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Abstract—Recently, Extreme Learning Machine (ELM) started
gaining interest among researchers in wireless communications as
an online training solution for machine learning based receivers.
ELM has proven to provide high training speed and global op-
timization capabilities. However, the number of needed training
pilots is still relatively high and increases rapidly with the number
of subcarriers, thus rendering its deployment impractical. In
this paper, we propose subcarrier-wise ELM receivers that are
robust to the increase in the number of used subcarriers;
we then extend them to exploit adjacent channel knowledge,
hence providing superior performance in frequency selective
channels. In addition, we propose a novel training architecture
based on interpolated training that saves more than 50% of
the computational and spectral resources of conventional ELM
receivers. We show the robustness of the proposed technique in
different channel scenarios and OFDM settings by means of both
practical channel measurements and numerical simulations.

Index Terms—Extreme Learning Machine, Interpolated Train-
ing, OFDM, Equalization, Channel Estimation.

I. INTRODUCTION

Machine Learning (ML) techniques have recently gained
enormous attention in the wireless communications research
field. Unlike traditional model-based communication systems,
the non-linear capabilities of ML-based communication sys-
tems have led to superior performance when dealing with
non-linear conditions and interfering sources, e.g., insufficient
cyclic prefix. This superiority was shown in various studies
where deep Neural Networks (NN) were mainly adopted such
as in [1], [2]. However, the majority of studies considered
an offline training approach that depends on launching huge
amounts of numerical simulations to accumulate the needed
training sets. These sets are used afterwards in iterative op-
timization processes, such as stochastic gradient descent, in
order to tune the NN weights in a global optimum sense.
Although this strategy has shown impressing learning capabil-
ities, a performance degradation is observed when the channel
statistics faced in the real-world prediction phase differ from
those used in the numerical training phase.

One way to handle this problem is to adopt an online
training approach by means of extreme learning machine
[3]–[5]. ELM is a single hidden-layer feed-forward NN that
allows extremely fast training capabilities and ensures globally
optimum weights in the least square sense. This means that
ELM could be quickly trained in an online manner using
pilots received from any surrounding radio environment, and
that can be exploited afterwards for data detection. Although

some recent studies have started proposing online ELM-
based receivers [4], [6]–[8], they still require a large amount
of pilots for online training, thus causing a significant loss
in spectral efficiency. In addition, the number of needed
training pilots increases with the number of ELM inputs
[8], i.e., the number of subcarriers in Orthogonal Frequency
Division Multiplexing (OFDM) systems. In fact, an ELM
architecture of (Nin × Ñ ×Nout) is normally designed with
Np > Ñ > Nin, where Np is the number of OFDM pilot
symbols and Nin, Ñ , Nout represent the number of input,
hidden, and output nodes, respectively. One straightforward
way to reduce Np is to decrease the number of inputs Nin,
hence Ñ , which corresponds to a smaller number of weights
to be tuned. This can be done by dedicating one specific ELM
receiver for each subcarrier, as was initially proposed in [4]
with a (1× Ñ × 1) architecture. This approach is denoted by
Subcarrier-Wise ELM (SW-ELM). Even though the scheme in
[4] needs a smaller amount of training symbols, regardless of
the number of OFDM subcarriers, the (1×Ñ×1) architecture
is incapable of handling non-linear situations such as the cases
of insufficient or lack of Cyclic Prefix (CP).
In this paper, we first revisit the SW-ELM approach by propos-
ing new architectures that exploit adjacent channel information
in order to overcome the aforementioned limitations. Then, we
use the proposed SW-ELM to introduce a novel interpolated
training concept which permits more than 50% reduction of
the needed computational and spectral resources. Interpolated
training means that only a portion of subcarriers are dedicated
for pilots in the training phase and thus used to train the corre-
sponding SW-ELM receivers. The SW-ELM receivers on the
non-pilot subcarriers are trained by directly calculating their
output weights through interpolation. We consider different
pilot spacing schemes and assess the receivers performance
in various channel scenarios. In addition to numerical simula-
tions, we conduct a real-world channel measurement campaign
in an indoor environment. Our measurements support the
SW-ELM based interpolated training superiority in terms of
spectral and computational efficiencies.

