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Abstract—Intellectual and developmental disorder results in 
lifetime impairments in cognitive capabilities and adaptability is 
highly prone to developing several forms of further diseases and is 
associated both with high care costs. In this study, we applied a 
machine learning approach for differentiating healthy individuals 
and individuals with intellectual and developmental disorder 
using resting-state electroencephalography recordings. Our 
approach sets a new benchmark with a balanced accuracy of 
91.67%. In addition, by adopting novel model interpretability 
methods, we highlighted the low beta sub-band in the range of 
19.5–21 Hz as the most important distinctive feature. Individuals 
with an intellectual and developmental disorder show significantly 
lower beta activity. 

Keywords—E-health, electroencephalography, machine 
learning 

I. INTRODUCTION  

According to the American Association on Intellectual and 
Developmental Disabilities and the American Psychiatric 
Association, intellectual developmental disorder (IDD), also 
termed as intellectual disability, is characterized by intellectual 
and adaptive behavior deficits in intellectual, conceptual, social, 
and practical domains during the developmental period and 
originates before the age of 18 [1, 2]. IDD comprises a broad 
range of several forms of developmental difficulties resulting in 
lifetime impairments in cognitive capabilities and adaptability 
[3, 4], whereby the estimated prevalence rate of IDD is in the 
range from 0.05 to 1.55% [5]. In addition, challenging behaviors 
and prejudices accompany IDD [6, 7]. 

Caring for a child affected by an IDD is associated both with 
high costs and higher levels of parental stress. According to 
Genereaux et al. [8], the annual costs for a family treating a 
handicapped child range from CA$ 2,245 to 225,777. These 
costs are composed on the one hand of a loss of income and the 
cost of time spent caring for the child, and on the other hand, 
costs to the welfare state occur, which can be as high as CA$ 
119,188. Both the parental costs and the societal costs are 

increased by a higher severity of IDD. Parents of a child with 
IDD suffer from significantly higher levels of stress compared 
to parents of a child without IDD [9, 10]. Moreover, individuals 
with IDD were found to be twice as likely to have a criminal 
charge against them when compared with individuals without 
IDD [11]. 

Both children and adolescents affected by IDD show a 
significantly higher prevalence of conduct disorder, anxiety 
disorder, hyperkinesis, epilepsy, mental illness, dementia, and 
schizophrenia [12–18]. Furthermore, adolescents with IDD are 
more likely to be overweight and obese [19]. Obesity is regarded 
as one of the world’s major health problems [20, 21] and is 
linked with a minimized life expectancy [22]. In addition, 
Substance-Related and Addictive disorders pose a significant 
risk for adults with an IDD, as they are much more susceptible 
to such disorders. Substance-Related and Addictive disorders 
are associated with high levels of psychiatric and other 
comorbidities [23]. 

Questionnaires measuring individuals’ IQ and SQ are 
commonly used for IDD detection, whereby it is a subjective 
measurement method. Conversely, physiological measurements 
such as magnetic resonance imaging (MRI) and 
electroencephalography (EEG) are more objective due to their 
involvement of physiological indicators and reactions of the 
human body. Significant MRI abnormalities have been found in 
subjects with IDD [24–27]. Investigations regarding the 
relationship of EEG and IDD are rare or are way behind and 
highlight an increase of the delta and theta bands of the IDD 
population compared to healthy individuals [28, 29]. Regarding 
cognitive impairment, a beta band decrease is present [30]. 
These interactions between IDD, other serious mental disorders, 
and brain activity [24–30], as well as the impacts regarding 
health care costs [8] and social effects [9–11], justifies the 
relevance of using a more novel method by analyzing patients’ 
EEG data already at a very early stage of life in order to make a 
statement about the potential presence of an IDD and so 
counteract the spread of the disorder. 
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Early detection of an IDD has several advantages for the 
affected individuals, such as supporting the development and 
personality of especially younger IDD individuals and, in 
addition, aiding to limit the extent of IDD. Furthermore, IDD 
individuals’ parents benefit from early detection due to the 
possibility of preparing mentally and learning to manage the 
caring for their IDD child [31]. Instead of only taking 
questionnaires into consideration that can lead to biases among 
children due to misunderstanding, EEG is a much more reliable 
method for data acquisition. In addition, compared to MRI, costs 
for EEG implementation are lower, and EEG is easier to 
establish. 

Utilizing neuroscientific data offers the possibility to predict 
future individuals’ states of health [32]. The dramatic upswing 
in the past years that IT-based healthcare has undergone depends 
on the combination of increased computational power and the 
availability of huge new datasets [33]. Machine learning (ML) 
in healthcare is an emerging application field enabling detection 
of schizophrenia [34, 35] and cognitive impairments [36] as well 
evaluation of working memory [37]. 

This study was aimed at deploying a validated supervised 
ML method both to classify participants affected by an IDD and 
to define reliable EEG frequency bands useful to distinguish 
individuals with a diagnosis of an IDD from non-IDD 
individuals. The most important contributions of this paper are:  

• We developed an automatic classification method for 
accurate and reliable classification of IDD and non-ID 
individuals with a balanced accuracy of 91.67 percent. 

