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Abstract—Current machine learning techniques for indoor
localization of wireless devices assume a single wireless propaga-
tion loss setting, making them unfeasible for reliable production
deployment. This paper proposes a new indoor localization tech-
nique designed for variable propagation loss environments based
on deep autoencoder and recurrent neural network (RNN), imple-
mented threefold. This paper proposes a new indoor localization
technique designed for variable loss propagation environments
based on deep autoencoder and recurrent neural network (RNN),
implemented in three stages. First, we extract statistical feature
values from collected RSSI. Second, a deep autoencoder is used
to remove wireless propagation noises introduced by variable
fading settings. Third, an RNN performs the localization task
taking into account previous sensor measurements. Experiments
performed in 3 simulated testbeds with distinct propagation loss
settings have shown that current approaches decrease localization
accuracy by up to 30% when a different propagation loss is
faced. In addition, our proposed model improved localization
accuracy by up to 25.8% regardless of the current environment
propagation loss.

Index Terms—WiFi-based indoor localization, Deep AutoEn-
coder, Recurrent Neural Network

I. INTRODUCTION

Recently, a plethora of works have proposed accurate local-
ization techniques for wireless sensor networks (WSN) [1].
In general, to achieve such a goal, due to their low cost,
wireless localization is made through radio frequency (RF)
approaches that make use of WiFi, Bluetooth, and even Radio
Frequency Identification (RFID) devices [2]. Among these,
WiFi is typically used due to its convenient deployment that
does not require additional infrastructure and its pervasive
penetration [3].

In such a context, WiFi localization is often made through
the analysis of the Received Signal Strength Indicator (RSSI),
which measures the received signal power [1]. Thus, geo-
graphically distributed reference points (Access Points - APs)
are used to measure the RSSI from a given device. The
collected data can then be analyzed to establish the device’s
relative location to the deployed APs [1] in a multilateration-
based approach. Several techniques have been used to fulfill
such a task, wherein machine-learning (ML) approaches have
provided the most accurate results [4].

In a nutshell, a behavioral model is built through a compu-
tationally expensive process of model training that evaluates
the behavior in a training dataset [5]. The dataset is expected
to provide the production environment behavior that the built
model will experience when deployed in real-world (produc-

tion) settings. In such a way, the production environment
behavior is assumed to not change over time. Otherwise, a
new training dataset must be assembled and model retraining
executed [6].

In practice, the measured RSSI values are subject to a
variable propagation loss that affects the attenuation of the
received signal strength over time, typically due to the channel
fading, user geographical location, or even radiofrequency
interference [7]. As the RSSI values may significantly vary,
proposed localization techniques must assume a predefined
propagation loss setting (fading properties) during the building
of the training dataset [1]. Although the training data set
may provide realistic RSSI attenuation as time passes, the
ML models built will only perform their task when used in
production if they are subject to the same propagation loss ad-
justments used during the training phase. Surprisingly, current
ML-based localization techniques are designed according to
the expected RSSI fading in a production environment, making
them infeasible for a wider range of applications, taking into
account the challenges related to model updates [8], [9].

Designing an ML-based localization technique that can
operate regardless of the environment’s current RSSI fading
characteristics is challenging. The main reason is that the
RSSI fading identification can only be achieved after the
evaluation of several device measurements [2]. In contrast,
current techniques perform the localization task through the
evaluation of the current received RSSI values from all de-
ployed APs, thus, discarding previous measurements that may
be useful for the identification of the environment RSSI fading
characteristics [1].

This paper proposes a new WSN localization technique
for environments subject to variable propagation loss settings
that use deep autoencoder and recurrent neural networks
(RNN), implemented in three stages. First, to properly iden-
tify the RSSI loss propagation settings of the environment,
our proposed scheme extracts univariate statistical values for
each deployed AP. The extracted values help to establish the
fading characteristics of the environment. Second, to decrease
collected RSSI noises introduced by wireless fading, our
proposed scheme uses a deep autoencoder. As a result, noises
caused by wireless fading, regardless of the propagation loss
environment, can be decreased as the deep autoencoder will
remove irrelevant relations in its input. Third, to evaluate
historical device measurements, applicable due to a variable
channel fading, our scheme performs the device localization
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through an RNN. Thus, previous device measurements are
used by our model localization scheme, further increasing its
localization accuracy. The main contributions of this paper are:

• An evaluation of a (current) ML-based localization tech-
nique regarding its accuracy in a variable propagation
loss environment. Our experiments indicate that a current
ML-based approach is unable to operate regardless of the
propagation loss used during model training, increasing
its localization error by up to 30%;

• A new model based on deep autoencoder and RNN for
localization of wireless devices regardless of the envi-
ronment propagation loss characteristics. The proposed
scheme can provide higher localization accuracies when
compared to traditional approaches.

