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Abstract—With the increased popularity of mobile crowdsens-
ing, personal trajectory information has become easily attainable,
compromising the privacy of participants. The focus of this
work is to obfuscate the participants’ trajectory information
during the task recommendation process within crowdsensing. In
this paper, we present a cooperative peer-to-peer crowdsensing
model, in which peers assist each other in obfuscating their
trajectory information. We define a cooperative recommendation
mechanism, coupled with an efficient trip segmentation algo-
rithm, which together can preserve the privacy of participants,
without sacrificing the performance of task recommendation in
the system. Finally, since privacy achieved via dummy-based
obfuscation cannot be theoretically guaranteed, we evaluate the
privacy and efficiency of the proposed mechanism via simulations.

Index Terms—recommendation, privacy, cooperative, obfusca-
tion, peer-to-peer, crowdsensing

I. INTRODUCTION

With Mobile Crowdsensing (MCS), the sensing capabilities
of mobile devices controlled by already roaming crowds are
leveraged to improve the sensing process. By involving the
humans in-the-loop of sensing, more data can be collected
with less cost, when compared to traditional sensor networks
[1], allowing for the development of new smart services and
applications [2]–[4].

In typical MCS platforms, participating crowds have access
to the sensing tasks through a central service provider, which
has various degrees of involvement in the process of task
recommendation1. No matter the task allocation model, an
individual’s participation will inadvertently reveal sensitive
private information about their daily trajectories and routines.
The possibility of this information falling in hands of a mali-
cious entity may discourage users from fully participating in
the system. Thus, negatively affecting the overall performance
of the system. The main premise of this work is the design of
a privacy-preserving allocation paradigm that provides added
incentive for crowds to participate.

The crowdsensing paradigm holds some semblance to
location-based services (LBS), especially in terms of the crowd
participant initiating the communication with the server to

This work is supported by NSF grant #1755788.
1In this work, we use the term task recommendation to refer to task

assignment or allocation, since the participant has a choice on whether to
follow these allocations or not.

participate in the crowdsensing process, by requesting infor-
mation of nearby available sensing tasks. However, its core
difference is that the performance of an MCS system depends
on the quality of the task recommendation process, which
depends greatly on the awareness of the service provider of the
location and availability of the participants in the system. Thus,
although the problem of preserving the participants’ privacy
has long been studied in the context of location-based services
[5], [6], many of the existing privacy-preserving mechanisms
in LBS cannot be directly applied to MCS [7], [8].

Moreover, most of the existing works on privacy-preserving
within crowdsensing mainly consider the privacy issues related
to data collection and submission [9], [10], as well as spatial
privacy issues related to task allocation [8], [11]. In our work,
the goal is to define privacy-preserving mechanisms within
MCS, which would address the privacy concerns within the
platform as a whole; from initial contact, to task recommen-
dation, to data collection and submission, and all the way to
compensation and rewards.

In this paper, we present the first step towards achieving that
goal, with the definition of a cooperative privacy-preserving
task recommendation mechanism without sacrificing the qual-
ity of task allocation within the MCS system. The proposed
mechanism is designed to obfuscate the information of com-
plete trajectories of participants, which allows for better task
recommendation and mobility coordination [12]. Moreover, it
is designed with adjustable obfuscation parameters, to allow
for the adjustment of the overhead in the system based on the
privacy needs of the participants.

Paper Outline. We define the preliminaries of a crowdsens-
ing platform and its associated threat model in Section 2. Our
proposed cooperative privacy-preserving task recommendation
mechanism is defined in Section 3, followed by a discussion
of how the rest of the sensing process can be managed while
preserving the participants’ privacy in Section 4. In Section 5,
we evaluate the privacy and efficiency of the proposed mech-
anism via simulations, since privacy achieved via dummy-
based obfuscation cannot be theoretically guaranteed, and we
conclude the paper with a discussion related works and our
future work in Sections 6 and 7 respectively.
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II. PRELIMINARIES

In this section, we define the components of a Coordinated
MCS system and its corresponding adversarial model.