• In our work, we have shown that using ML and EEG data 
is a promising, novel, and objective method for an 
automatic IDD diagnosis instead of a manual diagnosis 
utilizing questionnaires that are highly subjective and 
prone to misunderstanding, especially for younger 
individuals. 

• With the help of both Random Forests’ (RF) variable 
importance function and novel model interpretability 
packages LIME and SHAP, we provided novel insights 
by pointing out that the low beta frequency bandwidth 
from 19.5 Hz to 21.0 Hz is highly relevant for 
distinguishing IDD individuals from non-ID individuals. 
By extracting the relevant frequency bands, the required 
amount of data to be analyzed can also be reduced, 
enabling diagnosis on mobile and embedded computing 
devices with limited computational power [38]. 

The paper is organized as follows: First, we provide an 
overview of related work. Next, we detail the research 
methodology, including the several ML methods used, 
information about the dataset, and the steps to preprocess the 
EEG data. Afterward, we present the ML results concerning the 
performance indicators and the most important variables 
extracted. We then discuss the results. Finally, we conclude by 
including limitations and ideas for future research. 

II. RELATED WORK 
IDD-affected individuals are prone to other disorders. 

Epilepsy is implicated in IDD individuals, affecting 22% of the 
IDD population [40], and therefore suitable for an automated 

detection based on ML algorithms in view of the fact that ML-
based epilepsy detection using EEG recordings has been 
extensively studied with outstanding results of 99% accuracy 
[39]. Wang et al. [40] achieved a sensitivity of 63.1 – 81.3% in 
detecting seizures in IDD patients using a highly unbalanced 
dataset. Inputting metabolite markers of individuals affected by 
an IDD and healthy controls into a ML algorithm is also a 
promising approach both for predicting key markers and to 
differentiate between the different severities of an IDD [41]. 

Sareen et al. [42] observed an overall lesser brain activity of 
patients with an IDD compared with the typically developing 
controls during the executive processing of different tasks. 
However, an improvement in mental functioning has been 
detected when performing a cognitive training exercise 
depending on the focus of this exercise. Regarding music and 
resting-state EEG recordings, no significant differences exist, 
indicating that the preservation of the functional circuits remains 
intact within the participants with IDD. The detailed analysis of 
the brain entropy using functional MRI during resting-state by 
Saxe et al. showed a correlation with the subjects’ intelligence. 
Here, a higher intelligence correlates with a higher brain entropy 
within parts of the left superior cerebellum and bilateral frontal 
areas [43]. A higher incidence of brain anomalies in individuals 
with IDD has been detected compared to healthy individuals 
[27]. People suffering from an IDD show greater regional gray 
matter volumes in the ventral and dorsal anterior cingulate 
cortex and smaller regional gray matter volumes in the left 
thalamus and cerebellar hemisphere, as well as greater white 
matter volume in the left frontoparietal region and smaller 
volumes in the posterior limbs [44]. Considering brain 
abnormalities in children with an IDD, higher occurrences in 
cerebral and posterior fossa are prevalent [24]. Investigations 
regarding the relationship of EEG and IDD are rare but highlight 
an increase of the delta and theta bands of the IDD population 
compared to healthy individuals [28, 29]. In general, cognitive 
impairment is associated with a decrease in the spectral power 
density in the beta band [30]. 

III. METHODOLOGY 

A. Data Preprocessing 
1) Independent Component Analysis 
Noises generated during EEG data gathering should be 

removed before putting the EEG data into the ML model [45]. 
The circumstance that the different forms of noises are not 
completely avoidable leads to the relevance of a conscientious 
preprocessing of the EEG data. Therefore, the publishers of the 
dataset applied the Independent Component Analysis (ICA) 
algorithm [46] to correct raw EEG data. 

2) Spectral Analysis and Feature Extraction 
Before the EEG signals are available for use as input features 

for our ML methods after noise removal through ICA, they must 
be converted into a frequency signal [47]. This procedure is done 
by executing EEG spectral analysis with a Fast Fourier 
Transform, which is a frequently used method in neurosciences 
[48, 49]. The power spectrum is traditionally divided into the 
five frequency bands: alpha (7.5–12.5 Hz), beta (12.5–30 Hz), 
theta (3.5–7.5 Hz), delta (0.5–3.5 Hz), and gamma (> 30 Hz). In 
our work, we novate the hypothesis by Buettner et al. [39], 
revealing that the information value of dividing the power 
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spectrum into finer frequency bands could be higher than the 
traditional division into larger frequency bandwidth. Therefore, 
as a feature extraction criterion, we break down the EEG power 
spectrum into 99 fine frequency bands in the range from 0.5 Hz 
to 50 Hz with an increment of 0.5 Hz. 

B. Classification 
Taking the preprocessed data as input variables, we 

evaluated the RF [50], XGBoost [51], SVM [52], and C5.0 
Decision Tree [53] regarding the performance for classifying 
whether a participant has an IDD or not, based on their 
individual intelligence quotient (IQ) and social quotient (SQ) 
provided within the dataset together with their brain activity in 
the form of the EEG data. 

