
A Deep Learning Model for Anomalous Wireless
Link Detection

Blaz Bertalanic∗f, Halil Yetgin∗‡, Gregor Cerar∗†, Carolina Fortuna∗
∗Department of Communication Systems, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia.

fFaculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
†Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia.

‡Department of Electrical and Electronics Engineering, Bitlis Eren University, 13000 Bitlis, Turkey.
{blaz.bertalanic | halil.yetgin | gregor.cerar | carolina.fortuna}@ijs.si

Abstract—Machine learning (ML) techniques play a significant
role in detecting anomalous wireless links. However, to date,
to the extent of our knowledge, there is no robust classifier
that would work in a realistic scenario where various anomalies
could appear concurrently in the time-series gleaned from the
network monitoring tools. In this paper, we propose a new deep
learning based classifier and show that is able to outperform
the state of the art for existing link layer anomalies. Our
evaluation results demonstrate that the state-of-the ML models
perform with an average accuracy of about 63%, whereas the
average accuracy of the proposed DL model is around 90%,
indicating a significant improvement of 27 percentage points
anomaly detection performance.

Index Terms—anomaly detection, deep learning, machine
learning, ensemble classifier, wireless networks, wireless links

I. INTRODUCTION

Modern wireless networks, both cellular and non-cellular,
besides exploring operations in higher frequencies from mm-
wave up to THz, are undergoing also a number of other
transformations, such as heavily relying on network and ser-
vice virtualization, e.g., virtual network functions and orches-
tration, robust connectivity through massive multiple-input
multiple-output (MIMO), and beamforming techniques. The
networks are becoming more complex and more agile, and
thus they can be configured much faster and more efficiently
through software control compared to the conventional and
manual methods when dedicated network devices came pre-
configured. Additionally, Internet of Things (IoT) [1] devices
are also often deployed on various legacy infrastructures that
are monitored and the resulting data is used to optimize various
processes.

Increasingly large and complex wireless infrastructures ne-
cessitate to be monitored, maintained and serviced similar to
any other infrastructure, e.g., legacy IT infrastructure, indus-
trial robots, machinery, electrical grids, logistics and health.
Minimizing maintenance costs while ensuring network relia-
bility is challenging when the number of devices is relatively
small, i.e. in their tens, and becomes prohibitive in actual
implementation when in their thousands or tens of thousands.
To aid in effective management of such networks, automatic
network monitoring [2], malfunction detection [3] and specific
anomaly shape recognition [4] solutions, have been proposed.

Many use machine learning as one of the most prominent
approaches to tackle automatic knowledge extraction from
large amounts of data that cannot be managed manually.

Assume a large IoT network of thousands of nodes and
corresponding wireless links that (inter)connect them to a net-
work. An automatic network monitoring system would collect,
show and perhaps trigger an alert when the link between two
nodes would behave as in Fig. 1. A human operator would then
study a number of dashboards with metrics corresponding to
that link and, based on experience, understand what might be
the underlying issue that causes the anomaly in order to trigger
fixes. However, in large IoT networks, with thousands to
millions of nodes, providing an automatic solution that would
detect the shape of a given anomaly and identify the possible
causes, would improve the reaction time of the human, cut
the time to remedy and cut the overall operational costs of
maintaining it. For the example shape presented in Fig. 1, the
underlying cause of the anomaly could be caused by buffer
congestion or a software bug that determine the watchdog to
periodically reboot the node, a radio remaining in excessive
active state and requiring recalibration or an obstacle blocking
the communication for some time as discussed more in detail
in [4].