A. Coordinated Mobile CrowdSensing

In MCS, the sensing process is coordinated by a central
service provider, which acts as a broker between the tasks to
be completed and the mobile participants who can complete
them, as depicted in Figure 1.

Fig. 1. In MCS, tasks are distributed over the mobility field, be it a city,
campus, or within a smart building, and participants roam freely over that
mobility field, according to their personal schedules. Tasks are recommended
for participants via a central task allocation service, which takes as input the
availability information of spatio-temporal tasks and mobile participants.

System Model. The server represents the authority in the
platform, which is always available and reachable though a
basic Internet connection. A participant represents a platform
user or the software agent acting on their behalf, which is
assumed to have direct and non-interrupted access to the
server. Accordingly, a participant becomes an active peer in
the system once they join the MCS service, and the server is
aware of all active peers at all times.

Sensing tasks are spatio-temporal, i.e. they need to be
completed at different locations throughout time. A task is
completed when its corresponding sensing action is performed,
which can vary from taking pictures [13], to recording audio
[14], to answering questions [15]. In the scope of this work,
we assume that no matter what action is involved in task
completion, it can be completed within a single unit of time.
Moreover, we make the typical assumption that time is split
into discrete steps that are granular enough to capture the
dynamic nature of the system, while allowing amble time for
task completion.

Sensing Process. As an active peer in the system, the
participant can also engage in the sensing process. The sensing
process is composed of three phases; task discovery, data
collection and submission, and compensation.

During task discovery, the participant shares some trajectory
information with the server and receives recommendations
of tasks to complete on their way. The quality of these
recommendations depends on the level of granularity of the
trajectory information shared. In this work, we assume that a
participant shares information about their upcoming trip, by
sharing the two spatio-temporal endpoints representing their
current location and requested destination. With this level of
granularity, the mobility of participants in the MCS system can
be coordinated to obtain a higher quality of sensing service.

After receiving a recommended set of tasks, the partici-
pant decides on the subset of these tasks to complete and
plans their exact route accordingly. While on their route, the
user completes the sensing tasks chosen, by collecting the
corresponding data and submitting it to the server. Finally,
the participant is compensated for the tasks completed and
submitted.

B. Adversarial Model

Private Information. A participant’s mobility behavior, in
the form of the locations they visit at certain times, is private
to them. The goal of an adversary is to reveal any private
information about a participant, i.e., revealing any true spatio-
temporal properties of the participant’s route, including its
origin and destination.

Adversary Identity. We define an adversary as an entity
that aims to learn a participant’s private information, regardless
of their intent. We consider both the active and passive
adversarial models. An active adversary can compromise the
server, and obtain all information about the participants in
the system, A passive adversary can perform eavesdropping
attacks to learn more information about a certain participant.
In this work, we consider the server itself to be an active
adversary, and the other active peers in the system to be passive
adversaries.

privacy

III. PRIVACY-PRESERVING TASK RECOMMENDATION

To allow for task recommendation without revealing much
information, a participant shares information about their up-
coming trajectory 2 with the server to obtain a tailored set of
tasks. To protect against both active and passive adversaries,
we define a cooperative obfuscation mechanism, in which the
participant’s private information is obfuscated before sharing
it with the server.

The proposed mechanism, as summarized in Figure 2, is
composed of two series of communication; from the partic-
ipant to the server, and then back from the server to the
participant. In this section, we define our privacy-preserving
mechanism with its associated algorithms.

2The model proposed can be easily expanded to allow for multiple trips
per participant, but we present it with a single trip for the sake of simplicity.
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Fig. 2. Privacy-preserving mechanism for requesting recommendations from
the server in cooperative coordinated MCS.

A. Request to the Server

A request to the server can be in the form of a single
trip or multiple trips (bundle). A trip is an abstraction of the
participant’s trajectory, in the form of their location at the time
of the request and their destination location along with the
latest arrival time at that destination. It is the responsibility
of the server to process the trips received and return set
of recommendations, one set per trip received, regardless of
origin of these trips.

To achieve an adequate level of privacy, we require the par-
ticipant to first segment their trip, to obfuscate its true spatio-
temporal information using the dummy location approach [16],
[17]. Then, peers from the system are recruited to help with the
forwarding of these trip segments, to avoid communicating the
trip information directly with the server. Thus, preventing an
adversarial server from associating the dummy trip segments
to a single participant.