The RF classifier contains a collection of unpruned, binary 
decision trees. It can handle many input variables and is operable 
both for classification and regression tasks. Ensemble methods, 
as the RF are often applied due to the persuasion that a decision 
aggregated from various models is often superior to a decision 
from a single model. Here, the several decision trees vote to 
produce a final classification based on the majority vote [50]. 
XGBoost is a decision tree predictor based on the approach of 
gradient boosting, which means that in order to achieve a better 
result, a set of multiple poor predictive models is used [51], 
while the SVM algorithm is based on the idea of finding a 
hyperplane, which divides a dataset into classes [52]. The C5.0 
decision tree algorithm splits the sample by the determination of 
fields that provide the maximum information gain. This is 
repeated until the sample cannot be split more. Finally, the 
lowest level split gets examined, and the sample splits that show 
no remarkable contribution to the model gets rejected [53]. 

Using post-hoc interpretability techniques, the decisions of 
the selected algorithms can be explained, allowing an 
identification of specific EEG frequency sub-bands being useful 
to distinguish individuals with a diagnosis of an IDD from non-
IDD individuals [54, 55]. Deep learning methods, whose major 
drawback is limited interpretability, were not considered in this 
study [54]. 

C. Evaluation 
In order to achieve reliable results, which represent the basis 

for selecting the most suitable algorithm, we make use of 
repeated k-fold cross-validation (CV). The average of the 
recorded errors of all rounds is computed [56]. For this work, we 
set k to 10 and repeated this procedure 20 times. In addition, we 
make use of novel model interpretability packages Local 
Interpretable Model-agnostic Explanations (LIME) [57] and 
SHapley Additive exPlanations (SHAP) [58] in order to further 
analyze the decision-making process of our classifier and 
uncover the most important features according to these 
packages. 

D. Dataset 
The dataset is provided by Sareen et al. [59] and is publicly 

available. We used an EEG dataset consisting of 14 male 
participants in total, including their IQ and SQ. Seven 
participants are rated as affected by an IDD, whereby the 
remaining seven participants were healthy. The IQ of the IDD 
participants has been evaluated based on their completion of 
Malin's Intelligence Scale for Indian Children (MISIC), an 

Indian adaptation of Wechsler's Intelligence Scale for Children 
(WISC). The MISIC has 12 subtests uniform separated into two 
categories verbal and performance, resulting in a verbal IQ, a 
performance IQ, and finally, a total IQ score. For SQ evaluation, 
the Vineland Social Maturity Scale, which measures social 
maturity or social competence, was used. 

The raw EEG data were acquired with a sampling frequency 
of 128 Hz using the Emotiv Epoc+ data acquisition system, and 
the electrodes were placed according to the international 
standard 10–20 extended localization system, also known as the 
10-10 system and referenced to X and Y [59]. The raw and 
preprocessed data includes 14-channel EEG data for two 
minutes of resting-state followed by two minutes of music state. 

IV. RESULTS 

A. Identified Feature Subset 

To identify important frequency sub-bands, the variable 
importance function of caret was implemented, and then the 
variables with the highest importance were selected. The 
analysis of RF’s variable importance function regarding the 
EEG frequency bands reveals that the frequency sub-bands in 
the range from 19.5 to 21 Hz were highly relevant for the 
decision-making process. Therefore, these three sub-bands 
assigned to the low beta range were used to train the distinction 
between healthy and IDD participants. 

B. Classification Results of the ML Models 
 As visible in Table I, our RF classifier achieves the best 

overall performance with a balanced accuracy of 91.67%. The 
other performance indicators were also in a very good range. 
Using SVM, we can achieve a relatively good balanced accuracy 
of 86.67% and the best values for specificity with 91.67% and 
positive predictive value with 94.25%. The C5.0 decision tree 
classifier has a mediocre accuracy of 72.5%, but the best 
sensitivity with 93.33% equally to RF. The XGBoost classifier 
has a balanced accuracy of 78.33%. Therefore, using our RF 
approach, we achieved a total lift in overall accuracy of 41.67% 
on the balanced dataset. 

Performance Indicator Random Forest 

Balanced Accuracy 91.67% (+/- 8.55%) 

Sensitivity 93.33% (+/- 13.68%) 

Specificity 90.00% (+/- 15.67%) 

Positive Predicition Value 92.50% (+/- 11.75%) 

Negative Prediciton Value 95.00% (+/- 10.26%) 

Kappa 0.8333 (+/- 0.171) 

 
Table II summarizes the classification results using the final 

RF classifier, which showed the best results compared to the 
other evaluated algorithms, in the form of a confusion matrix. 
Based on 20 times repeated 10-fold cross-validation, our RF can 
assign 46.67% (2.8) of the healthy participants to the true class 
achieving a sensitivity of 93.33%. 45% (2.7) of IDD participants 
were correctly classified. 8.33% (0.5) misclassification occur. 