II. PRELIMINARIES

A. RSSI-based Wireless Localization

The wireless communication channel is subject to slow
and fast fading, which affects the deployed AP measured
RSSI values [4]. Fading can be caused due to a variety of
reasons, including geographical position, device and environ-
ment’s mobility, objects along the path, and even atmospheric
conditions [7]. As a result, wireless localization techniques
must cope with a variety of propagation loss properties, taking
into account that when such scheme is used in production,
the environment wireless fading will vary as time passes, e.g.,
due to objects passing between devices. However, current tech-
niques proposed in the literature often overlook variable fading
properties, making use of a single fading setting during model
building and evaluation [2]. As a result, proposed schemes
cannot be reliably used in production, considering that as time
passes, the environment behavior may change the wireless
fading properties, making deployed schemes unreliable for
localization tasks.

B. Machine Learning for Localization

Indoor localization approaches through ML techniques have
yielded promising results [1]. The authors generally perform
the localization task using ML model input a feature vector
with the current device RSSI values from all deployed APs.
The proposed approaches builds the training, validation, and
testing datasets with an expected wireless propagation loss
characteristic [2]. As a result, proposed schemes are only able
to achieve the measured accuracies during testing phase if the
deployed environment presents the same wireless propagation
loss characteristics used during the training phase. That hap-
pens because the underlying ML model is trained according to
a specific wireless propagation loss characteristic [10]. In prac-
tice, if a different fading is observed, a model retraining must
be executed [11], making proposed schemes unfeasible for
production. Reliable ML-based indoor localization approaches
must operate regardless of the current wireless propagation
loss, considering it may change drastically according to each
environment settings.

In this work, we focus on two main deep-learning strategies,
namely Deep autoencoder [12], and Recurrent Neural Network

(RNN) [13]. Deep autoencoders have been typically used for
dimensionality reduction and image denoising through a two-
step process, namely encoder and decoder. The encoder goal
is to perform the compression of the deep neural network
input by learning a set of useful input feature relations. In
contrast, the decoder goal is to perform the decompression of
the encoder output. The deep autoencoder output is a learned
representation of the most valuable relations between its input
features. On the other hand, RNN architectures are composed
of loops that enable pattern recognition, taking into account
the information from previous inputs. The RNN stores its input
values according to a given interval. Thus, it is typically used
to classify temporal series or scenarios that are affected by
previous inputs.

III. RELATED WORKS

In the literature, in general, the authors attempt to mitigate
channel fading effects increasing localization accuracy. For
instance, Y. Sun et al. [4] proposes an underwater wireless
localization approach through support vector regression. Their
approach localizes sensors in noisy environments with high
accuracy. However, the authors have not addressed different
channel fading properties. W. Xue et al. [10] proposes a filter-
based approach to decrease RSSI noises. The proposed ap-
proach was able to remove noisy collected values and increase
localization accuracy. They considered a single channel fading
model for the environment in order to evaluate the scenario.

Localization approaches through ML-based techniques have
also been widely explored in the literature [1]. For instance,
V. Annepu et al. [14] perform wireless localization through
a multilayer perceptron (MLP) model. The proposed scheme
was able to provide high localization accuracies without pre-
processing noisy collected data. However, a single channel
fading model was also assumed. Another MLP-based approach
was proposed by Z. Munadhil et al. [15] wherein devices
were located in a real testbed through a 2-layered MLP. The
proposed model provided high accuracy in a real setting.
However, it demands retraining for each deployed environ-
ment, making it unfeasible for production usage. Much recent
research made efforts on deep-based ML techniques due to
their high reported accuracy in several fields. For instance, M.
T. Hoang et al. [16] performs the localization task through
recurrent neural networks (RNN). The proposed scheme was
able to provide high localization accuracies without perform-
ing additional cleaning on collected RSSI values. However, a
single wireless propagation fading setting is assumed. Another
deep-based technique was proposed by A. Poulose et al. [17]
wherein an RNN receives as input an RSSI heatmap, as an
attempt to decrease noisy data. In such a case, a single wireless
propagation fading was also assumed.

IV. PROBLEM STATEMENT

This section further investigates how a current ML-based
technique performs when used for indoor localization purposes
at a different wireless propagation setting. More specifically,
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(c) Boxplot of localization errors

Fig. 1: Localization performance of a MLP trained in Scenario 1, according to the environment settings (Table II).

we first introduce our testbed, then we evaluate an MLP model
performance on it.