1) Trip segmentation: We define Algorithm 1 to efficiently
partition a single trip into a set of k dummy trip segments.
The algorithm is designed to disassociate the spatio-temporal
properties of the original trip from each individual segment,
while preserving these properties in the set as an aggregate.

Algorithm 1 Segmentation heuristic to split a single trip into
its corresponding k dummy-trips.
Input: Trip: (v1, t1) and (v2, t2); k
Output: A set of k dummy trips

1: Create R[k]
2: Let segtime = Min(2, t2−t1

k )
3: Let startloc = v1
4: Let starttime = t1
5: for counter = 1 to k − 1 do
6: Let endtime = starttime + segtime
7: Let endloc = ConstrainedRandom(startloc, starttime,

endtime, (v2, t2))
8: R[counter] = (startloc, starttime) and (endloc,

endtime)
9: startloc = endloc

10: starttime = endtime
11: end for
12: R[k] = (startloc, starttime) and (v2, t2)
13: return R

In Algorithm 1, segmentation is achieved by splitting the
temporal properties of the trip. For every trip segment, the
segment duration is pre-determined, and a random walk algo-
rithm is used to determine the endpoint of each segment. Albeit
being random, the spatio-temporal properties of the original
trip are maintained by constraining the random walk within a
feasible region around that trip.

2) Cooperation with Peers: After segmentation, the par-
ticipant selects peers from the set of active participants in
the system. It can be assumed that the server provides an
anonymized list of active participants, to maintain an adequate
level of participant privacy. At least one segment is shared with
each peer, allowing the participant to share all k generated
dummy trip segments. After receiving a dummy trip from a
participant, the peer associates the dummy trip to the sending
participant in a local cache, and then forwards only the
trip to the server, obfuscating the identity of the participant
who initiated the process. Moreover, if the peer received
multiple dummy trips from different participants, these trips
are grouped together and sent as a single bundle to the server.

B. At the Server
The server continuously receives recommendation requests;

either in the form of a single trip or a bundle or trips.
Its responsibility is to allocate the available tasks to the
trips received, optimizing a system-wide objective. After an
allocation decision is made, the tasks chosen for each received
trip are associated with their corresponding trip, as its recom-
mendation, and sent back to the peer that shared that trip with
the server.

In this work, we assume that the system’s objective is to
maximize the total revenue collected from tasks allocated.
Even with the unrealistic assumption of all participants com-
pleting the tasks recommended to them, the sub-modular
welfare maximization problem [18] can be reduced to such
an allocation problem, which renders it NP-hard. Thus, we
define a greedy algorithm to efficiently solve the problem,
since greedy is one of the most efficient techniques known to
approximate this type of problems [19].

Algorithm 2 Greedy task recommendation mechanism for a
bundle of trips
Input: Bundle of trips
Output: Recommendations for each trip in the bundle

1: Let R[i] = {φ}, for each trip in bundle
2: Sort tasks in decreasing order by their payoff
3: for each task t do
4: for each trip p in the bundle do
5: if t is feasible within p then
6: Calculate the benefit of p if t is added to it
7: end if
8: end for
9: Find the trip p∗ with highest utility

10: R[p∗] = R[p∗] ∪ t
11: end for
12: return R

In Algorithm 2, we define a greedy algorithm that prioritizes
assigning the most valuable tasks first. After sorting, the
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benefit of adding the task to every trip is calculated. We define
the benefit as the ratio between the collected revenue along a
trip and the length of that trip. Finally, the task is assigned to
the trip that gains the maximum benefit from including it.

The running time complexity of Algorithm 2 depends on
the number of trips in the bundle, n, the number of available
tasks, m, and the maximum duration of the largest trip in the
bundle, tmax, and in the worst case it is Θ(n ×m × tmax).
The average running time of the algorithm can be improved
by considering only the set of tasks that are valid within the
duration of the trips of the bundle.