TABLE I. PERFORMANCE INDICATORS OF USED ML METHODS BASED ON 
REPEATED 10-FOLD CV 
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TABLE II. CONFUSION MATRIX OF THE RF. VALUES BASED ON UNSEEN TEST 
DATA (N = 6) AND REPEATED 10-FOLD CV 

 
Reference 

Healthy IDD 

Predicted 
Healthy 46.67% 

(2.8) 
5%  

(0.3) 

IDD 3.33% 
(0.2) 

45% 
(2.7) 

 
C. Detail Analysis of the Important Frequency Bands 

By analyzing and comparing the spectral power density of 
healthy and IDD participants, significant differences in these 
highlighted frequency bands are prevalent. Participants affected 
by an IDD have a much lower spectral power density in the low 
beta sub-band compared to healthy participants.  In terms of 
numbers, the mean spectral power density of participants with 
an IDD is decreased by 86.51% (19.5–20 Hz), by 87.86% (20–
20.5 Hz) and by 86.06% (20.5–21 Hz). Furthermore, as shown 
in Table III, all these differences are significant expressed by the 
corresponding one-tailed p-values (p<0.1, p<0.05, and p<0.01) 
while the effect sizes are high (Cohen’s d > 0.5). These statistical 
computations underline the importance of these frequency bands 
for the decision-making process of the RF highlighted by the 
variable importance function. These insights correspond to the 
general statement that the EEG power is positively correlated 
with IQ [60–63]. 

As individuals affected by an IDD are more vulnerable to 
developing several other disorders such as conduct disorder, 
anxiety disorder, hyperkinesis, epilepsy, mental illness, 
dementia, and schizophrenia, we strengthen our insights 
regarding the decreased beta spectral power density among IDD 
participants by pointing out the proven decreased beta spectral 
power density among dementia individuals [64–70] and anxiety 
disorder individuals [71]. 

TABLE III.  SPECTRAL POWER AND STATISTICAL CHARACTERISTICS 
OF THE THREE SUB BANDS FOR HEALTHY VS. IDD 

Characteristic 19.5-20 Hz 20-20.5 Hz 20.5-21 Hz 

Mean healthy 82,387.73 83,121.42 75,416.06 

Mean IDD 11,114.77 10,089.31 10,514.96 

SD healthy 126,174 73,188.99 43,877.12 

SD IDD 4,212.18 3,901.44 6,961.67 

p-value < 0.1 < 0.05 < 0.01 

Cohen’s d 0.7984 1.4092 2.066 

 
In order to eliminate possible existing differences in the EEG 

frequency bandwidths that could be due to the prevailing age 
differences between healthy (mean age = 21.28 ± 1.60) and IDD 
participants (mean age = 28.28 ± 2.05), we selected as an 
additional test data exactly those four participants with the 
smallest age differences between the two classes with an age 
difference p-value >0.05. Here, the RF classified the four 
participants completely correctly according to their ground truth 
class label. 

According to the LIME heatmap plot, the most important 
features are F3 and FC6. While low spectral power density of 

channel F3 in the sub-band 20.0–20.5 Hz, the uppermost feature 
in the plot, is highly important for classifying cases 9 and 10 as 
class 1 “IDD”, a high spectral power density of channel F3 in 
the sub-band 20.0–20.5 Hz, the second uppermost feature in the 
plot, is highly important for classifying cases 3 and 4 as class 0 
“healthy”. This corresponds to our statistical computations in 
Table III. We also make use of SHAP [58] Force Plot enabling 
us to uncover how the value range of the EEG sub bands’ 
spectral power density affecting the final decision of our RF 
classifier. SHAP Force Plot provides a global understanding of 
the model by giving the user the possibility to select every single 
feature within the dataset and then finally to investigate how the 
value range of the feature affects the final decision of the model. 
Here, as a feature to observe, we selected the frequency sub-
band 20.0–20.5 Hz of channel O2. 

The model classifies participants with low spectral power 
density in the frequency sub-band 20.0–20.5 Hz of channel O2 
as IDD participants. But with increased power spectral density, 
the model tends more and more to classify the participants as 
healthy ones. These insights of SHAP Force Plot are reflected in 
our analysis regarding the much lower mean power spectral for 
IDD participants and, therefore, correspond with the insights 
generated by LIME and the computed statistical parameters. 