A. Testbed Environment

Localization techniques deployed in production environ-
ments will be subject to a variety of wireless propagation
fading properties. Thus, they must be able to operate regardless
of the environment they were built. We set up a controlled
environment to evaluate how proposed schemes perform when
different wireless fading properties are evidenced. The testbed
was implemented in network simulator 3 (ns3) v.3.33, where 3
channel fading settings were evaluated. The wireless network
simulation parameters are summarized in Table I. Each sce-
nario is executed 30 times, being each execution deploys 20
sensors in pseudorandom locations. Each sensor sends periodic
probe requests (≈ 200 messages per execution round) through
the wireless channel. The sensors are devices that localization
techniques can reach. To measure the sensor’s RSSI, we deploy
30 APs through the ns3 GridPositionAllocator. The fading
model is Nakagami-m, and the parameters for each scenario
are shown in Table II, where d is the distance between sensor
and AP. The received network traffic from each AP is logged
in a PCAP file, then used for further analysis.

B. A Realistic Evaluation

Our evaluation aims at answering two main research ques-
tions (RQ): (RQ1) How does current ML-based approaches
perform when facing the same wireless fading properties
used at the training phase? (RQ2) What is the impact of
variable wireless fading propagation on ML-based localization
techniques?

To achieve such a goal, we build a MLP model at Scenario
1 and evaluate its performance on other Scenarios (Scenarios 1
to 3, Table II). The models are built using a 30-valued feature
vector as input according to the measured RSSI values from
each deployed AP. If a given AP did not receive a sensor
message due to channel fading, it is not able to provide a
corresponding RSSI value. Therefore a default value of −100
is assumed. The rationale of such a technique is to perform
the traditional ML-based localization technique, which only
considers the current measured RSSI values from APs.

The MLP was implemented on top of scikit-learn API
v.0.24.2. The model relies on 1000 hidden neurons while
performing 1000 epochs at the training phase. The relu

TABLE I: Wireless Network Simulation Parameters

Parameter Description
Channel Model Free Space Path Loss + Nakagami-m Fading
Number of APs 30
AP Distribution Grid
Number of Sensors 20 randomly deployed at each exec. round
Execution Rounds 30
Sensor Positioning Random (Uniformly Distributed)
Coverage Area 100m x 100m
Traffic Model Periodic Probes (≈ 200 messages per sensor)
Physical Layer IEEE 802.11n
Operating Frequency 2.4GHz
Transmission Power 0 dBm (1mW)
Antenna Type Omnidirectional
Antenna Gain Gt = Gr = 1 dBi

TABLE II: Fading Scenarios for the Testbed.

Nakagami-m Fading Setting
Scenario d0 d1 0 ≤ d ≤ d0 d0 < d ≤ d1 d > d1

m m m
1 20 50 4 2 1
2 80 200 1.5 0.75 0.75
3 50 100 1 1 1

activation function is used, with adam optimizer with a 0.001
learning rate using RMSE objective. The Scenario 1 testbed
environment (Table II) was split into train, validation, and
test datasets, each with 40%, 30% and 30% respectively of
the testbed deployed sensors (600 sensors at total for each
testbed, 20 sensors vs. 30 execution rounds). The train dataset
is used for model building, the validation dataset is used for
model fine-tuning, the test dataset is used to report the model
accuracies. Our first experiment aims at answering RQ1 and
evaluates the localization performance of the built MLP on
the same testbed it was built (Table II, Scenario 1). Therefore,
it uses the same approach as commonly made in related
works that do not consider different channel propagation
loss characteristics. Figure 1 shows the localization accuracy
distribution of the built MLP when deployed on the same
testbed configuration that was used during model building,
as measured on the test dataset. In such a case, the average
localization error achieved was 10.6 meters. It is possible to
note that the localization performance of the evaluated model
was significantly high, wherein 75% of sensors were able
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to be localized within 0 to 13.1 meters range in Scenario 1
(Figure 1b, Scenario 1 at 0.75 proportion). Therefore, current
techniques can provide significantly high localization accuracy
when a single wireless propagation loss condition is assumed.

Our second experiment aims at answering RQ2 and eval-
uates the localization performance of the trained MLP when
a different wireless propagation loss configuration is faced.
In such a case, the model localization accuracy for Scenar-
ios 2 and 3 is significantly degraded, providing an average
localization error of 12.4 and 13.8 meters, respectively, thus,
increasing localization error by up to 17% and 30%. More
specifically, the MLP trained in Scenario 1 that was able
to localize 75% of messages with up to only 13.1 meters
of error, significantly degraded its performance, increasing
the error range to 16.1, and 18.2 meters in Scenarios 2 and
3 respectively (Figure 1b). As a result, proposed ML-based
localization schemes cannot cope with a variable wireless
fading propagation loss. However, the propagation loss of
production environments is highly variable. Hence, proposed
schemes must be able to operate regardless of the current
environment behavior.