The remainder of this paper is organized as follows. In
Section II, we present the system model and the channel
measurement campaign. Section III details our proposed in-
terpolated training concept. Section IV shows the performance
evaluation results, while Section V concludes the paper.
In this paper, XT , XH and X† are the transposition, Hermi-
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tian conjugate, and Pseudo-inverse of X , respectively. ⊗ is the
Kronecker product. diag(.) transforms a vector into a diagonal
matrix and a matrix into a vector of its diagonal elements. C
is the set of complex numbers.

II. SYSTEM MODEL

A. OFDM System

Consider a block of K OFDM symbols to be transmitted
over M subcarriers. Therefore, the transmitted vector x ∈
CMK×1 of the whole transmission block is written as x =
[xT

1 x
T
2 ...x

T
K ]T , where xk = [x1,k x2,k . . . xM,k]

T . xm,k is
theM-QAM symbol transmitted on the mth subcarrier and the
kth OFDM symbol. We denote by N the number of samples of
the whole transmission block and NCP the Cyclic Prefix (CP)
length: N = NCP-OFDMK, where NCP-OFDM = M + NCP is
the length of the CP-OFDM symbol. The demodulated vector
y ∈ CMK×1 of the whole transmitted block is defined as
y = [yT

1 y
T
2 ...y

T
K ]T , where yk = [y1,k y2,k . . . yM,k]

T . It
can be written as:

y = FH
rxCFtx︸ ︷︷ ︸
D

x+ FH
rxη, (1)

where η ∈ CN×1 is the additive white Gaussian noise vector.
Ftx/rx = diag(1K) ⊗Wtx/rx, with Wtx/rx ∈ CNCP-OFDM×M

being the OFDM modulation and demodulation matrices. 1K

is a vector of K ones. At the transmitter, Wtx(n,m) =
1√
M
ej

2π
M m(n−NCP). At the receiver, Wrx(n,m) = 0 when

0 < n ≤ NCP and Wrx(n,m) = 1√
M
ej

2π
M mn when

NCP < n ≤ NCP-OFDM. We denote by C ∈ CN×N the
channel convolution matrix of the transmitted signal block,
where C(i, j) = c(i − j), with c(l) being the lth tap of
the channel impulse response. D = FH

rxCFtx represents the
System Transmission Matrix (STM) of the CP-OFDM system.
When the channel is time unvarying and the CP length is
bigger than the maximum delay spread of the channel, D
becomes diagonal with c = diag(D) denoting its diagonal
vector. Hence, ym,k can be equalized by dividing it with the
corresponding STM value cm,k = D(mk,mk):

x̂m,k =
ym,k

ĉm,k
, (2)

To obtain the channel estimate ĉm,k, different techniques could
be considered such as the Least Square (LS) and Linear
Minimum Mean Square Error (LMMSE) channel estimators.

B. Subcarrier-wise ELM Receiver

Contrary to the previous work in [4], in our study, we give
the SW-ELM the opportunity to have surrounding subcarriers
as input along with the desired subcarrier. Fig. 1 represents the
proposed SW-ELM system. We denote the input matrix of the
ith SW-ELM receiver, i.e., the SW-ELM receiver dedicated
to the ith subcarrier, by Yi ∈ CNx×Nin . Nx ∈ {Np, Nd}
represents the number of concatenated OFDM demodulated
symbols and Np is the number of OFDM symbols transmitted
in the training phase, while Nd is the number of OFDM sym-
bols transmitted in the prediction phase, with K = Np +Nd.