V. DISCUSSION AND CONCLUSION 
As IDD results in lifetime impairments in cognitive 

capabilities and adaptability, in high caring costs, and in a 
correlation with the occurring of several other disorders, a 
reliable, objective method is necessary in order to facilitate IDD 
detection in its early stages, counteracting the spread of the 
disorder and early initiate treatment methods. To date no 
relevant approaches have addressed developing a ML-based 
automatic detection of an IDD using EEG recordings. For this 
reason, we developed and compared several ML approaches 
suitable for an automatic IDD detection using resting-state EEG 
data. Hence, our RF classifier achieves the best overall results 
with a balanced accuracy of 91.67% based on 20 times repeated 
10-fold cross-validation, setting a new benchmark. First, we 
applied RF variable importance function, highlighting the 
frequency bands 19.5–20 Hz, 20–21.5 Hz, and 21.5–22 Hz 
according to the low beta band as the most informative. Using 
statistical computations in order to compare the respective 
spectral power density of healthy participants and IDD 
participants makes the results of our RF classifier traceable. 
Participants with an IDD show significantly lower beta activity 
in each of the three fine frequency bands corresponding to the 
general statement that cognitive impairment is associated with a 
decrease of the spectral power density in the beta band. In order 
to strengthen our contribution, although we used a dataset 
containing a small study size, we make use of four different ML 
classifiers, all achieving better results than a baseline model. 
Furthermore, we identified a highly informative feature subset 
and computed significant statistical parameters. 

A. Limitations 
The internal validity of the classifier is very high due to the 

implementation of repeated k-fold cross-validation as an 
evaluation procedure, but the external validity is not yet given, 
which is another limitation of our work. We also must mention 
that in the used dataset, the IDD was assessed using 
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questionnaires, whereby a questioning bias could exist as in any 
type of survey. It is known that medication and personality [71, 
72] can influence EEG data and, as a result, classifiers. 

B. Future Work 
By using additional datasets for training or by establishing 

our IDD detection algorithm as a medical application in a 
clinical environment in order to get more participants, the 
external validity can be further improved. To validate our given 
insights, in future investigations on the EEG data of individuals 
suffering from an IDD, investigating the decreased beta activity 
in a focused way should be considered. In addition, we are 
seeking to investigate the impact and importance of specific 
EEG Channels for accurate classification, as we deliberately 
avoid a preselection of certain electrodes in this study due to the 
small study size. 

REFERENCES 
[1] American Psychiatric Association, Diagnostic and statistical manual of 

mental disorders: DSM-5, 5th ed. Washington, D.C.: American 
Psychiatric Publishing, 2013. 

[2] R. L. Schalock, Intellectual disability: Definition, classification, and 
systems of supports, 11th ed. Washington, DC: American Association on 
Intellectual and Developmental Disabilities, 2010. 

[3] L. S. Carulla, G. M. Reed, L. M. Vaez-Azizi, S.-A. Cooper, R. M. Leal, 
and M. Bertelli et al., “Intellectual developmental disorders: towards a 
new name, definition and framework for “mental retardation/intellectual 
disability” in ICD-11,” World Psychiatry, vol. 10, no. 3, pp. 175–180, 
2011. 

[4] C. D. M. van Karnebeek, M. Shevell, J. Zschocke, J. B. Moeschler, and 
S. Stockler, “The metabolic evaluation of the child with an intellectual 
developmental disorder: Diagnostic algorithm for identification of 
treatable causes and new digital resource,” Molecular Genetics and 
Metabolism, vol. 111, no. 4, pp. 428–438, 2014. 

[5] K. McKenzie, M. Milton, G. Smith, and H. Ouellette-Kuntz, “Systematic 
Review of the Prevalence and Incidence of Intellectual Disabilities: 
Current Trends and Issues,” Current Developmental Disorders Reports, 
vol. 3, no. 2, pp. 104–115, 2016. 

[6] L.-C. Lee, R. A. Harrington, J. J. Chang, and S. L. Connors, “Increased 
risk of injury in children with developmental disabilities,” Research in 
Developmental Disabilities, vol. 29, no. 3, pp. 247–255, 2008. 

[7] J. L. Matson, M. Hamilton, D. Duncan, J. Bamburg, B. B. Smiroldo, and 
S. Anderson et al., “Characteristics of stereotypic movement disorder and 
self-injurious behavior assessed with the Diagnostic Assessment for the 
Severely Handicapped (DASH-II),” Research in Developmental 
Disabilities, vol. 18, no. 6, pp. 457–469, 1997. 

[8] D. Genereaux, C. D. M. van Karnebeek, and P. H. Birch, “Costs of caring 
for children with an intellectual developmental disorder,” Disability and 
Health Journal, vol. 8, no. 4, pp. 646–651, 2015. 

[9] J. R. Rodrigue, S. B. Morgan, and G. Geffken, “Families of Autistic 
Children: Psychological Functioning of Mothers,” Journal of Clinical 
Child Psychology, vol. 19, no. 4, pp. 371–379, 1990. 

[10] M. A. Roach, G. I. Orsmond, and M. S. Barratt, “Mothers and Fathers of 
Children With Down Syndrome: Parental Stress and Involvement in 
Childcare,” American Journal on Mental Retardation, vol. 104, no. 5, pp. 
422–436, 1999. 

[11] M. Nixon, S. D. M. Thomas, M. Daffern, and J. R. P. Ogloff, “Estimating 
the risk of crime and victimisation in people with intellectual disability: a 
data-linkage study,” Social Psychiatry and Psychiatric Epidemiology, 
vol. 52, no. 5, pp. 617–626, 2017. 

[12] E. Emerson, “Prevalence of psychiatric disorders in children and 
adolescents with and without intellectual disability,” Journal of 
Intellectual Disability Research, vol. 47, no. 1, pp. 51–58, 2003. 

