existed within.

Current and past versions of SSL/TLS have shown that in
time, vulnerabilities will be found and current recommendations
and implementations will be exploited. With older versions
of TLS having documented vulnerabilities that eventually get
patched, there are systematic flaws that have not been fixed.
These flaws stem from how TLS 1.2 and previous versions
were more reactive to vulnerabilities that were later discovered.
This process leaves a window of opportunity for malicious
actors to exploit the known vulnerability until a newer version
or recommendation is provided. With this in mind, TLS 1.3
took a different approach where the community was tasked
with identifying issues before deployment. This approach is
why TLS 1.3 is considered to be more proactive compared to
its past versions.

Within this study, there were applications that could not
be fully tested due to the use of certificate pinning. However,
we were still able to capture the domains that applications
attempted to communicate with to better understand their TLS
implementation. Still, if a network request failed, this could
prevent other areas of the application to be tested and potentially
additional domains to be analyzed.

Studying the level of security that applications exert when
communicating with a server is important to users. The more
transparency a user is given regarding the handling of their
data, the more aware each individual can be to the safety of
their personal data. Additionally, if users are able to see how
applications and the domains they communicate with follow
recommended practices, it is likely that these applications
would make more secure and ethical decisions when it comes
to handling security and privacy.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed 965 unique domains that are used
by the top information sharing applications in the iOS App
Store. From this analysis, we found that while all domains
support TLS 1.2, 883 domains supported at least one cipher
that is no longer recommended, putting user data at risk.
Additionally, a majority of the domains still supported older
versions of TLS where 720 supported TLS 1.1 or below.
These versions of TLS contain well known vulnerabilities
and are susceptible to attacks such as BEAST and POODLE.

2021 Fourteenth International Workshop on Selected Topics in Mobile and Wireless Computing

72

In analyzing domains that follow strict recommendations,
only 23 domains used TLS 1.2 with only recommended
ciphers or TLS 1.3. Additionally, we found that 481 of the
domains had certificates that expire over 366 days which is
the maximum recommended duration. This shows widespread
existence of domains that have known vulnerabilities in their
TLS implementations, putting user data at risk. Even though
iOS has strict requirements for TLS, other clients that connect
to these domains where user data is transferred leaves the
user’s data vulnerable to well-known exploits. Additionally,
using the data from DuckDuckGo Tracker Radar, we found
that 196 of the domains are trackers and all but one domain
do not follow recommended practices in implementing TLS.
Of these trackers, 83 received personal data such as the user’s
location.

This study provides important insight into the current state
of TLS utilization by applications in the iOS App Store. Since
there is no accessible method to discover the strength of TLS
implementation in mobile applications, our study provides that
insight and demonstrates that a vast majority of domains that
mobile applications communicate with do not follow the current
recommendations for implementing TLS. As more transparency
is provided to users on the use of personal data and tracking,
future work can focus on providing more transparency with
the security of network communications. Just as with new
features such as Privacy Labels and Privacy Report in iOS,
users can become become more aware of issues around security.
We believe when users have more transparency, they can then
make informed choices and demand from mobile OS producers
or application developers increased privacy controls or more
secure practices.

REFERENCES

[1] I. E. T. F. (IETF). Request for comments: 6176. [Online]. Available:
https://tools.ietf.org/html/rfc6176

[2] CISA. Ssl 3.0 protocol vulnerability and poodle attack. [Online].
Available: https://us-cert.cisa.gov/ncas/alerts/TA14-290A

[3] I. E. T. F. (IETF). Request for comments: 7568. [Online]. Available:
https://tools.ietf.org/html/rfc7568

[4] ——. Request for comments: 2246. [Online]. Available: https:
//tools.ietf.org/html/rfc2246

[5] ——. Request for comments: 4346. [Online]. Available: https:
//tools.ietf.org/html/rfc4346

[6] ——. Request for comments: 5246. [Online]. Available: https:
//tools.ietf.org/html/rfc5246

[7] ——. Request for comments: 8446. [Online]. Available: https:
//tools.ietf.org/html/rfc8446

[8] W. Polk, K. McKay, and S. Chokhani, “Guidelines for the selection,
configuration, and use of transport layer security (tls) implementations,”
2014-04-28 2014.

[9] T. A. Nidecki. What is the beast attack. [Online]. Available:
https://www.acunetix.com/blog/web-security-zone/what-is-beast-attack/

[10] Mozilla. Security server side tls. [Online]. Available: https://wiki.mozilla.
org/Security/Server Side TLS

[11] O. W. A. S. Project. Transport layer protection cheat sheet.
[Online]. Available: https://cheatsheetseries.owasp.org/cheatsheets/
Transport Layer Protection Cheat Sheet.html

[12] “How much time do americans spend on their phones in
2020?” Apr. 2020. [Online]. Available: https://techjury.net/blog/
how-much-time-does-the-average-american-spend-on-their-phone/

[13] iab. Internet advertising revenue report. [On-
line]. Available: https://www.iab.com/wp-content/uploads/2020/05/
FY19-IAB-Internet-Ad-Revenue-Report Final.pdf

[14] B. Krupp, D. Jesensky, and A. Szampias, “Speproxy: Enforcing fine
grained security and privacy controls on unmodified mobile devices,” in
2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile
Communication Conference (UEMCON), Oct 2017, pp. 520–526.