Let Xi = F(Yi) ∈ CNx×1 the output of the ith SW-ELM
receiver that regroups the transmitted symbols on the ith
subcarrier in the training phase or the corresponding detected
symbols in the prediction phase. It can be written as follows:

F(Yi) = Gi

(
Yiαi +Bi

)
︸ ︷︷ ︸

Hi

βi, (3)

where αi ∈ CNin×Ñ is the matrix of hidden layer weights
with its jth column representing the weights connecting the
Nin input nodes to the jth hidden node. In other words,
in the ith receiver, the weight αi,nj connects the nth input
node to the jth hidden node, as can be seen in Fig. 1.
Bi = b

T
i ⊗1Nx , with bi ∈ CÑ×1 representing the bias vector

added to the hidden nodes, the term bi,j being added to the
jth hidden node. βi ∈ CÑ×1 is the output weights vector
that contains the weights connecting the Ñ hidden nodes to
the single output node, such that the weight βi,j connects
the jth hidden node to the output node. Gi(.) denotes the
element-wise activation function, taken in this work as an
inverse hyperbolic sine function. Each SW-ELM receiver will
go through three main phases: Initialization, training and
prediction.

1) Initialization phase: In ELM, the hidden layer weights
α and biases b are not trained, but randomly generated and
fixed afterward. As stated by [3], any continuous random
distribution could be assigned for both α and b, and we
consider a uniform distribution in [-0.1,0.1].

2) Training phase: It aims to calculate the output weights
parameters, i.e., the matrix β. To do so, the ith SW-ELM
receiver is first provided with a training set

(
Y

(p)
i ,X

(p)
i

)
. It

is defined similarly to Yi, while the superscript (p) denotes
the nature of these symbols, pilots in this phase. Y (p)

i is fed
to the SW-ELM receiver as its input Yi = Y

(p)
i in Eq. (3).

Accordingly, the hidden layer output is written as:

H
(p)
i = Gi

(
Y

(p)
i αi +Bi

)
. (4)

In the end, X(p)
i is fed to the SW-ELM receiver as its

corresponding desired output: F(Y (p)
i ) =X

(p)
i . Hence, using

Eqs. (3) and (4), we can write:

X
(p)
i =H

(p)
i βi. (5)

Unlike most of ML training techniques, Eq. (5) shows that
ELM is trained in one shot by minimizing the corresponding
LS cost function and using the pseudo-inverse method [9]:

β̂i =
(
H

(p)
i

)†
X

(p)
i , (6)

where

H†i =
(
HH

i Hi

)−1
HH

i . (7)
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Figure 1. Structure of the proposed subcarrier-wise ELM receiver

3) Prediction phase: Based on the calculated output
weights matrix β̂i, the ith SW-ELM receiver can estimate the
Nd transmitted data symbols of the ith subcarrier X(d)

i ∈
CNd×1 in one shot. To do so, the received data symbols at
the ith subcarrier and its surrounding Y (d)

i ∈ CNd×Nin are
first fed to the corresponding SW-ELM to calculate its hidden
layer output H(d)

i using Eq. (4). Afterward, and based on Eq.
(3), H(d)

i is used together with the previously calculated β̂i

to estimate the corresponding transmitted data symbols:

X̂
(d)
i =H

(d)
i β̂i. (8)

C. Measurement Campaign

In this section, we present the used equipment and the con-
sidered environment for the channel measurement campaign
that we conducted to validate the proposed SW-ELM receivers.
A vector network analyzer (VNA) was used to sound the radio
channel in the frequency domain. We considered a 3.5 GHz
frequency with 1200 OFDM subcarriers of 15 KHz, thus a total
of 18 MHz bandwidth. MegaPhase feeder cables were used
for the transmit and receive antennas and were included in the
VNA calibration to cancel their effects in the channel sounder.
To reduce the measurement noise, the VNA acquires 10
successive realizations of the whole frequency range and takes
their average for each measurement. The transmitter/receiver
were positioned at 2m/1.50m above ground level and equipped
with a patch / EM-6116 omnidirectional antennas, respectively.
These Tx and Rx were placed in different rooms of a typical
building in its first floor that consists of a 35m long corridor
with offices on both sides. In Fig. 2, we present the different
locations chosen for the transmitters and receivers to perform
channel sounding, where only two concrete walls exist, while
all other rooms are separated by plaster walls. The orientation
of the transmitter patch antenna is shown by an arrow, while
the black circle denotes the receiver location.