V. A DEEP AUTOENCODER AND RNN MODEL FOR
LOCALIZATION WITH VARIABLE PROPAGATION LOSS

To address the non-stationary propagation loss nature of
wireless channels over time, we propose a localization model
based on deep autoencoder and recurrent neural network
(RNN). The proposal insight is that a deep autoencoder can
remove RSSI noises introduced by variable propagation fading
over time. In addition, higher localization accuracies can be
achieved by extracting univariate statistic values on collected
RSSI values, while the localization task is performed through
RNNs, thus, following a time-series rationale. The proposal
overview is shown in Figure 2.

The proposal starts with a to-be-localized sensor message
propagated in the wireless channel. A subset of deployed APs
receives the sent message, and the corresponding RSSI values
are collected. According to the collected RSSI values, a set
of univariate statistic values are extracted through a sliding
window mechanism, e.g., the average AP RSSI values from the
last 10 received sensor messages. The extraction of univariate
statistic values aims at helping our proposed mechanism to
operate regardless of the current environment propagation
fading settings. Therefore, the distribution of the previous
RSSI values can improve localization accuracy in dynamic
propagation fading environments. The extracted values are
input by a deep autoencoder, which removes noises introduced
by a variable fading in the wireless channel. Finally, an RNN
is applied, aiming the sensor localization according to previous
neural network inputs.

The following subsections further describe our proposed
model, including the components that implement it.

A. Univariate Statistics

In general, traditional localization techniques rely on the
current measured RSSI values for the localization task. There-

Fig. 2: Proposed localization model for variable propagation
loss environments.

fore, the variation of the RSSI values that can be used to assess
the current environment propagation loss settings can not be
evaluated. Our proposal extracts an additional set of features
for each deployed AP, recalling that our proposal relies on
fixed APs to measure the sensors’ RSSI values. The rationale
of such an approach is that the computation of the variation of
the previous RSSI values can be used to improve localization
accuracy under highly variable propagation loss environments.

Our proposal makes use of a Univariate Statistics module,
as shown in Figure 2. The procedure starts with the collection
of the received RSSI values from all deployed APs when a
given sensor sends a message through the wireless channel.
The collected values are standardized by a Feature Builder
module, which outputs the RSSI collected values in a vector
format, including from those APs that did not receive the
sensor message. The Univariate Statistics extracts additional
univariate feature values for each deployed AP, according to
a predefined message window (w). For instance, the module
may extract the median, average, and standard deviation values
of the last w received messages from the analyzed sensor for
each deployed AP. Finally, the extracted values, including the
current RSSI values, are used to compound a feature vector,
which is then fed as input to a deep autoencoder module.

B. Noise Removal
Current localization schemes attempt to remove noises in

collected RSSI caused due to a variable propagation loss
through filter-based approaches. As a result, proposed tech-
niques cannot portray meaningful relations on collected RSSI
values, especially on highly variable wireless fading settings.
Our proposal makes use of a deep autoencoder model. The
assumption is that a deep autoencoder will remove noises
introduced by a variable fading setting on the wireless channel,
considering that such noises are not meaningful relations in
production environments. A deep autoencoder model is ap-
plied on the extracted feature vector output by the Univariate
Statistics module. The deep autoencoder output that removes
noises on collected data is fed as input to the subsequent
module.

C. Sensor Localization
Variable wireless fading can only be detected through the

analysis of several sensor RSSI values. Therefore, localization
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Fig. 3: Localization performance of our proposed model according to the environment settings (Table II).

TABLE III: Extracted features for each deployed AP.

# Feature Description
1 RSSI Current measured AP received RSSI
2 Mo Mode of RSSI values from last w received msg.
3 x̃ Avg. RSSI of values from last w received msg.
4 σ Std. Dev. of RSSI values from last w received msg.
5 σ2 Variance of RSSI values from last w received msg.
6 Q1 25th Quartile of RSSI values from last w received msg.
7 Q2 Mean of RSSI values from last w received msg.
8 Q3 75th Quartile of RSSI values from last w received msg.

schemes must also take into account the historical behavior of
previous input samples. To perform the regression task while
also evaluating previous input samples, our proposed model
uses an RNN. Therefore, our model applies an RNN model
on the output of the deep autoencoder, hence, with noise-free
data. It is important to note, to improve localization accuracy,
in addition to the current RSSI values, we also leverage
univariate statistical feature values from each deployed AP
(Section V-A).