[13] J. L. Matson and J. W. Bamburg, “Reliability of the Assessment of Dual 
Diagnosis (ADD),” Research in Developmental Disabilities, vol. 19, no. 
1, pp. 89–95, 1998. 

[14] J. L. Matson and B. B. Smiroldo, “Validity of the mania subscale of the 
Diagnostic Assessment for the Severely Handicapped-II (DASH-II),” 
Research in Developmental Disabilities, vol. 18, no. 3, pp. 221–225, 
1997. 

[15] J. L. Matson, B. B. Smiroldo, M. Hamilton, and C. S. Baglio, “Do anxiety 
disorders exist in persons with severe and profound mental retardation?,” 
Research in Developmental Disabilities, vol. 18, no. 1, pp. 39–44, 1997. 

[16] B. Holden and J. P. Gitlesen, “The relationship between psychiatric 
symptomatology and motivation of challenging behaviour: A preliminary 
study,” Research in Developmental Disabilities, vol. 29, no. 5, pp. 408–
413, 2008. 

[17] K. E. Cherry, J. L. Matson, and T. R. Paclawskyj, “Psychopathology in 
older adults with severe and profound mental retardation,” American 
Journal on Mental Retardation, vol. 101, no. 5, pp. 445–458, 1997. 

[18] J. A. McGillivray, M. P. McCabe, and M. M. Kershaw, “Depression in 
people with intellectual disability: An evaluation of a staff-administered 
treatment program,” Research in Developmental Disabilities, vol. 29, no. 
6, pp. 524–536, 2008. 

[19] S. Krause, R. Ware, L. McPherson, N. Lennox, and M. O’Callaghan, 
“Obesity in adolescents with intellectual disability: Prevalence and 
associated characteristics,” Obesity Research & Clinical Practice, vol. 10, 
no. 5, pp. 520–530, 2016. 

[20] J. B. Dixon, “The effect of obesity on health outcomes,” Molecular and 
Cellular Endocrinology, vol. 316, no. 2, pp. 104–108, 2010. 

[21] G. Stevens, M. Mascarenhas, and C. Mathers, “Global health risks: 
progress and challenges,” Bulletin of the World Health Organization, vol. 
87, p. 646, 2009. 

[22] H. M. Orpana, J.-M. Berthelot, M. S. Kaplan, D. H. Feeny, B. McFarland, 
and N. A. Ross, “BMI and Mortality: Results From a National 
Longitudinal Study of Canadian Adults,” Obesity, vol. 18, no. 1, pp. 214–
218, 2010. 

[23] E. Lin, R. Balogh, C. McGarry, A. Selick, K. Dobranowski, and A. S. 
Wilton et al., “Substance-related and addictive disorders among adults 
with intellectual and developmental disabilities (IDD): an Ontario 
population cohort study,” BMJ Open, vol. 6, no. 9, Paper e011638, 2016. 

[24] G. Soto-Ares, B. Joyes, M.-P. Lemaître, L. Vallée, and J.-P. Pruvo, “MRI 
in children with mental retardation,” Pediatric Radiology, vol. 33, no. 5, 
pp. 334–345, 2003. 

[25] F. Decobert, S. Grabar, V. Merzoug, G. Kalifa, G. Ponsot, and C. 
Adamsbaum et al., “Unexplained mental retardation: is brain MRI 
useful?,” Pediatric Radiology, vol. 35, no. 6, pp. 587–596, 2005. 

[26] E. Widjaja, D. Nilsson, S. Blaser, and C. Raybaud, “White matter 
abnormalities in children with idiopathic developmental delay,” Acta 
Radiologica, vol. 49, no. 5, pp. 589–595, 2008. 

[27] M. D. Spencer, R. J. Gibson, T. W. J. Moorhead, P. M. Keston, P. Hoare, 
and J. J. Best et al., “Qualitative Assessment of Brain Anomalies in 
Adolescents with Mental Retardation,” American Journal of 
Neuroradiology, vol. 26, no. 10, pp. 2691–2697, 2005. 

[28] T. Gasser, J. Möcks, H. G. Lenard, P. Bächer, and R. Verleger, “The EEG 
of mildly retarded children: Developmental, classificatory, and 
topographic aspects,” Electroencephalography and Clinical 
Neurophysiology, vol. 55, no. 2, pp. 131–144, 1983. 

[29] D. M. Psatta, R. Goldstein, and M. Matei, “EEG mapping in mentally 
retarded children by synthetic arginine vasotocin administration,” 
Romanian Journal of Neurology and Psychiatry, vol. 29, no. 1-2, pp. 9–
16, 1991. 

[30] J. S. Barlow, The electroencephalogram: Its patterns and origins. 
Cambridge, Mass., London: MIT, 1993. 

[31] A. J. Persha, “Early identification and prevention of mental retardation,” 
ICCW news bulletin, vol. 40, no. 1, pp. 9–12, 1992. 

