
LEO Satellite Beam Management Algorithms
Oren Markovitz and Michael Segal

School of Electrical and Computer Engineering
Ben-Gurion University, Beer-Sheva, Israel

Abstract—A global service LEO constellation aims to provide
service to any terminal covered by the constellation planes. To
reduce the satellite cost, which is directly related to its power
usage and weight, each satellite should be able to service (cover)
all the terminals within its Field-of-View (FoV) using the satellites
beams in the most efficient way. LEO satellite network vendors
use different approaches to handle the user terminals diverse
locations. A stepping (or tracking) beam constellation provides
service to predefined areas instead of a full coverage. As a result,
satellites using stepping beams are more efficient, as power is used
only for populated areas. When the constellation shifts, beams are
allocated such that each area is serviced by one of the satellites
that has the area in its FoV. Stepping beams constellations raise
unique and complicated tasks. When admitting a new service
area, we should verify it can be covered by a satellite beam at any
coverage combination of the moving constellation. The algorithms
should take into account the satellite limitations (power, number
of beams).

Previous works analyzed the overall efficiency of each constel-
lation architecture and the technologies of the on-board beams,
while little attention was paid to the algorithm that validates a
consistent coverage of new service areas. The major contribution
of this paper is a novel algorithm for validating new service areas
in a LEO stepping beam constellation.

Index Terms—LEO, stepping beam, tracking beam, satellite,
user beams.

I. INTRODUCTION

A LEO constellation must include several hundreds to
several thousands satellites to achieve a reliable and continuous
service of terminals. A satellite has two types of beams. ’GW
beams’ are used to communicate with the gateways (GWs)
and ’user beams’ are used to communicate with the terminals.
The reminder of the paper refers only to user beams (or
simply beams). LEO satellite network vendors use different
approaches to meet the user terminals diverse locations. In
tiles (or stripes) coverage, the footprint of the satellite’s user
beams covers the satellite’s Field-of-View (FoV) at a fixed
pattern. As the satellite moves, the beams are ‘dragged’. The
constellation is planned such that the satellites FoV covers the
service area (e.g. for polar constellation – global coverage) and
the entire constellation service area is covered with user beam
tiles at any given time. Tile coverage is used by OneWeb.

In most (if not all) cases the satellites FoV is not fully
populated with terminals. In case of a stepping beam satellite,
the satellite points its beams to cover only the areas that
need to be serviced (Figure 1). As the satellite moves, one
of the beams is released (the service area is covered by other
satellites) and is pointed to a new location. TeleSat claims to
use a DRA (Direct Radio Array). Each satellite’s DRA will
be able to form at least 16 beams in the uplink and downlink

Fig. 1: Stepping Beams vs. Tile Coverage.

directions. Stepping beams are more efficient as the satellite’s
power is used only for populated service areas; however,
managing the beams is more complicated. When adding a
new service area we should verify it can be covered and
provided with sufficient power by a user beam at any coverage
combination generated by the movement of the constellation.

Previous works analyzed overall efficiency of each approach
and the technologies of the on-board beams. Unfortunately, the
algorithms for managing the stepping beams and validating a
new service area (given a constraint on maximum number of
user beams and the total power of each satellite) were not
investigated. In this paper we propose a novel low complexity
(O(m3)) stepping beam validation algorithm for guaranteeing
that a new service area can be covered at any given time using
up to m user beams and total power p for each satellite.

The paper is organized as follows: Section II reviews the
related work. A model of the constellation is presented in
section III. A novel service cell validation algorithm is shown
and analyzed in section IV. A simulation of the algorithm and
analysis of the results is detailed in Section V. Section VI
summarizes the benefits of the algorithm introduced in this
paper and suggests directions for future research.

II. RELATED WORK

Current work focuses on different services and coverage
aspects of LEO constellations starting from the satellite design
[9], link budget and beam characteristics [2], geographical and
population coverage [4], [6], [7], total capacity [2], [3] and the
number of devices that can be served in a LEO constellation
given the handover period and log on time in case of TDMA
return channel [8].