[15] DuckDuckGo, “Duckduckgo tracker radar,” February 2021. [Online].
Available: https://github.com/duckduckgo/tracker-radar

[16] “Certificate and Public Key Pinning | OWASP.” [Online].
Available: https://owasp.org/www-community/controls/Certificate and
Public Key Pinning

[17] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez, S. Sundaresan,
J. Amann, and P. Gill, “Studying tls usage in android apps,” in
Proceedings of the 13th International Conference on Emerging
Networking EXperiments and Technologies, ser. CoNEXT ’17. New
York, NY, USA: Association for Computing Machinery, 2017, pp.
350–362. [Online]. Available: https://doi.org/10.1145/3143361.3143400

[18] X. Wei and M. Wolf, “A survey on https implementation by
android apps: Issues and countermeasures,” Applied Computing and
Informatics, vol. 13, no. 2, pp. 101–117, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2210832716300722

[19] N. Vallina-Rodriguez, J. Amann, C. Kreibich, N. Weaver, and V. Paxson,
“A tangled mass: The android root certificate stores,” in Proceedings of
the 10th ACM International on Conference on Emerging Networking
Experiments and Technologies, ser. CoNEXT ’14. New York, NY, USA:
Association for Computing Machinery, 2014, pp. 141–148. [Online].
Available: https://doi.org/10.1145/2674005.2675015

[20] J. Hubbard, K. Weimer, and Y. Chen, “A study of ssl proxy attacks
on android and ios mobile applications,” in 2014 IEEE 11th Consumer
Communications and Networking Conference (CCNC), 2014, pp. 86–91.

[21] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: Validating ssl
certificates in non-browser software,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: Association for Computing Machinery, 2012, pp.
38–49. [Online]. Available: https://doi.org/10.1145/2382196.2382204

[22] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith, “Why eve and mallory love android: An analysis of android
ssl (in)security,” in Proceedings of the 2012 ACM Conference on
Computer and Communications Security, ser. CCS ’12. New York, NY,
USA: Association for Computing Machinery, 2012, pp. 50–61. [Online].
Available: https://doi.org/10.1145/2382196.2382205

[23] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman, “Analysis of
the https certificate ecosystem,” in Proceedings of the 2013 Conference
on Internet Measurement Conference, ser. IMC ’13. New York,
NY, USA: Association for Computing Machinery, 2013, pp. 291–304.
[Online]. Available: https://doi.org/10.1145/2504730.2504755

[24] B. VanderSloot, J. Amann, M. Bernhard, Z. Durumeric, M. Bailey,
and J. A. Halderman, “Towards a complete view of the certificate
ecosystem,” in Proceedings of the 2016 Internet Measurement
Conference, ser. IMC ’16. New York, NY, USA: Association
for Computing Machinery, 2016, pp. 543–549. [Online]. Available:
https://doi.org/10.1145/2987443.2987462

[25] M. Hastings, J. Fried, and N. Heninger, “Weak keys remain widespread
in network devices,” in Proceedings of the 2016 Internet Measurement
Conference, ser. IMC ’16. New York, NY, USA: Association
for Computing Machinery, 2016, pp. 49–63. [Online]. Available:
https://doi.org/10.1145/2987443.2987486

[26] Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin, B. Maggs, A. Mislove,
A. Schulman, and C. Wilson, “An end-to-end measurement of certificate
revocation in the web’s pki,” 10 2015, pp. 183–196.

[27] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman, “Mining
your ps and qs: Detection of widespread weak keys in network devices,”
in Proceedings of the 21st USENIX Conference on Security Symposium,
ser. Security’12. USA: USENIX Association, 2012, p. 35.

[28] L. Zhang, D. Choffnes, T. Dumitraş, D. Levin, A. Mislove, A. Schulman,
and C. Wilson, “Analysis of ssl certificate reissues and revocations in
the wake of heartbleed,” Commun. ACM, vol. 61, no. 3, pp. 109–116,
Feb. 2018. [Online]. Available: http://doi.acm.org/10.1145/3176244

[29] L. S. Huang, A. Rice, E. Ellingsen, and C. Jackson, “Analyzing forged
ssl certificates in the wild,” in 2014 IEEE Symposium on Security and
Privacy, 2014, pp. 83–97.

2021 Fourteenth International Workshop on Selected Topics in Mobile and Wireless Computing

73