Figure 1. Example anomalous link observed over 3 months in a real-world
wireless IoT network.
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In this paper the main challenge is to develop a new,
robust and accurate supervised anomaly detector based on new
deep learning (DL) architecture. Through iteration process of
optimal parameter search, we develop the detector to recognize
the four types of anomalies introduced in [4], namely sudden
link degradation (SuddenD), sudden link degradation with
recovery (SuddenR), instantaneous link degradation (InstaD)
and slow link degradation (SlowD). We show that the proposed
model outperforms the state of the art link level anomaly
detection models by up to 27 percentage points when all
anomaly classes are taken into account. To the extent of our
knowledge, this is the first attempt on anomaly detection in
wireless networks considering a new DL approach employed
over a set of predefined real-world wireless link anomalies.

This paper is organized as follows. We discuss the related
work in Section II. Section III provides the formal problem
statement, while Section IV discusses the model development
for all the classifiers to be analyzed in the paper. Section V
compares the performance of the resulting classifiers, while
Section VI concludes the paper.

II. RELATED WORK

Wireless network malfunctioning can also be referred to as
network and device anomalies, and to date, these anomalies
have been defined in several ways, in particular from the
perspective of wireless networking-related aspects. Machine
learning is often used for assisting the development of anomaly
detection systems.

A. Machine learning for wireless network anomaly detection

A large portion of the current research on anomaly detection
in wireless networks focuses on intrusion, fraud and fault
detection, event detection in wireless sensor networks (WSN),
system health monitoring, and natural disaster [5].

Considering only classical machine learning (ML) algo-
rithms, Salem et al. [6] evaluated the performance of five ML
algorithms for anomaly detection in medical wireless sensor
networks for health monitoring. Using SVM, decision trees,
logistic regression, Naive Bayes, and decision table, they were
able to distinguish between irregular variations in a patient’s
health parameters and faulty sensor data.

In our recent work [4], we considered the classical ML
algorithms for link layer anomaly detection. We used three
unsupervised (local outlier factor, isolation forests and one
class SVMs) and three supervised ML algorithms (logistic
regression, random forests and SVMs) for detecting 4 different
anomalies by single class classification. Furthermore, deep
learning techniques, more specifically autoencoders, were used
but their scope was limited to feature generation only. More
importantly, their training and evaluation process considered
only one type of anomaly at a time, while in a realistic
production environment all anomalies are likely to appear in
the data.

Wazid [7] proposed an unsupervised way of detecting
intrusions in wireless networks. They were able to distinguish
between anomalous and non-anomalous links on traffic data

using k-means algorithm achieving high recognition perfor-
mance. Another anomaly detection with unsupervised ML
was proposed by [8], where they detected misdirection and
blackhole attacks in wireless environment on traffic data.
For unsupervised learning they used k-medoid algorithm and
successfully detect the anomalies with high accuracy.

As described in [9], there is a large list of possible ML
models for anomaly detection and selecting a suitable ML
algorithm for a particular application can be a challenging
task, e.g., anomaly detection of wireless links [10].

B. Deep learning for wireless network anomaly detection

Anomaly detection with deep learning (DL) algorithms is
often performed with unsupervised learning algorithms in the
form of autoencoders (AE), while a few adopts supervised
learning algorithms.

Recently, the authors of [11] evaluated the performance of
four AE models for intrusion, anomaly detection and classifi-
cation on captured IEEE 802.11 network data, and achieved
high overall accuracy in classifying the attacks through this
solution. Another study on cyber attack anomaly detection in
wireless networks was conducted by [12], where they gathered
data from transport layer traces. With the use AE network
they increased performance results in detecting cyber attacks
compared to the supervised approaches.

Similarly, the authors of [13] evaluated the performance
of their proposed semi-supervised AE approach for anomaly
detection. They used captured IEEE 802.11 network data for
distinguishing between 4 different cyber attacks and achieved
high overall performance accuracy. Additionally, another work
on intrusion anomaly detection was realized by [14], where
they encoded captured IEEE 802.11 network data into images
and used supervised anomaly detection approach consisting of
convolutional neural networks to distinguish between different
cyber attack types with high accuracy.

Finally, an anomaly detection model was developed by [15],
where they were trying to detect anomalies in wireless sensor
data in the form of spikes and burst. By using an AE network,
they were able to achieve high true positive rate of detection
anomalies in data.

