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Abstract—With the recent outbreak of the COVID-19 pan-
demic, major industries and academic institutions throughout
the world have moved into a work-from-home situation, which
resulted in a huge demand for networking resources. In particu-
lar, several home users are demanding simultaneously high data
rates to support online video streaming applications, like Webex
and Zoom. Therefore, it is expected that in these situations the
quality of experience of online users may be severely affected
or deteriorated, especially as the number of simultaneous active
online users increases. In this paper, we use the Neyman-Scott
Cluster Process from Stochastic Geometry to model the spatial
patterns of online home users and analyze the throughput that
could be achieved by a various numbers of online home users
who are accessing the internet concurrently.

Index Terms—Home Users; Stochastic Geometry; Neyman-
Scott Cluster Process; Area System Throughput;

I. INTRODUCTION AND RELATED WORK

Since December 2019, the Coronavirus disease 2019 or
COVID-19 has spread like wildfire throughout the world,
thus forcing major industries and institutions of all types to
moved to a work-from-home mode where employees, faculty,
and students have started working from home using mobile
computing devices to deliver their job duties. This led to
an increase in the number of simultaneous home users who
use video streaming applications, most notably Webex, Zoom,
and Microsoft’s Groups applications [1]. In the literature,
researchers have worked on several research topics related
to COVID-19. For example, in [2], the authors used existing
cellular wireless network functionalities to detect regions at
risk for spreading COVID-19. On the other hand, in [3],
the authors presented a headset like wearable device to track
COVID-19 symptoms. Whereas in [4], the authors discuss the
impact of COVID-19 pandemic on teaching and present an
online teaching model based on the idea of Problem-Based
Learning (PBL) and take “Data Structure” as an example
to discuss the design of teaching process and problems. But
to the best of our knowledge, there is no work so far that
have analyzed the impact of the pandemic on the capacity
of Wi-Fi networks. Especially in home networks where the
users connect to Wi-Fi hotspots usually with closed access

(encrypted communications). Thus, it is worth to investigate
the case when these Wi-Fi hotspots are heavily loaded during
pandemics and analyze the impact of this load on the through-
put of simultaneous online home users.

The network and software community recognized early on
the crucial role that computer networks play in the functioning
of distributed and Internet applications. It responded to the
need of ensuring their reliable and efficient operations by
developing and proposing different methods and approaches
for testing network systems and servers. A series of patents
started to appear as of early 2000 on the subject of network,
server, an protocol testing. Starting with [5], a method and
system were developed for simulating multiple concurrent
clients on a network server to stress test the server. The method
in [6] is similar, although it is a software-based tool that aims
to test network servers under high load scenarios. In [7] and
[8], a method of testing a cellular network was proposed and
involved creating network traffic using a mobile phone that is
connected to a computer. The computer measures the response
to the test traffic and the functioning of the network. In [9], a
set of methods and media were created for stress testing mobile
network equipment by simulating multiple user equipment
devices. Generated messages were transmitted over a common
public radio interface to a radio equipment controller to stress
test it. Finally, the patent in [10] describes a network testing
method that is implemented in a software-defined network
(SDN), where testing is accomplished by injecting network
events using an SDN controller, and gathering network traffic
statistics. In addition to patents, several works appeared in the
literatures on network performance testing. In [11], the authors
proposed a method and set of tools for test case generation
that is meant to stress test multimedia systems. It adapts
constraint solving techniques to generate test cases that lead
to potential resource saturation in such systems. A stress test
methodology was proposed in [12] that is aimed at increasing
the chances of discovering faults related to network traffic
in distributed systems. The technique analyzes control flow
in sequence diagrams, and produces stress test requirements
that are made of specific control flow paths along with timing
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information indicating when to trigger them. Finally, motivated
by the need to do proactive network testing, the work in [13]
is based on the notion of gathering information on normal
network operations in order to have a base to compare with
when problems occur.