III. INTERPOLATED SW-ELM RECEIVERS

In this section, we use the SW-ELM receivers to propose an
interpolated training concept that offers a spectral and com-
putational efficient solution to the conventional block training

Figure 2. Measurement Environment

based (SB)-ELM receivers of Fig. 3a. For this purpose, we
start by proposing a comb pilot pattern in the training phase
where we send data among pilots, as is shown in Fig. 3b for
a pilot spacing of two, i.e., one pilot every two subcarriers.
Using this concept, we propose to train SW-ELM receivers that

(a) (b)

Figure 3. (a) Traditional training (Pilot spacing = 1) and prediction architec-
ture (b) Proposed architecture with an example of a pilot spacing of 2

correspond only to pilot subcarriers by using the training in Eq.
(6). On the other hand, SW-ELM receivers of data subcarriers
are not trained but interpolated. In other words, the output
weights matrix βdata of data-based ELM receivers are calcu-
lated by interpolating the corresponding output weights of the
pilot-based ELM receivers. The interpolation is expressed as:

βdata =Wβ̂pilot, (9)

where β̂pilot contains the calculated output weights of pilot
subcarriers and W is the considered interpolation matrix.
Using Eq. (9) to interpolate the output weights of data-based
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ELM receivers is only possible when the β variations along
subcarriers are smooth. This means that the output weights
of SW-ELM receivers should change smoothly from one
subcarrier to the other. Nevertheless, this is not guaranteed
since ELM hidden parameters are randomly chosen. To handle
this, we propose to design all SW-ELM receivers while using
the same randomly generated hidden layer parameters, i.e.,
αi = αj , Bi = Bj ,with i, j ∈ {1, 2, ..M}. By doing
so, the output weights are now expected to vary smoothly
from one subcarrier to the other. This is confirmed in Fig.
4 where we present the variations of a trained output weight
over all subcarriers. We considered a CP-OFDM system with
256 subcarriers and a TDL-C power delay profile [10] with
a Root Mean Square (RMS) delay spread of 200 ns. We
note that the output weights variations are smooth and are
highly proportional to the variations of the channel frequency
response. The considered pilot spacing is taken such that pilots
are separated by 4 data symbols which seems sufficient to
conduct interpolation in this scenario. In what follows, we
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Figure 4. Amplitude (a) and phase (b) variations of the output weight β along
OFDM subcarriers compared with the amplitude (c) and phase (d) variations
of a TDL-C channel frequency response with RMS delay spread = 200 ns

summarize the working principles of the interpolated SW-ELM
receivers:

1) In the training phase, pilots are transmitted in a comb
pattern with data in between. Different pilot spacing
schemes could be considered based on the channel
frequency selectivity.

2) The same randomly generated hidden layer parameters
are used for all data and pilots SW-ELM receivers (i.e.
the same among all subcarriers).

3) The pilot SW-ELM receivers are trained using Eq. (6).
4) The output weights of data SW-ELM receivers are

calculated by applying an interpolation filter on the
output weights of previously calculated pilot SW-ELMs.

5) The interpolated SW-ELM receivers are used to detect
the data symbols sent in the training phase.

6) The overall trained and interpolated SW-ELM receivers
are used to detect data symbols in the prediction phase.

IV. RESULTS & DISCUSSION

A. Practical Results

In this section, we start by conducting MonteCarlo sim-
ulations via Matlab to assess the numerical performance of
the proposed architecture. Afterward, the system performance
is analysed by incorporating the results of the measurement
campaign. We consider the TDL-C power delay profile with
an OFDM system of 256 subcarriers and a CP length of 4.7 µs,
while the subcarriers spacing is set to 15 KHz. The following
SW-ELM architectures are considered: 5 × 6 × 1, 3 × 4 × 1,
1× 3× 1 and 1× 4× 1, with a total of 200 training symbols
for the training of all pilot-based SW-ELM receivers.
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Figure 5. BER vs RMS delay spread for different SW-ELMs at SNR=25 dB