In [1], the paper analyzes the rationality of two different
beam coverage designs of oneWeb and SpaceX. Papers [2] and

2021 Fourteenth International Workshop on Selected Topics in Mobile and Wireless Computing

978-1-6654-2854-5/21/$31.00 ©2021 IEEE 115

[3] compare Cyber Star, Spaceway and Celesti, by evaluating
the capacity and signal reduction. The authors in [4] and [6]
compare the capacity provided by OneWeb, SpaceX, and Tele-
Sat using a statistical framework and provide a performance
estimation of the system throughput. A geometric subdivision
method for obtaining the coverage target area and capacity
for each satellite of a constellation is presented in [7]. Zhou
et al. [8] evaluate the coverage by latitude and how many
IoT devices can be accessed simultaneously when there is
a change in coverage. In addition, the number of devices in
a TDMA return channel constellation is analyzed. Katona et
al. [9] provide a reference design for developing a Ka-band
satellite.

The problem of validating a new service cell can be easily
reduced to a graph clique problem. The service cells are
mapped to graph nodes, edges between nodes are added when
the distance between them is smaller than FoV edge size.
When a clique size is larger than the number of satellite user
beams (m), there exists a scenario in which a FoV rectangle
includes more than m service cells, i.e a satellite is required
to serve more than m service cells. The clique problem is
considered NP-hard. Max clique size algorithms in geometrical
graphs [14] provide a complexity of O(|E| · |V |+ |V |2) where
|E| and |V | are the cardinalities of a geometrical graph’s edge
set and vertex set, respectively. In order to validate each service
addition, we need to run the algorithm |V | times. Our approach
takes advantage of the geographical properties of the problem
(i.e. the maximum clique size is m and the maximum distance
between clique members which is known in advance).

III. CONSTELLATION MODELING

In our model, the terminals are mapped into service cells
rectangles, and the vertices of these rectangles are defined
by geographical altitude and longitude degrees. Each service
cell is served by one or more user beams from one or more
satellites at a given time. When a service cell is partially or
fully covered by the satellites FoV, it is assigned to a user
beam.

The satellite FoV circle outlines the ground area as seen
from the satellite. In order to provide a continuous service,
the FoVs of adjacent satellites must overlap. The Continuous
Field-of-View (CFoV) of each satellite is defined by either a
hexagon or a tile that is contained in the satellite’s FoV (see
Figure 2).

Fig. 2: Satellite Continuous Field-of-View Models.

For simplicity, we use the tile model throughout this paper.
However, the algorithms can be easily adjusted to the hexagon

model. In addition, we rotate the axes for simpler representa-
tion.

When we move away from the equator, there is an increased
overlap between the satellites physical FoV, which in turn
provides additional bandwidth for terminals in the overlapped
sections. A different approach is to define the horizontal and
vertical length of the CFoV in degrees, therefore the size of the
CFoV remains fixed as we move away from the equator, while
the power density (and rate) that each satellite can provide to
the terminals in its CFoV is increased. In this paper, we take
the latter approach, which is simpler to manage and provides
the same capacity benefits.

A. Geo-Cells Array

We split the earth into ’geo-squares’, each square size is
equal to the CFoV size (Figure 3). When the CFoV vertical
and horizontal lengths are measured in degrees, the number
of squares is the same as the number of satellites, i.e. for
a constellation with n planes there are n2 geo-squares of
equal size. A two-dimensional array of geo-cells is used to
store the service cells in each geo-square. The array’s indexes
are calculated based on the geo-cells (geo-square) location
(longitude and latitude). The service cells located in the geo-
cell are stored in a linked-list ordered by unique ID. When
a service cell is split between two geo-cells, it will be stored
twice. The array is easily accessed in O(1) time by translating
a given longitude and latitude coordinates to two dimensional
array indexes (x, y) =⇒ geo-cell(x′, y′).

Fig. 3: Service Cells and Geo-Cells.

IV. SERVICE CELL VALIDATION

A terminal can be added to an existing service cell or to a
new one. We assume a service cell rectangle is defined and
validated before being used by the satellites (i.e. offline). When
adding a new service cell, we must verify that the number
of service cells covered by any satellite at any constellation
coverage scenario, does not exceed the number of satellite user
beams (m). We assume the service cell rectangle maximum
edge sizes are equal to those of the satellites CFoV rectangle
(CFoVD).