There is a plethora of work proposed for anomaly detection
focusing on intrusion detection, albeit to the extent of our
knowledge, this is the first attempt on anomaly detection in
wireless networks using a new DL approach employed over a
set of signal-level anomalies.

III. PROBLEM STATEMENT

Suppose an anomaly detection scenario in wireless net-
works as depicted in Fig. 2. On the left side of the figure,
wireless smart devices, IoT sensors and LPWAN residing
on the premises of smart infrastructures and homes are de-
picted. To ensure high quality and possibly uninterrupted data
communication for business processes, the operator of the
smart infrastructure has in place an automated infrastructure
that monitors the wireless link and notifies the technicians,
represented on the right side of the figure, of malfunctions
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that are to be remedied. We assume that in this particular
scenario, the anomalies need to be classified based on their
possible causes, as discussed in [4], before a decision on
how to proceed with the remedy is taken. In some cases,
the anomalies might be mitigated remotely through software
upgrades, whereas in others an on-site visit will be required.
We formulate the anomaly detection system portrayed in Fig. 2

Figure 2. A high-level overview of the proposed anomaly detection system
using DL model.

as a classification problem in which an input time series S is
passed to the function of Φ that maps the input to a set of
target classes C as provided in Eq. (1).

𝐶 = Φ(𝑆) (1)

The cardinality of the set C, also denoted as |𝐶 |, provides
the number of classes to be recognized. In this work, we
start from the four types of anomalies introduced in [4]
and consider a five-class classification problem with |𝐶 | =
5 where the set of target classes is defined to be 𝐶 =

{𝑆𝑢𝑑𝑑𝑒𝑛𝐷, 𝑆𝑢𝑑𝑑𝑒𝑛𝑅, 𝐼𝑛𝑠𝑡𝑎𝐷, 𝑆𝑙𝑜𝑤𝐷, 𝑛𝑜𝑟𝑚𝑎𝑙}. By doing so,
we are able to detect the specific types of anomalies defined
in [4] that are portrayed in Fig. 3. Those anomalies appearing
in time series of RSSI values are recorded as raw time-ordered
values, thus forming the time series S. Fig. 3 presents the time-
value representation of an ordinary link with solid black lines
and its anomaly injected representation with dashed red lines.
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Figure 3. Time-series representation of the normal links and of the four types
of anomalies considered in [4]. These time series attempt to approximate long
term link behaviours observed in a real-world deployment.

The mapping function Φ, representing the classifier, can be
realized using various ML techniques. In this work, we pro-
pose a supervised DL model consisting of convolutional neural
networks [16]. We compare the performance of the proposed
model against ensembles of recent state of the art models for
link layer anomaly detection [4] developed using supervised
ML techniques; namely, i) Logistic Regression (LR) from Re-
gression Analysis [17], ii) Random Forest (RForest) from tree
ensemble class [18], and iii) Support Vector Machines (SVM)
from kernel-method class [18].

DL models [16] are trained using ML algorithms based on
artificial neural networks (ANN) and imitates the way how
human brain works. The most common type of DL algorithms
are convolutional neural networks (CNN). CNNs are able to
successfully capture the temporal and spatial dependencies
within an input data through the application of various filters.
CNN uses these filters to apply significance to various aspects
of the input data which enables them to differentiate between
those aspects. In the remainder of the paper, we will refer to
the resulting model as deep learning classifier (DLC).

Logistic Regression [17] is a modified linear regression that
is able to work on classification problems. In linear regression,
the goal is to fit a line to data samples and minimize loss.
Similarly, logistic regression aims for fitting sigmoid function
with the goal to minimize loss at predicting any two classes.
In the remainder of the paper, we will refer to the resulting
model as logistic classifier (LRC).