We start in Fig. 5 by presenting the performance of different
SW-ELM architectures while using the conventional block
training concept that does not use interpolation. We simulate
the Bit Error Rate (BER) performance for different RMS delay
spread values in a CP-free OFDM system. The aim here is to
focus, in a first step, only on the impact of including adjacent
subcarriers on the SW-ELM performance in frequency selec-
tive channels. The first thing to note is that SW-ELM with
a single input cannot outperform the case of perfect channel
state information (PCSI), even when increasing the number
of hidden nodes. On the other hand, allowing the SW-ELM
receiver to exploit adjacent subcarriers information succeeds
in outperforming the PCSI case. This happens while using
relatively simple architectures with a small number of hidden
nodes, where we considered the cases of two surrounding
subcarriers (3×4×1) and 4 surrounding subcarriers (5×6×1).
Using a small number of inputs reflects into the need for a
low number of hidden nodes, and therefore a smaller number
of training symbols compared to more complex architectures.
Indeed, we used only 200 training symbols compared to [8]
where a number of 104 training symbols was necessary.
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In Figs. 6 and 7, we adopt the (5 × 6 × 1) architecture
and assess the performance of the interpolated training
in comparison with that of the traditional block training
concept. The comparative analysis is provided for different
pilot spacing schemes and interpolation techniques. Fig. 6
presents the BER performance obtained for different values
of the Signal-to-Noise Ratio (SNR) and a channel RMS
delay spread of 200 ns, while considering three constellation
maps, namely the 4-QAM, 64-QAM, and 256-QAM. The
performance of interpolated SW-ELM is simulated with
linear interpolation and two pilot spacing schemes of 2 and
4, corresponding to pilots being separated by 1 and 3 data
symbols respectively. The major observations to make are that
our proposed interpolated architecture with linear interpolation
performs close to the fully conventional architecture and the
PCSI case, with the pilot spacing schemes of 2 and 4. Also,
it should be noted that, similarly to the conventional case, the

proposed architecture is robust to the increase of the QAM
constellations sizes.

The advantages of using ML-based receivers lie within
their non-linear capabilities. In Fig. 7, we consider a CP-
free OFDM system with a 4-QAM constellation map and
compare the BER obtained for different RMS delay spread
values between 50 and 1000 ns. Also, different pilot spacing
schemes (2, 3 and 4) are considered, corresponding to 1, 2
and 3 data symbols between pilots, respectively. We consider
both linear and previous interpolation techniques for data ELM
receivers. Previous interpolation means that the trained Beta
matrix of a specific pilot symbol will be used for the detection
of subsequent data symbols. In other words, it is equivalent
to applying the same pilot-based ELM receiver to subsequent
data subcarriers. We first note the expected superiority of the
conventional SW-ELM receiver over the PCSI and LS cases.
This superiority gap increases with the increase of the RMS
delay spread. On the other hand, the interpolated SW-ELM
performs as good as the conventional SW-ELM for low values
of the RMS delay spread. It can be noted that pilot spacing
values of 3 and 4 maintain almost the same performance as that
of the conventional case until an RMS value of about 300 ns
and 200 ns, respectively. Besides, the pilot spacing 2 can still
guarantee a similar performance to the conventional case even
at an RMS delay spread of 600 ns, which is already higher than
the measured RMS of many transmission scenarios such as the
Pedestrian A and Indoor channel models. Also, one can clearly
note the advantages of using the linear interpolation scheme
with respect to a direct application of pilot-based SW-ELM
receivers to data subcarriers.

Fig. 8 shows the BER performance obtained with
the measurement campaign for different locations of the
transmitter and receiver. The aim is to outline how the
interpolated SW-ELM technique performs with respect
to the conventional SW-ELM in different indoor channel
scenarios. An SNR value of 30 dB is considered for all Tx-Rx
combinations, with a 4-QAM constellation map in a CP-free
OFDM system. Results confirm that the interpolated SW-
ELM still performs similarly or closely to the conventional
SW-ELM in the 2, 4 and 6 pilot spacing cases, depending on
the channel scenario. Table I presents the BER for different
SNR values of the conventional and interpolated SW-ELM
receiver with the 6 pilot spacing case. The results are
averaged over all conducted measurements of Fig. 2. They
confirm that the interpolated SW-ELM performs as good as
the block-trained SW-ELM. Also, it is clear that the 6 pilot
spacing scheme with low and moderate SNR does not induce
any significant loss in the average performance obtained in
the practical indoor scenario.