Algorithm outline: The algorithm builds a subset of the
service cells that should be considered (the service cells
located inside the ’reference-zone’). The algorithm locates all
the relevant satellite positions within the ’reference-zone’, for
which the satellite CFoV contains the new service cell (or part
of which). For each position of the satellite CFoV rectangle,
we verify that it does not include more than m members and

2021 Fourteenth International Workshop on Selected Topics in Mobile and Wireless Computing

116

that the total power consumed by the service cells does not
exceed p. The new service cell can be added if there are no
relevant CFoV rectangles for which the number of beams or
power constraints are violated. We prove that the reference
zone is contained in a rectangle of 16 geo-cells were the new
service cell is located at the center (Figure 4).

Lemma 1. If the number of members in all the CFoV rectan-
gles is ≤ m, then there is no scenario in which a satellite has
more than m service cells in its CFoV.

A. Service Cell Reference-Zone

The service cell reference-zone outlines the area that needs
to be considered when validating a service cell.

Lemma 2. The maximum edge size of the reference-zone is
3 ·CFoV D and the number of service cells in the reference-
zone is smaller than 9 ·m. See Figure 4.

Fig. 4: Service cell Reference-Zone.

B. Reference-Zone Algorithm

The algorithm returns the list that contains the relevant
service cells in the reference-zone of a new service cell in
O(m).

The algorithm models the service reference-zone as a set of
squares and builds the list of the service cells in the service
reference-zone. The service cells locations are stored in a two-
dimensional geo-cells array SCA[1 . . . n, 1 . . . n] (as described
in section III) . Each entry stores up to m service cells (Lemma
3). The service cells are stored in a linked list. The array is
stored on each satellite. The distribution algorithm is out of
the scope of this paper. However, we assume the distribution
algorithm provides coherency.
Let:
• k be the number of service cells.
• m be the number of user beams in each satellite.
• CFoVD be the edge size of the satellites CFoV.
• SCi,(x,y,r) be a service cell rectangle with a center

location of x, y and an edge size of 2 · r.
• SCA[1 . . . n, 1 . . . n] be an array of service cells sets

initialized to {}.
Algorithm outline:

1) The service cells are stored in a two-dimensional array
such that each cell covers an area of size CFoVD ×

CFoVD. Each record stores all the service cells that
have a center in the same geo-cell.

2) The algorithm uses the array to build a list of service
cells that are stored in the same record as the new
service cell and the adjacent records (i.e. reference-
zone records). The algorithm returns all the service cells
located in one of the reference-zone records.

getReferenceZone(x, y, r) Input: Reference-zone center x, y
with edge size of 2 · r.
Return: {SC1, ..., SC16·m}.

1) referencezoneRecords = {}.
2) CFoVD = 360

n .
3) x′=b x− r

CFoVD
c, y′=b y − r

CFoVD
c.

4) Append to referencezoneRecords:
SCA[x′, y′], SCA[x′ − 1, y′], SCA[x′ − 1, y′ −
1], SCA[x′, y′ − 1].

5) x′=b x− r
CFoVD

c,y′=b y + r
CFoVD

c.
6) Append to referencezoneRecords:

SCA[x′, y′], SCA[x′ − 1, y′], SCA[x′ − 1, y′ +
1], SCA[x′, y′ + 1].

7) x′=b x+ r
CFoVD

c, y′=b y − r
CFoVD

c.
8) Append to referencezoneRecords:

SCA[x′, y′], SCA[x′ + 1, y′], SCA[x′ + 1, y′ −
1], SCA[x′, y′ − 1].

9) x′=b x+ r
CFoVD

c, y′=b y + r
CFoVD

c.
10) Append to referencezoneRecords:

SCA[x′, y′], SCA[x′ + 1, y′], SCA[x′ + 1, y′ +
1], SCA[x′, y′ + 1].

11) Remove* duplicates from referencezoneRecords
12) For each SCA[i, j] ∈ referencezoneRecords, add the

service cells to referencezone.
13) Remove* duplicates from referencezone
14) Return referencezone.

* Removing duplicates is done by setting a flag for every
record that is added for the first time, and checking the flag
when adding records.