Random Forest [19] is an ensemble method that uses a
number of decision tree classifiers followed by a voting
mechanism to perform multi-class classification. The trees are
learnt by randomly splitting a relatively large feature space
into smaller subspaces. Each tree provides a class in which
a specific data point falls into, where the class corresponds
to the "vote" of that tree. The final outcome of the classifier
then uses a mechanism, such as majority voting to provide the
final result. In the remainder of the paper, we will refer to the
resulting model as random forest classifier (RFC).

Support Vector Machine [20] is a learning algorithm that
belongs to the family of kernel methods. Generally speaking,
SVMs attempt to learn a hyperplane that best splits a set of
data into two classes. The shape of the hyperplane depends
on the type of selected kernel function for the algorithm.
For instance, when non-linear kernels are chosen, i.e., RBF
kernel [21], then the learnt hyperplane is also non-linear, and
thus the obtained model is better suited to approximate or
discriminate non-linear random variables. In the remainder of
the paper, we will refer to the resulting model as support vector
machine classifier (SVMC).

IV. MODEL DEVELOPMENT

The proposed model is depicted in Fig. 4 and consists
of a seven layer deep network elaborated as follows. The
time series S consisting of instances of length 300 is used
to train the convolutional layers of the model. The first two
convolutional layers consist of 64 filters of kernel size 3. The
third layer has 32 filters with the same kernel size as the
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Figure 4. Proposed deep learning network model for five-class anomaly detection.

previous ones. The final two convolutional layers both use 16
filters of kernel size 7. The output data is then flattened and
fed into a dense layer with 64 nodes followed by another dense
layer with 32 nodes. Finally, the data is feed into the output
layer of size 5 with sigmoid activation function, which enables
the model to detect anomalies that could appear concurrently
in the time-series. All other layers of the network for activation
use the ReLU function and do convolution with stride 1.

We evaluate the proposed DL model against three ensemble
classifiers: LRC, RFC, SVMC as described in Section III and
depicted in Fig. 5. Since logistic regression and SVM natively
support only binary classification, we design the corresponding
classifiers LRC and SVMC as a sequence of one versus all
models. For instance, for the case of LRC, Classifier 1 from
Fig. 5 decides whether the anomaly is SuddenD. If the answer
is positive, then it yields a prediction. Alternatively, it moves
on to Classifier 2 that decides whether the anomaly is of type
SuddenR. If the answer is positive, then it yields a prediction.
It can alternatively move on to Classifier 3 that decides
whether the anomaly is of type InstaD, and finally Classifier
4 is mapped to SlowD anomalies, whereas Classifier 5 is
mapped to normal link behaviour. By doing so, we train five
different binary classifiers, one for each anomaly type and one
for non-anomalous (normal) link classification. Consequently,
each classifier provides its own decision boundary, where
together they represent a multi-class classifier leveraged for
final decision.

The RFC models are constructed using a multitude of
decision trees at training time that together forms an ensemble.
Fig. 5 can be used for a high level representation of the
RFC model, where Classifier 1 represents the first decision
tree estimator, Classifier 2 represents the second, and so on.
In Fig. 5, we present RFC with five decision trees, albeit in
practice, the number of estimators varies and is expected to be
much higher. Each of the decision trees on its own performs
as a multi-class classifier and yields its prediction. The final
decision is realized by performing the majority vote on the
given predictions from all decision trees, which means that the
final predicted class is the one selected by the most decision
trees.

A. Dataset

To train all the models used in this paper, namely
DLC, LRC, RFC and SVMC, we utilized the Rutgers WiFi
dataset [22] as our real-world measurement dataset containing
records from 29 nodes, each of which contains 300 mea-
surements. Each link is measured with five different noise
levels and we assume that each measurement is recorded as a
different link. We use this real-testbed dataset and synthetically
inject four anomalies that were defined by [4]. We only con-
sidered links without packet loss, which reduced our dataset
from 4 060 to 2 123 (≈ 52%). Similar to [4], we injected one
anomaly type at a time over 33% of those links. Anomalies
were injected according to guidelines in Table I, while other
links are kept untouched.