VI. EVALUATION

Our evaluation aims at answering the following research
questions: (RQ3) How does our proposed scheme performs
on variable fading settings? (RQ4) How does our proposed
model perform when compared to traditional techniques?

A. Model Building

The proposed model (Figure 2) was evaluated on top of our
used testbed (Section IV). Our proposed Univariate Statistics
module was implemented through Pandas API v.1.2.4, which
evaluates the network packets read from a PCAP file format
as interpreted by Scapy API v.2.4.3. In total, 8 features are
extracted for each deployed AP, as listed in Table III.

The deep autoencoder (Figure 2), used the RMSE formula
as loss using adam optimizer, and was implemented with the
following architecture: (i) Input. The extracted 240 features
(8 features vs 30 deployed APs) are fed as input to the deep
autoencoder. (ii) Encoder. Three dense layers implemented
with a relu activation function, with 512, 256, and 128
units respectively. (iii) Encoder Output. A encoder output
layer implemented with a linear activation function, and
48 units. (iv) Decoder. Three decoder layers with a relu

activation function, with 128, 256, and 512 units respectively.
(v) Decoder Output. A decoder output layer with 240 units,
and a sigmoid activation function. As RNN architecture
(Figure 2) our proposal make use of the Long-Short Term
Memory (LSTM), and was implemented with the following
architecture: (i) Input. The 240 features output by the deep
autoencoder are fed as input to the LSTM; (ii) LSTM. A
LSTM layer with 256 units. (iii) Output. Two dense layers
implemented with a linear activation function, with 512, and
2 units respectively.

The implemented LSTM architecture used the RMSE as
loss using adam optimizer. For the model building procedure,
1000 epochs are executed with a batch size of 512 for
both deep autoencoder and LSTM. It is important to note
that the used set of parameters, from both deep autoencoder
and LSTM, were set similarly to related works, and no
significant differences were found while varying them. The
architectures were implemented through keras API v.2.4.0,
and tensorflow API v.2.4.1.

B. Variable Fading Environments

Our first experiment aims to answer RQ3 and evaluate
the performance of our proposed model when facing variable
fading settings. The proposed scheme was trained with the
train dataset from Scenario 1 (Table II), using a window
(w) size of 10 events in the Univariate Statistics module
(Table III). Figure 3 shows the localization accuracy of our
method in all evaluated scenarios. It is possible to note that
our proposed scheme improved the localization accuracy com-
pared to traditional techniques significantly. More specifically,
75% of the testbed sensor messages are successfully localized
with at most 12.5, 12.6 and 12.6 meter range in Scenarios 1, 2,
and 3 respectively (Figure 3b). Our proposed scheme was also
able to provide higher average localization accuracies for all
scenarios, reaching 9.9, 10.5, and 10.2 of average localization
error for Scenarios 1, 2 and 3 respectively. Thus, varying the
average localization accuracy by up to 0.6 meters, the proposal
has significantly shown improvements when compared to the
traditional approach (Figure 1). Figure 4 shows the localization
performance of our model for 10 sample sensors according to
each scenario, showing that it can provide significantly high
localization accuracies regardless of the deployed testbed.
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Fig. 4: Localization error of our proposed model for 10 sample devices according to the deployed scenario (Table II).
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Fig. 5: Localization error distribution of evaluated techniques.

Finally, to answer question RQ4 we further investigate the
localization accuracy of our model when compared to the
traditional approach (MLP evaluated on Section IV). Figure 5
shows the boxplot of the localization error of our model and
the traditional approach when deployed on all 3 evaluated
scenarios. In such a case, our model’s 75% of messages
are localized with at most 12.6 meters of error, while the
traditional approach localizes with up to 17 meters of error,
a 25.8% of localization accuracy improvement. Consequently,
our proposed model was able to provide higher localization
accuracies regardless of the deployed environment.

VII. CONCLUSION

As said before, the ML-based techniques for wireless local-
ization, in the literature, assumes a static wireless propagation
fading setting. As a result, those proposed schemes can provide
high localization accuracies but perform poorly when used in
production due to high variability in the fading settings in real-
world environments. In this paper, we have proposed a new
technique aiming the reliable operation in variable wireless
fading environments. Our proposed scheme that uses deep
autoencoders and recurrent neural networks improved local-
ization accuracy compared to the current localization approach
from literature. As future works, we aim the localization of
moving sensors while making use of fewer APs.
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