Lemma 3. The number of service cells stored in each cell of
the array is smaller than the number of user beams (m).

Proof. A service cell is approved only if it can be served by the
constellation at any given positioning of the constellation. In
particular, when the constellation is aligned with the geo-cells,
the satellite CFoV is contained within the geo-cell. Assuming
the number of service cells in a geo-cell is larger than m,
then in the latter scenario, the number of service cells in the
satellite CFoV is bigger than m.

Lemma 4. referencezoneRecords returns all the records
that are at maximum index difference (±1) from the new
service cell record indexes.

Lemma 5. A service cell that is located in a CFoV rectangle
with any vertex of the new service cell is returned by the
algorithm.

2021 Fourteenth International Workshop on Selected Topics in Mobile and Wireless Computing

117

Proof. We prove the lemma for the upper right vertex of
the new service cell but the same proof applies for all
vertices. Let F1(x,y), ..., F4(x,y) be the vertices of the satellite
CFoV rectangle. Let S1(x,y), ..., S4(x,y) be the vertices of
the service cell that is served by the satellite. Let c be the
upper right vertex of the new service cell. If two service
cells belong to the same CFoV, then there are at least two
vertices (each from a different service cell) for which the
horizontal and vertical distances are smaller than CFoVD.
Let Si ∈ {S1, S2, S3, S4} be the vertex at a (horizontal and
vertical) distance smaller than CFoVD from c. Let cx, cy and
sx, sy be the locations of c,si respectively such that c is stored
in array cell [cx

CFoVD
,

cy
CFoVD

], and si is stored in array cell

[sx
CFoVD

,
sy

CFoVD
]. The distance between x indexes of the

record that stores c and the one that stores si is |cx − sx|
CFoVD

,

and the distance between y indexes is |cy − sy|
CFoVD

. Since the
maximum distance between the coordinates is CFoVD, then
the absolute value of the difference between x (y) indexes is
at most 1. By Lemma 4, referencezoneRecords returns all
the records that are at maximum index difference plus/minus
one of the new service cell record indexes. The algorithm
returns all the service cells that are stored in records of the
referencezoneRecords, therefore, all the service cells that
are located at a distance (horizontal and vertical) equal to or
smaller than CFoVD are returned by the algorithm.

Lemma 6. getReferenceZone computation complexity is
bounded by O(m).

C. Service Cell Validation Algorithm

The algorithm calculates all the relevant positions of the
CFoV rectangle inside the reference-zone, that include at
least one of the new service cell vertices. For each of these
locations, we verify that it does not include more than m
service cells and that the total power required by the service
cells does not exceed p.

Algorithm 1 List of Relevant CFoV Positions Algorithm
getRelevantCFoV List(SCList)
Input: List of service cells.
Return: List of relevant CFoV positions
{(x1, y1), ..., (xm2 , ym2)}.

1) xList =[], yList = []
2) For each SC in SCList: xList.append(SCx ± r),

yList.append(SCy ± r).
3) Order xList, order yList.
4) Remove duplicates from xList, yList
5) list = [].
6) For x in xList:

For y in yList: list.append((x,y)).
7) Return list.

Lemma 7. Given a set of points (Figure 5), there exists a
rectangle that contains all the points, such that the vertices of

the rectangle are a combination of the x and y coordinates of
two of these points.

Fig. 5: Vertex of a Group of Points.

Proof. Let p1, ..., pn be a group of points with coordinates
(x1, y1), ..., (xn, yn) respectively.
Let:
xmin = min{x1, ..., xn}, xmax = max{x1, ..., xn}.
ymin = min{y1, ..., yn}, ymax = max{y1, ..., yn}.
The lower left and right upper vertices of the rectangle that
contain all points are (xmin, ymin),(xmax, ymax) respectively.

Lemma 8. getRelevantCFoV List returns all possible rect-
angle vertices in the reference-zone in O(m2).

Lemma 9. getRelevantCFoV List contains at most O(m2)
vertices.

insideCFoV (sc, v(x, y))
Input: Service cell, Vertex of CFoV candidate.
Return: If the service cell is (partially or fully) contained in
the CFoV rectangle return True.