In contrast to the above methods, tools, and approaches, our
technique in this paper uses Stochastic geometry which is a
popular tool to analyze wireless networks [16]–[19]. Due to
the inhomogeneities in city’s building formation, the density
of Wi-Fi access points (APs) (or hotspots) cannot be treated
uniformly, where in some places the density of APs is higher,
whereas in other places it decrease to zero. In such cases, the
homogeneous 2D Poisson Point Process (PPP) may not offer
accurate results [20]. An efficient alternative is the Cluster
based model such as the Poisson Cluster Process (PCP) that
provides tractable and accurate analytical model for home
Wi-Fi networks [21]. The aim of this paper is to analyze
the user throughput of heavily loaded home Wi-Fi networks
resulting from an increased number of simultaneous home
users that demand high data rates using the Neyman-Scott
Cluster process, a member of the family of Poisson Cluster
processes.

The rest of the paper is organized as follows. The system
model including a description of the Neyman-Scott Cluster
process is given in section II. Section III provides the compu-
tation of the area system throughput (AST). The performance
analysis is provided in Section IV and finally Section V
concludes the paper.

II. SYSTEM MODEL

We consider a network of Wi-Fi APs and users. The
locations of the Wi-Fi APs are distributed according to a
Neyman-Scott cluster point process φ [14], [15]. The Neyman-
Scott cluster point process is a Poisson cluster process that
consists of a parent process forming the center of the clusters
and the daughter points that are spatially distributed around the
cluster centers. The parent points are distributed on the plane
according to a homogeneous Poisson point process (PPP) with
intensity λp. Note that the parent points themselves are not
physically included but only denote the center of the clusters.
The daughter points of the representative cluster are scattered
independently and with identical distribution around the center
of each cluster. For the daughter process we consider the
Matérn cluster process where the number of daughter points
follows a Poisson distributed with mean ĉ and each daughter
point is uniformly distributed in a radius R around the origin
with density function f(x) given by:

f(x) =

⎧⎨
⎩

1

πR2
if ||x|| ≤ R

0 otherwise
(1)

where x is the two dimensional coordinates relative to the
cluster center, and ||.|| is the Euclidean norm. In this model, the
daughter points represent the Wi-Fi APs as shown in Figures
1 and 3. The density of φ is defined as λ which is composed
of the parent process with density λp and the average number

of daughter points ĉ within each cluster resulting in λ = λpĉ.
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Fig. 1: Matérn Cluster Process (R = 20 m, λp = 20/km2,
ĉ = 10)
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Fig. 2: Matérn Cluster Process (R = 20 m, λp = 200/km2,
ĉ = 10)

The receiver is not considered a part of the process. The
power received by a receiver located at z due to a transmitter
at x is modeled as hxg(x− z) where hx is the power fading
coefficient associated with the channel between the nodes x
and z. We assume that all fading coefficients are independent
and identically distributed (i.i.d) Rayleigh distributed with
mean μ = 1. The function g(x − z) corresponds to the path
loss function where g(x − z) = ||x − z||α where α ≥ 2 is
the path loss exponent. We let o denote the origin (0, 0), and
assume the locations of the Wi-Fi users to be subject to a
homogeneous PPP with intensity λu that is independent of
the location of the Wi-Fi APs.

In this paper, we assume that a typical mobile user is located
at z and is communicating with a Wi-Fi AP, which is located
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at the origin based on Palm measures [14]. The whole point
process can be translated such that the mobile user can be
considered to be located at the origin. We assume also that
the typical user chooses a serving AP based on the maximum
average received power, i.e. the minimum distance to the user.

III. COVERAGE PROBABILITY

To characterize the Matérn Cluster process, we use the
Probability Generating Functional (PGFL) which is defined
for the Matérn Cluster process as follows:

GN (v) = exp

(
−λp

∫
R2

[1−Gs(v(x))] dx

)
, (2)

where vector v(x) denotes the location of the Wi-Fi APs and
0 ≤ v(x) ≤ 1 for all x ∈ R

2. In addition, Gs (v(x)) is
defined as follows:

Gs (v(x)) = exp

(
ĉ

[∫
R2

[v(x+ y)f(x)dy − 1]