C. Back to the Participant

1) Cooperation with Peers: After the server sends the sets
of recommendations back to the intermediate peer, it becomes
their responsibility to forward these trip recommendations to
their owners. Since the server associates each recommendation
set to its corresponding trip, the peer can simply extract the trip
information and use it to lookup its local cache, to determine
the participant who initiated the process. Finally, the peer
extracts the set of recommendations and forwards them to the
original participant.

2) Task Selection: After collecting task recommendations
for their upcoming trip, the participant selects a subset of
these tasks to complete on their way. That selection process
depends on the participant’s preferences, and can be designed
to optimize various individual objectives; such as minimizing
their total distance traveled, maximizing the number of tasks
they select, maximizing their revenue collected from tasks
completed, or a combination of any of these objectives. 3.

IV. BEYOND RECOMMENDATION

As mentioned above, the communication process in MCS
doesn’t stop at the recommendation phase, but continues
to the data submission and compensation phases. Although
the focus of this paper is to present a privacy-preserving
recommendation mechanism, we present in this section the
set of existing mechanisms for the other phases, which would
work best with our proposed mechanism.

A. Data Collection and Submission

After task selection, the participant is expected to collect
the data required to complete these tasks, and send them to
the server. Similar to the recommendation process, sending
the data collected directly to the server would compromise
the participant’s privacy. For the purposes of this paper, we
adopt the path jumbling approach [9] to cooperatively submit
completed tasks.

In more details, after the participant completes some x
number of tasks, they can recruit the help of a random set
of k peers and exchange the data with them. We recommend
adopting the random-fair exchange strategy [9], in which
participants exchange an equal number of tasks between
themselves. This strategy ensures that the number of tasks

3Due to length limitation, we exclude the algorithms defined for task
selection, as they are not the main contribution.

that the user submits at the end is the same as the number
of tasks that they originally completed. Moreover, repeating
this strategy with each peer leads to effective path jumbling.
Finally, after the exchange is performed with every peer, the
participant sends the data, which have been collected from the
exchanges, directly to the server.

B. Compensation and Rewards

In this work, we assume that tasks have equal com-
pensations, which is a typical assumption in existing MCS
systems. Thus, the compensation process becomes that of
paying the participant based on the number of tasks that
they submit directly to the server. These transactions can be
performed anonymously using micro-payments, which were
first introduced in PayWord [20], or by using more efficient
and practical anonymous payment mechanisms designed for
Tor networks [21]. An interesting open problem that this
cooperative model introduces is the investigation of fair and
private payment models with heterogenous tasks, in which
participants are also compensated for their cooperation in
obfuscating their peers’ identities.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our defined
segmentation and recommendation algorithms, in the offline
and online setting.

A. Simulation Setup

A Java discrete event simulator is developed to simulate
the MCS system, and evaluate various recommendation and
routing algorithms. All simulations were performed on a Mac
machine with iOS 11.4 and RAM of 32GB.

All results shown below are averages of 20 executions of the
simulation with varying random seeds, on a 10×10 Manhattan
Grid, which is representative of a small campus or town setup,
with a simulation time of 6 hours, or 360 time units, and
3000 spatio-temporal tasks uniformly distributed over the grid.
Participants’ spatio-temporal endpoints are generated using
mobility traces from [22].

Evaluation Metrics. For the system-based metrics, we
measure participation rate as the ratio between participants
generating revenue and the total number of active participants,
task coverage as the ratio between completed tasks and all
available tasks, and revenue achieved is the ratio between the
total payoff collected from completed tasks and maximum
possible revenue.

B. Privacy experiments

In the first set of experiments, we evaluate the partitioning
algorithm as defined in Algorithm 1. In all experiments, we
generate 100 participants, each with a single trip that is
partitioned into k segments, in which k =number of peers.

Initially, we measure the cosine distance between each
dummy segment created and the trajectory of the original
trip, as shown in Figure 3. A lower value indicates a similar
trajectory (spatially), which is bound to happen with at least
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dummy segment in the experiment, due to the grid-based graph
used in the simulations. Although there exists at least one
dummy segment with almost identical trajectory with every
segmentation, there also exists at least one dummy segment
with a distance close to 2, creating an average distance in the
range of 1.