Table I
AVERAGE BER OF THE MEASUREMENT CAMPAIGN FOR THE
INTERPOLATED AND CONVENTIONAL SW-ELM RECEIVERS

SNR [dB] 0 10 20 25 30
BER Interpolated 0.21 0.046 0.0057 0.0020 0.00082

BER Conventional 0.21 0.046 0.0057 0.0019 0.00065
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B. Discussion on the Computational Load and Spectral Effi-
ciency

In this part of the study, we compare the complexity and
spectral efficiency of the conventional and proposed receivers.
In the training phase of the SW-ELM receiver, the matrix
inversion process of Eq. (7) has a complexity order of O(Ñ3),
while the matrix multiplication HHH results in O(Ñ2Np).
Knowing that Np > Ñ > M , we can conclude that the
asymptotic computational load of each SW-ELM receiver is
O(Ñ2Np). Therefore, in block-trained based receivers, the
overall complexity is given by O(MÑ2Np). Let Mp and Md

the number of subcarriers used for pilots and data transmis-
sions, respectively. In the interpolated SW-ELM, only Mp

SW-ELM receivers are trained using Eq. (6), thus resulting
in O(MpÑ

2Np), while the Md SW-ELM receivers of the
data subcarriers are first linearly interpolated and then used
in Eq. (8) to detect the transmitted data of the training phase,
resulting in O(MdÑNp). Hence, the overall complexity can
be given by O(MpÑ

2Np). This means that the proposed
interpolated SW-ELM receiver can use Mp

M × 100% of the
computational and spectral resources of the conventional
block-trained SW-ELM receiver, while having almost the same
performance accuracy. In fact, this depends on the channel
frequency selectivity and the chosen pilot spacing scheme, as
can be seen in table II which provides the relative gains of
the interpolated SW-ELM w.r.t. the conventional block-trained
SW-ELM, for different values of the RMS delay spread and
pilot spacing schemes. The results show that, for an RMS of
200 ns, a gain of up to 75% can be obtained by adopting the
pilot spacing scheme of 4, while incurring a negligible loss in
BER. For an RMS of 500 ns, a gain of at least 50% can be
achieved.

V. CONCLUSION

In this paper, the subcarrier-wise ELM receiver was revisited
to take advantage of its superiority over the block-based ELM,
mainly in terms of its robustness against the number of used
OFDM subcarriers and its fast training and global optimization
capabilities. The first contribution of our work is the extension
of SW-ELM receivers to exploit adjacent subcarrier channels
so as to achieve a high detection performance with simple

Table II
COMPUTATIONAL AND SPECTRAL EFFICIENCY AT SNR= 25 DB

Pilot Spacing RMS [ns] Mp

M
100% BER

1 (Block training) 200 100% 0.00241
2 200 50% 0.00241
3 200 33.33% 0.00241
4 200 25% 0.00248

1 (Block training) 500 100% 0.00299
2 500 50% 0.00312
3 500 33.33% 0.00354
4 500 25% 0.00425

architectures, while necessitating a low number of training
symbols. Indeed, we showed that 3×4×1 and 5×6×1 ELM
structures that exploit up to 4 adjacent subcarriers are sufficient
to yield a high detection accuracy. Based on the extended
SW-ELM receivers, we then proposed a novel interpolated
training concept that saves more than 50% of the spectral and
computational resources of conventional SW-ELM receivers.
We showed that these gains can be increased when the channel
frequency selectivity decreases. In addition, we conducted an
indoor measurement campaign that validated the efficiency
of the interpolated training concept in different transmission
scenarios. By incorporating the prediction phase of data sym-
bols within the training phase, the new ML structures avoid
the need for the traditional long offline training phases, and
therefore allow their real-time implementation in low-latency
applications.
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