])
, (3)

with f(x) defined in (1).
The coverage probability is defined as the probability that

the SINR is higher (or at least equal), than a predefined
threshold value (T ), which is defined as a specific system
parameter. The SINR coverage probability of a Wi-Fi user
at a distance ||z|| from the Wi-Fi AP which is located at the
origin can be derived by using the PGFL in (3) as follows:

Pc (z, T ) = exp

(
−λp

∫
R2

[1− exp (−ĉ β(z,x, T )) dx]
)

×
∫
R2

exp (−ĉ β(z,y, T )) f(y)dy,
(4)

where

β(z,x, T ) =

∫
R2

g (x− y − z)

g(z)

T
+ g (x− y − z)

f(y)dy, (5)

where the vectors x and y denote the locations of the parent
and daughter points (for the particular parent), respectively.

A. Average Coverage Probability

The average coverage probability is computed by consid-
ering the coverage probability inside and outside the cluster.
When the typical user is located inside the cluster of Wi-Fi
APs, the average coverage probability is defined as:

Pc,in (T ) =

∫ 2R

0

Pc (z, T ) fDin
(z) dz, (6)

where

fDin (z) ≈ 2c̄

R2 (1− exp (−4c̄))z exp
(−c̄z2

R2

)
. (7)

On the other hand, when the typical user is located outside
the cluster of Wi-Fi APs, the average coverage probability is
defined as:

Pc,out (T ) =

∫ ∞

0

Pc (z, T ) fDout
(z) dz, (8)

where

fDout (z) = 2πλp(z+R) exp
[−πλp(z

2 + 2Rz)
]
. (9)

Thus, the total average coverage probability of a Wi-Fi user
at a distance ||z|| from the Wi-Fi AP is defined as:

Pc,tot (T ) = Pc,in (T ) · P (z insideCluster) (10)
+ Pc,out (T ) · P (z outsideCluster), (11)

where P (z insideCluster) denotes the probablity that the user
is inside the cluster of Wi-Fi APs and is defined as:

P (z insideCluster) = 1− exp
(−πλpR

2
)
. (12)

Whereas P (z outsideCluster) denotes the probablity that the
user is outside the cluster of Wi-Fi APs and is defined as:

P (z outsideCluster) = exp
(−πλpR

2
)

(13)

IV. AREA SYSTEM THROUGHPUT (AST)

The area system throughput (AST) of a Wi-Fi AP is defined
as:

AST (λp, ĉ) = λp ĉPM (λp, ĉ)BW

∫ ∞

0

Pc,tot(2
x − 1)dx.

(14)
Where BW corresponds to the frequency bandwidth and
PM (λp, ĉ) corresponds to the medium access probability; the
probability that a Wi-Fi AP has access to the channel when it
has data to transmit. PM accounts for the expected fraction of
time that the transmitting Wi-Fi AP has access to the channel,
and hence it is a measure of the expected fraction of active
transmitters, over a fully overlapped coverage area. For a Wi-
Fi AP ζj ∈ Φ, PM can be derived first by using the medium
access indicator êj as follows:

êj =
∏

ζi∈Φ\{ζj}

(
�ti≥tj + �tj<ti�Gij/l(‖ζi−ζj‖)≤Γcs/Pw

)

(15)
Where �γ is the indicator function of the event γ, which is
equal to one if γ exists and zero otherwise. Γcs denotes the
carrier sensing threshold of the Wi-Fi AP whereas Pw is the
Wi-Fi AP transmission power. In addition, Gi,j represents the
channel fading random variable between Wi-Fi APs ζi and
ζj , respectively. ti represents the random back-off used by the
Wi-Fi AP during the clear channel assessment procedure. ti
is a uniformly distributed random variable in the interval [0,
Δ].

Given that a Wi-Fi AP ζi has a random back-off timer t ∈
[0,Δ] with cumulative distribution function (CDF) F (t)= t

Δ∀ t ∈ [0,Δ], the medium access probability PM (λp, ĉ) is
defined as:

PM (λp, ĉ) =
1

Δ

∫ ∞

0

∫ Δ

0

exp
[− t

Δ
λpĉN(ζi,Γcs, r0)

]
f‖ζi‖(r)dtdr0.