Fig. 3. Algorithm 1 succeeds in generating pseudo-random trip segments
with varying similarity degrees between 0 and 2.5.

Fig. 4. Higher leakage probabilities are certain when half of the active
participants are recruited as peers.

Then, we estimate information leakage with repeated
queries, by measuring the probability that a peer would receive
more than one dummy segment from the same participant
originating from the same original segment, after being part
of the system for a week. A higher probability indicates a
higher risk from passive attackers. As indicated in Figure 4,
as the number of peers increase dramatically, it is bound that
repetitions will occur over time. These results indicate that it’s
more prudent to keep the number of peers below 30% of the
total number of participants, even when sharing a single trip
segment with each.

C. Online Experiments

In this second set of experiments, we evaluate the perfor-
mance of the recommendation mechanism in a real-time setup,
in which all participants are assumed to be active participants
and they connect with their peers when they have a trip
ready. We compare our private recommendation mechanism
to the optimal choice that a participant would make if given
information about all available tasks by implementing the
Optimal reward-maximizing routing algorithm from [12].

Figure 5 represents the task coverage rate, when varying
the number of peers within the mechanism while fixing the

number of generated dummy segments (k). An increase in
the number of segments leads to a slight deterioration in the
performance of task recommendation, since the partitioning
algorithm aims to hide the true spatio-temporal properties of
the original trip, leading to bad recommendations. However,
this deterioration can be improved by increasing the number
of peers, since this allows the participant to get multiple
recommendations from the service provider, increasing their
chances of finding the perfect set of tasks.

Fig. 5. Increasing the number of peers allows the participant to get more
information about feasible tasks from the service provider. This increases the
task coverage rate with an accompanied increase in communication overhead.

Fig. 6. The quality of recommendation decreases rapidly with each added
segment/peer, while adding unnecessary overhead.

Finally, in Figure 6, we set the value of k to the number of
peers, to verify our hypothesis that with more dummy segment
generated, the performance of task allocation deteriorates,
although the privacy is increased as discussed above. With the
number of dummy segments set to be equal to the number of
peers, the quality of recommendation decreases rapidly with
each added segment/peer, adding unnecessary overhead. It’s
best to set to the number of segments to some fraction of the
number of peers, as shown in Figure 5.

VI. RELATED WORK

Privacy-related solutions can be generally categorized based
on their purpose within the sensing process [5], [8].

For data collection and submission, jumbling triplets were
proposed in [9] to hide participant’s paths during the data
collection and submission process. In [10], sensing records
are transferred to k participants in the form of slices. These
slices can then be sent in to the server who can piece together
the sensing record without knowing who the original sender
was.
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For compensation and rewards, payment transactions can be
performed anonymously using micro-payments, which were
first introduced in PayWord [20], or by using more efficient
and practical anonymous payment mechanisms designed for
Tor networks [21].

For task recommendation, the general categories of solu-
tions range from trusting explicit application privacy policies
[5], to cryptography-based solutions such as differential pri-
vacy [11] and hashing encryption [23], to obfuscating spatial
information via k-anonymity [24], spatial cloaking [16] and
temporal cloaking [25].

Our work fits within the spatio-temporal cloaking, in which
the true spatio-temporal information is hidden from the server.
Cloaking can be done generating dummy information [8], [16],
trusting third-party servers to provide cloaking mixed with
k-anonymity [26], or cooperating with others in the system
to generalize queries [27]. We adopt a hybrid approach of
generating dummy trips with peer cooperation to achieve
trajectory privacy, which has not been investigated in the
context of MCS to the best of our knowledge.

VII. CONCLUSION AND FUTURE WORK

In this paper, we defined a novel cooperative recommen-
dation mechanism within MCS that preserves the privacy
of participants’ trajectory information, while not sacrificing
the performance of task recommendation within the platform.
Our experiments confirm that privacy and performance are
diametric, as better obfuscation leads to worse task coverage,
but an adequate balance can be reached. Our plan for future
work is to investigate privacy-preserving payment models
that compensate peers for their cooperation, as well as the
aggregation of these mechanisms into a comprehensive private
MCS platform.
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