[32] C. J. Lowe, A. C. Reichelt, and P. A. Hall, “The Prefrontal Cortex and 
Obesity: A Health Neuroscience Perspective,” Trends in Cognitive 
Sciences, vol. 23, no. 4, pp. 349–361, 2019. 

[33] K. K. F. Tsoi, S. K. Poon, and P. Hung, “Minitrack for Big-Data on 
Healthcare Application,” in HICSS-51 Proc., p. 2777, 2018. 

[34] R. Buettner, M. Hirschmiller, K. Schlosser, M. Rössle, M. Fernandes, and 
I. J. Timm, “High-performance exclusion of schizophrenia using a novel 

2021 Fourteenth International Workshop on Selected Topics in Mobile and Wireless Computing

11



machine learning method on EEG data,” in IEEE HealthCom 2019 Proc., 
pp. 1–6, 2019. 

[35] R. Buettner, D. Beil, S. Scholtz, and A. Djemai, “Development of a 
machine learning based algorithm to accurately detect schizophrenia 
based on one-minute EEG recordings,” in HICSS-53 Proc., pp. 3216–
3225, 2020. 

[36] J Gross, N Groiss, T Rieg, H Baumgartl, and R Buettner, “High-
Performance Detection of Mild Cognitive Impairment Using Resting-
State EEG Signals Located in Broca’s Area: A Machine Learning 
Approach,” in AMCIS 2021 Proc., in press. 

[37] J Breitenbach, A Uzun, T Rieg, H Baumgartl, and R. Buettner, “A Novel 
Machine Learning Approach to Working Memory Evaluation Using 
Resting-State EEG Data,” in PACIS 2021 Proc., pp. 1–12, 2021. 

[38] M. Magno, L. Benini, C. Spagnol and E. Popovici, “Wearable Low Power 
Dry Surface Wireless Sensor Node for Healthcare Monitoring 
Application,” in WiMob 2013 Proc., pp. 189–195, 2013.  

[39] R. Buettner, J. Frick, and T. Rieg, “High-performance detection of 
epilepsy in seizure-free EEG recordings: A novel machine learning 
approach using very specific epileptic EEG sub-bands,” in ICIS 2019 
Proc., Paper 2536, 2019. 

[40] L. Wang, X. Long, R. M. Aarts, J. P. van Dijk, and J. B. A. M. Arends, 
“EEG-based seizure detection in patients with intellectual disability: 
Which EEG and clinical factors are important?,” Biomedical Signal 
Processing and Control, vol. 49, pp. 404–418, 2019. 

[41] V. Nikam, S. Ranade, N. S. Mohammad, and M. Kulkarni, “A pilot study 
on machine learning approach to delineate metabolic signatures in 
intellectual disability,” International Journal of Developmental 
Disabilities, pp. 1–7, 2019. 

[42] E. Sareen, A. Gupta, R. Verma, G. K. Achary, and B. Varkey, “Studying 
functional brain networks from dry electrode EEG set during music and 
resting states in neurodevelopment disorder,” bioRxiv, Paper 759738, 
2019. 

[43] G. N. Saxe, D. Calderone, and L. J. Morales, “Brain entropy and human 
intelligence: A resting-state fMRI study,” PLOS ONE, vol. 13, no. 2, pp. 
1–21, Paper e0191582, 2018. 

[44] M. K. Mannerkoski, H. J. Heiskala, K. van Leemput, L. E. Åberg, R. 
Raininko, and J. Hämäläinen et al., “Subjects With Intellectual Disability 
and Familial Need for Full-Time Special Education Show Regional Brain 
Alterations: A Voxel-Based Morphometry Study,” Pediatric Research, 
vol. 66, no. 3, pp. 306–311, 2009. 

[45] S. P. Fitzgibbon, D. M. W. Powers, K. J. Pope, and C. R. Clark, “Removal 
of EEG Noise and Artifact Using Blind Source Separation,” Journal of 
Clinical Neurophysiology, vol. 24, no. 3, pp. 232–243, 2007. 

[46] A. J. Bell and T. J. Sejnowski, “An Information-Maximization Approach 
to Blind Separation and Blind Deconvolution,” Neural Computation, vol. 
7, no. 6, pp. 1129–1159, 1995. 

[47] A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for 
analysis of single-trial EEG dynamics including independent component 
analysis,” Journal of Neuroscience Methods, vol. 134, no. 1, pp. 9–21, 
2004. 

[48] M. K. van Vugt, P. B. Sederberg, and M. J. Kahana, “Comparison of 
spectral analysis methods for characterizing brain oscillations,” Journal 
of Neuroscience Methods, vol. 162, no. 1, pp. 49–63, 2007. 

[49] M. K. Ahirwal and N. D. londhe, “Power Spectrum Analysis of EEG 
Signals for Estimating Visual Attention,” International Journal of 
Computer Applications, vol. 42, no. 15, pp. 22–25, 2012. 

[50] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5– 
32, 2001. 

[51] . T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” 
in ACM SIGKDD '16 Proc., pp. 785–794, 2016. 