(16)
Where

N(ζi, r,Γcs) =

∫
R2\B(o,r)

exp

(
−μΓcs

Pw
g(ζ − ζi)

)
dζ,

(17)
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and
f‖ζi‖(r) = 2πλpĉ r exp

(−πλpĉr
2
)
. (18)

The proof of PM (λp, ĉ) in (16) is shown in Appendix A.

V. PERFORMANCE EVALUATION

In this section, we analyze the performance of the clus-
tered Wi-Fi network using different performance metrics. We
assume a Wi-Fi AP transmitting power of Pw = 23 dBm
and carrier sensing threshold Γcs = −82 dBm. Also, we
assume that the path loss exponent α = 4 and we neglect
noise for simplicity. In addition, we consider for demonstration
a minimum decoding SINR requirement Tmin = −2.6 for a
QPSK modulation with a coding rate of 1/8 according to [24].
First, we start by presenting the numerical results of the SINR
coverage probability versus the distance ||z|| between the Wi-
Fi AP and the corresponding user with (λp = 200/km2, ĉ = 5,
R = 20m) as shown in Figure 2. By inspecting Figure 2, we
can see that the SINR coverage probability decreases with
the increase of the distance between a Wi-Fi AP and the
corresponding user where it reaches zero at around ||z|| =
80 m.
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λp = 200/ km2, ĉ = 5, R = 20m, α = 4

Fig. 3: SINR Coverage Probability versus the distance ||z||
between Wi-Fi AP and User

Furthermore, we plot the analytical SINR coverage prob-
ability versus the variation of λp and ĉ in Figures 3 and 4,
respectively. Figure 3 shows that as the density of parent
points λp representing the density of clusters increase, the
SINR coverage probability decreases from around 0.9 at
λp = 20/km2 to around 0.1 at λp = 700/km2. On the other
hand, in Figure 4, we can see that as the average number of
Wi-Fi APs ĉ increase, the SINR coverage probability decreases
from around 0.8 at ĉ = 1 to around 0.1 at ĉ = 40. Hence, based
on the results provided by Figures 2, 3, and 4, we can see that
the increase in the distance between the Wi-Fi AP and the
corresponding user as well as the increase in the density of
clusters (λp) and Wi-Fi APs per cluster (ĉ) all impact severely
the coverage probability and may lead to outage.
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Fig. 4: SINR Coverage Probability versus λp
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Fig. 5: SINR Coverage Probability versus ĉ

Next, we present the numerical results for the area system
throughput (AST) in Figures 5 and 6. Figure 5 presents the
AST of a Wi-Fi network with respect to the variation in the
density of clusters λp where ĉ = 5 and R = 20m. From
Figure 5, we can see that as λp increases the AST increases
rapidly first in the interval λp = [1, 600] where it reaches
a maximum of 4.3 Gbps at λp = 600/km2. Then it starts
decreasing as λp increases beyond 600/km2 where the AST
reaches 1.8 Gbps at λp = 3000/km2. Thus, we can see that
the throughput could be maximized at λp = 600/km2 in the
case where ĉ = 5 and R = 20m.
On the other hand, Figure 6 presents the AST of a Wi-Fi
network with respect to the variation in the density of Wi-Fi
APs per cluster ĉ where λp = 200/km2 and R = 20m. From
Figure 5, we can see that as ĉ increases the AST increases
first in the interval ĉ = [1, 21] where it reaches a maximum of
4.7 Gbps at ĉ = 21. Then it starts decreasing as ĉ increases
beyond 21 where the AST reaches 2.6 Gbps at ĉ = 50. Thus,
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we can see that the throughput could be maximized at ĉ = 21
in the case where λp = 200/km2 and R = 20m.
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VI. OPTIMIZATION PROBLEM FORMULATION AND
ADOPTED SOLUTION

We investigate the scenario where the operator would like to
optimize the performance and has no constraints on the cost.
Hence, given the minimum SINR decoding requirement Tmin,
this can be formulated as follows:

max AST (λp, ĉ, T )

s.t. T ≥ T
min

(9)

Since the function AST (λp, ĉ, T ) is nonlinear, we apply the
practical and effective global optimization Newton-Raphson
technique [22], as shown in Algorithm 1, to find the optimal
density of clusters of APs (λp) given an average number of

APs per cluster ĉ and that provide maximum AST performance
as in (9).