Table I
SYNTHETIC ANOMALY INJECTION METHOD SIMILAR TO [4].

Type Links Affected Appearance Persistence

SuddenD

2 123 33% (700)

once, [200th, 280th] for ∞
SuddenR once, [25th, 275th] for [5, 20]
InstaD on ≈1% of a link for 1 datapoint
SlowD once, [1st, 20th] for [150, 180]†

† RSSI(𝑥, start) ← RSSI(𝑥) + min(0, −rand(0.5, 1.5) · (𝑥 − start))

B. Model tuning

For each of the classifiers, Table II lists the parameters
utilized in our experiments. For the DLC, the network ar-
chitecture was designed with an iteration process of testing
different combinations of number of layers, from 5 up to 20,
kernel sizes from 2 up to 7 and number of nodes from 16 up to
512. The DL model produced by this method, and presented in
Table II, yielded the best combination of result and simplicity
out of all tested combinations.

For the LRC, we leverage the LR implementation in SciKit-
learn1 that enables setting 12 different parameters. For most
parameters, we selected standard values that have been proven
to work on large number of cases by the ML community.

1https://scikit-learn.org/stable/
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Figure 5. Design of the ensemble classifier for five-class anomaly detection using classical models: LRC, FRC, SVMC.

Table II
ML ALGORITHMS AND THEIR ASSOCIATED PARAMETERS.

Technique Implementation Parameters and their range

Deep Learning CNN Input -> 2xCNN(num_filters=64, kernel=3) -> CNN(num_filters=32, kernel=3) ->
Classifier (DLC) Tensorflow -> CNN(num_filters=16, kernel=7) (all CNN with activation = ReLu and stride = 1) ->

-> Dense(64) -> Dense(32) -> Output(5, activation = softmax)

Logistic Regression LogisticRegression penalty=’l2’, dual=False, tol=1e-4, C= (1e-3, 1e-2, 1e-1, 1., 10., 100.) fit_intercept=True,
Classifier (LRC) from sklearn intercept_scaling=1, class_weight=None, solver=’lbfgs’, l1_ratio=None

Random Forest BaggingClassifier base_estimator=None, n_estimators=[10, 20, 30, 40, 50, 70, 100], max_samples=1.0,
Classifier (RFC) from sklearn max_features=1.0, oob_score=False, intercept_scaling=1,

Support Vector SVC C=(1e-3, 1e-2, 1e-1, 1.0, 10., 100.), kernel=(’linear’, ’rbf’), gamma=(’auto’, ’scale’),
Machine Classifier (SVMC) from sklearn tol=1e-3, decision_function_shape=’ovr’, break_ties=False,

For certain parameters that should be optimized such as the
regularization strength 𝐶 in this case, we search for the best
configuration by assessing a list of possible values that is
presented in Table II and ultimately select the best performing
regularization factor. The implementations for the other two
classic ML algorithms also include over ten possible input
parameters. For RFC, we vary the number of base estimators.
For SVMC, we use the 𝑅𝐵𝐹 kernel and vary the regularization
factor 𝐶 and kernel coefficient 𝑔𝑎𝑚𝑚𝑎. All ML algorithms
are developed by searching for the optimal hyper-parameters
through Grid search.

As some of the models are sensitive to scaling, we scaled
our dataset using min-max scaler to limit the values between
0 and 1, and used 10-times Shuffled split approach to ensure
credible results.

V. RESULTS

The performance comparison of the proposed deep learning
classifier, namely DLC, against the three selected classical
ML algorithms is presented in Table III using the precision,
recall and F1 metrics that are widely used for evaluating the
performance of classifiers in the ML literature. In a nutshell,
it can be seen from Table III that DLC performs equally with
the other models for the SuddenD anomaly and outperforms
by 4% and up to 86% for the other anomalies.