[52] S. Abe, Support Vector Machines for Pattern Classification, 1st ed. 
Guildford, Surrey: Springer London, 2010. 

[53] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, no. 
1, pp. 81–106, 1986. 

[54] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, and 
A. Barbado et al. “Explainable Artificial Intelligence (XAI): Concepts, 
taxonomies, opportunities and challenges toward responsible AI,” 
Information Fusion, vol. 58, pp. 82–115, 2020. 

[55] T. Rieg, J. Frick, H. Baumgartl, and R. Buettner, “Demonstration of the 
potential of white-box machine learning approaches to gain insights from 
cardiovascular disease electrocardiograms,” PLOS ONE, vol. 15, no. 12, 
Paper e0243615, 2020. 

[56] R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy 
Estimation and Model Selection,” in IJCAI'95 Proc., pp. 1137–1143, 
1995. 

[57] M. T. Ribeiro, S. Singh, and C. Ernesto, “"Why Should I Trust You?": 
Explaining the Predictions of Any Classifier,” in ACM SIGKDD '16 
Proc., pp. 1135–1144, 2016. 

[58] S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model 
Predictions,” in NIPS'17 Proc., pp. 4768–4777, 2017. 

[59] E. Sareen, L. Singh, B. Varkey, G. K. Achary, and A. Gupta, “EEG dataset 
of individuals with intellectual and developmental disorder and healthy 
controls under rest and music stimuli,” Data in Brief, vol. 30, Paper 
105488, 2020. 

[60] E. Marosi, H. Rodrìguez, T. Harmony, G. Yantez, M. Rodrìguez, and J. 
Bernal et al., “Broad Band Spectral Eeg Parameters Correlated with 
Different IQ Measurements,” International Journal of Neuroscience, vol. 
97, no. 1-2, pp. 17–27, 1999. 

[61] R. G. Schmid, W. S. Tirsch, and H. Scherb, “Correlation between spectral 
EEG parameters and intelligence test variables in school-age children,” 
Clinical Neurophysiology, vol. 113, no. 10, pp. 1647–1656, 2002. 

[62] N. Jaušovec and K. Jaušovec, “Differences in EEG current density related 
to intelligence,” Cognitive Brain Research, vol. 12, no. 1, pp. 55–60, 
2001. 

[63] R. W. Thatcher, D. North, and C. Biver, “EEG and intelligence: Relations 
between EEG coherence, EEG phase delay and power,” Clinical 
Neurophysiology, vol. 116, no. 9, pp. 2129–2141, 2005. 

[64] T. Dierks, V. Jelic, R. D. Pascual-Marqui, L.-O. Wahlund, P. Julin, and 
D. E. J. Linden et al., “Spatial pattern of cerebral glucose metabolism 
(PET) correlates with localization of intracerebral EEG-generators in 
Alzheimer’s disease,” Clinical Neurophysiology, vol. 111, no. 10, pp. 
1817–1824, 2000. 

[65] C. Babiloni, G. Binetti, E. Cassetta, D. Cerboneschi, G. D. Forno, and C. 
Del Percio et al., “Mapping distributed sources of cortical rhythms in mild 
Alzheimer’s disease. A multicentric EEG study,” NeuroImage, vol. 22, 
no. 1, pp. 57–67, 2004. 

[66] C. Huang, L.-O. Wahlund, T. Dierks, P. Julin, B. Winblad, and V. Jelic, 
“Discrimination of Alzheimer’s disease and mild cognitive impairment by 
equivalent EEG sources: a cross-sectional and longitudinal study,” 
Clinical Neurophysiology, vol. 111, no. 11, pp. 1961–1967, 2000. 

[67] N. V. Ponomareva, N. D. Selesneva, and G. A. Jarikov, “EEG Alterations 
in Subjects at High Familial Risk for Alzheimer’s Disease,” 
Neuropsychobiology, vol. 48, no. 3, pp. 152–159, 2003. 

[68] J. Jeong, “EEG dynamics in patients with Alzheimer’s disease,” Clinical 
Neurophysiology, vol. 115, no. 7, pp. 1490–1505, 2004. 

[69] L. S. Prichep, “Use of Normative Databases and Statistical Methods in 
Demonstrating Clinical Utility of QEEG: Importance and Cautions,” 
Clinical EEG and Neuroscience, vol. 36, no. 2, pp. 82–87, 2005. 

[70] M. Lehtovirta, J. Partanen, M. Könönen, J. Hiltunen, S. Helisalmi, and P. 
Hartikainen et al., “A Longitudinal Quantitative EEG Study of 
Alzheimer’s Disease: Relation to Apolipoprotein E Polymorphism,” 
Dementia and Geriatric Cognitive Disorders, vol. 11, no. 1, pp. 29–35, 
2000. 

[71] A. Demerdzieva, “EEG Characteristics of Generalized Anxiety Disorder 
in Childhood,” Acta Informatica Medica, vol. 19, no. 1, pp. 9–15, Paper 
9, 2011.

 

2021 Fourteenth International Workshop on Selected Topics in Mobile and Wireless Computing

12