Algorithm 1. Finding optimal network density
require
Initial parent point process density: λ0

Average daughter points: ĉ
Cluster radius: R
Maximum number of iterations: NIter

Define tolerance margin: ε
procedure COMPUTE OPTIMAL λ: λopt

λn ← λ0

while (NIter > 0) do

f ′(λn)← ∂

∂λ
AST

(
λ, ĉ

)∣∣∣∣
λ=λn

f ′′(λn)← ∂2

∂λ2
AST

(
λ, ĉ

)∣∣∣∣
λ=λn

λn+1 ← λn − f ′(λn)

f ′′(λn)

P ← AST
(
λ, ĉ

)∣∣∣∣
λ=λn+1

// To calculate λopt

if P ≥ (1− Pout) then
λopt ← λn+1 return

else
λn ← λn+1

NIter ← NIter − 1 continue
end if

end while
end procedure

end

VII. OPTIMIZATION RESULTS

Here, we utilize the developed optimization framework to
compute statistically optimized network topologies that max-
imize the AST performance of the clustered Wi-Fi network.
We consider for demonstration a minimum decoding SINR
requirement Tmin = −2.6 dB for a QPSK modulation with a
coding rate of 1/8, according to [24]. In addition we consider
a cluster radius R = 20. Figure 8 presents the optimal density
of parent points λp representing the density of clusters of Wi-
Fi APs versus the average number of APs in each cluster ĉ. In
Figure 8, we can see the optimal λp that achieve the highest
AST performance for each ĉ. We start first by ĉ = 5, where
we can see that the optimal AST performance can be achieved
at λp = 370 per km2. Then, we can see that as the average
number of APs per cluster ĉ increase, the optimal density of
clusters of APs decreases exponentially from λp = 370 per
km2 at ĉ = 5 to λp = 85 per km2 at ĉ = 20 and λp = 25 per
km2 at ĉ = 50.

VIII. CONCLUSIONS

This paper presented a framework based on stochastic
geometry using the Matern cluster process to analyze the
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Fig. 8: Optimal λp versus ĉ using Algorithm 1

throughput of online users during the COVID-19 pandemic.
Instead of assuming a fixed medium access probability (MAP)
of nodes, we base our model on the IEEE 802.11 standard
to derive the MAP of Wi-Fi access points (APs). The model
considers the effect of interference as well as the carrier sense
multiple access with collision avoidance (CSMA

/
CA). We

then applied the Newton Raphson method to compute the
optimal densities of clusters of APs using an average number
of APs per cluster, and showed how these optimal densities
vary with the density of APs per cluster.
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APPENDIX A

Given the tagged Wi-Fi AP ζj = (r, 0), its MAP is derived
as:

PM (λp, ĉ) = E [êj |tj = t, ζj = (r0, 0), ζj ∈ Φ]

= E

[ ∏
ζi∈Φ\{ζj}

(
�ti≥tj + �tj<ti�Gij/l(‖ζi−ζj‖)≤Γcs/Pw

) ]

(a)
= E

[ ∏
ζj∈Φ∩Bc(0,r0)

(
1− F (t)exp

(
−μΓcs

Pw
g (‖ζi − ζj‖)

))]

(b)
= exp

[
− F (t)λpĉ

∫
R2\B(0,r)

exp

(
−μΓcs

Pw
g (‖ζi − ζj‖)

)]

(3)
where (a) follows by re-writing ζj = (r0, 0) as ζj ∈ Φ,
Φ(Bo(0, r0)) = 0 and de-conditioning on Φ(Bo(0, r0)) = 0.
By using Slivnyak′s theorem, and the probability generating
functional (P.G.FL) of the PPP, (b) is derived. Then by
de-conditioning on t with F (t) = t

Δ and on ||ζj || we get the
resulting MAP equation in (16).
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