Analyzing the SuddenD anomaly detection performance,
we can see that neither model had any difficulties correctly
detecting it. This is due to the fact that this anomaly is the
most apparent out of all, since it always occurs at the end of

the time series trace with a steep drop in the RSSI value, as
depicted in Fig. 3a.

Compared to the SuddenD anomaly, SuddenR is harder to
detect since the occurrence of this anomaly can be anywhere
within the trace as per Fig. 3b and Table I. This can be
observed in F1 score of classic ML algorithms which range
from 0.57 for LRC to 0.87 for RF model. There is also a
slight performance drop in DLC model, compared to SuddenD
anomaly detection, albeit it still performs significantly better
than other classical ML algorithms. DLC classifier with an F1
score of 0.97 is better by 0.10 from the F1 score of RFC,
which is the best performing classical ML algorithm, and by
up to 0.40 for the LRC that is the worst performing classical
ML algorithm for the detection of SuddenR anomaly.

Detecting InstaD anomaly shows similar behaviours when
compared to the SuddenR anomaly. However, owing of the
instantaneous changes in samples, it is naturally difficult to
accurately detect this type of anomaly. This can be readily
observed in Table III, where all classical ML algorithms
exhibit extremely bad performance in detecting this type of
anomaly. The best out of three is the LRC model, which
performs an F1 score of 0.13, followed by SVMC performing
an F1 score of 0.11, while RFC exhibits the worst detection
performance with an F1 score of 0.02. DLC algorithm shows
superior performance than other three counterparts with F1
score of 0.88. Apparently, InstaD anomaly detection, owing
to its rather arbitrary nature, reveals the superiority of DLC
model over the classical ML models.

SlowD anomaly can be easily miss-classified by the models
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Table III
PERFORMANCE RESULTS OF THE CLASSIFIERS.

Class
DLC LRC RFC SVMC

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

SuddenD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SuddenR 0.98 0.96 0.97 0.49 0.67 0.57 0.99 0.77 0.87 0.76 0.68 0.72
InstaD 0.97 0.81 0.88 0.10 0.20 0.13 0.08 0.01 0.02 0.37 0.07 0.11
SlowD 0.62 0.85 0.72 0.54 0.81 0.65 1.00 0.21 0.34 0.37 0.68 0.47
No anomaly 0.97 0.95 0.96 0.93 0.77 0.84 0.85 0.99 0.92 0.88 0.89 0.89

since the slope of anomaly is usually not as distinguished as it
is with other anomalies. This can be observed from the results
in Table III, where performance results in the form of F1 score
for all classic ML algorithms span between 0.34 for RFC and
0.65 for LRC classifier. Yet again, DLC model outperforms
the classical ML algorithms with an F1 score of 0.72 which is
higher by up to 0.38, albeit compared to the DLC classification
of other anomaly types it performs with the lowest F1 score
for SlowD anomaly.

In the last row of Table III, performance results of clas-
sifying links without anomaly are presented. Similar to the
previous anomaly types, DLC model for normal link detection
(F1 score of 0.96) outperforms the classical ML models by
0.04 for the RFC (F1 score of 0.92) and by up to 0.12 for the
LRC (F1 score of 0.84).

VI. CONCLUSIONS

In this paper, we proposed a robust DL-based anomalous
link classifier, namely DLC, for the classification of wireless
link anomalies. We showed that the DLC model significantly
improves the state of the art on link layer anomaly detection
that currently considers four wireless link anomalies and a
number of classical ML algorithms with various approaches
to feature extraction. Unlike the state of the art, the proposed
model is a single block that includes automated feature ex-
traction using five convolution layers and automated model
training using dense layers.

For SuddenD anomaly, DLC performs equally with the
other traditional ML models, albeit it can outperform the
traditional ML models by up to 86% detection performance.
The considered ML models perform with an average accuracy
of about 63%, while the average accuracy of the proposed DL
model is around 90%, which leads to an improvement of 27%
anomaly detection performance.
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