1) v′x = vx + CFoVD, v′y = vy + CFoVD

2) For scvertex of sc:
If vx ≤ scvertexx

≤ v′x and If vy ≤ scvertexy
≤ v′y

then return True.
3) v′x = vx + CFoVD, v′y = vy − CFoVD

4) For scvertex of sc:
If vx ≤ scvertexx ≤ v′x and If vy ≤ scvertexy ≤ v′y

then return True.
5) v′x = vx − CFoVD, v′y = vy + CFoVD

6) For scvertex of sc:
If vx ≤ scvertexx

≤ v′x and If vy ≤ scvertexy
≤ v′y

then return True.
7) v′x = vx − CFoVD, v′y = vy − CFoVD

8) For scvertex of sc:
If vx ≤ scvertexx

≤ v′x and If vy ≤ scvertexy
≤ v′y

then return True.
9) return False.

Let:
• m be the number of user beams in each satellite.
• p be the satellite power.
• CFoVD be the satellite Field of View edge size.
• SC(x,y,r) be a service cell with a center at x, y and an

edge size of 2 · r.

2021 Fourteenth International Workshop on Selected Topics in Mobile and Wireless Computing

118

• SCp be the power consumed by SC.

Algorithm 2 Service Cell Validation Algorithm
validatateServiceCell(SC(x,y,r))

1) referencezone = getReferenceZone(SC(x,y,r))
2) relevantCFoV V ertices =

getCFoV Locations(referencezone)
3) For each CFoV RC in relevantCFoV Locations:

SCCounter = 0, Pcounter = 0
If insideCFoV (CFoV RC, SC(x,y,r)) == False

then continue.
For each SC in referencezone:

a) If insideCFoV (CFoV RC, SC) == True
Increase SCCounter
Increase PCounter by SCp

If SCCounter > m return False.
If PCounter > p return False.

4) Return True
AddServiceCell(SC(x,y,r))

1) CFoVD = 360
n .

2) x′=b x
CFoVD

c, y′=b y
CFoVD

c.
3) Append SC(x,y,r) to SCA[x′][y′].

Lemma 10. The algorithm returns True if there are no
rectangles that include the service cell with more than m
service cells or consume more than p power.

Proof. Assuming there is such a rectangle called FRC that
contains the new service cell and more than m service cells
or the total power in the rectangle exceeds p then one of the
following must be true:
• Some of the FRC service cells were not considered by

the algorithm. Contradicts Lemma 5.
• The algorithm considered all the service cells in FRC,

but did not check FRC as a rectangle, i.e. the service
cells in FRC were not verified as a group. Contradicts
Lemma 8.

• FRC service cells were analyzed as a group, but the
algorithm returned True, although the number of service
cells is bigger than m or the total power of the service
cells is bigger than p. Contradicts the algorithm (see
Algorithm 2, specifically, Operation 3).

Lemma 11. The algorithm returns False if there is a FRC
rectangle that includes the service cell with more than m
service cells or consumes more than p power.

Proof. Assuming there is such a rectangle FRC that contains
the new service cell and more than m service cells or the total
power in the rectangle exceeds p and the algorithm returns
True, then one of the following must be true:
• Some of the FRC service cells were not considered by

the algorithm. Contradicts Lemma 5.

• The algorithm considered all the service cells in RFC,
but did not check RFC as a rectangle, i.e. the service
cells in FRC were not verified as a group. Contradicts
Lemma 8.

• RFC service cells were analyzed as a group, but the
algorithm returned False, although the number of service
cells is smaller than m or the total power of the service
cells is smaller than p. Contradicts the algorithm (see
Algorithm 2, specifically, Operation 3).

Lemma 12. The algorithm complexity is O(m3) where m is
the maximum number of user beams in a satellite.

Lemma 13. The Algorithm memory requirement is O(n2+k)
where n2 is the number of satellites and k is the number of
valid service cells.

V. SIMULATION

This section details the simulations of the service cells
validation algorithm. The simulations include multiple con-
figurations of service cells randomly allocated (with different
CFoV rectangle sizes ranging from 2% to 32% of CFoV
rectangle size) and served by a grid of 8x8 satellites. The
service area is a rectangle of size 5x5 CFoV. The number
of user beams ranges from 1 to 16 beams per satellite, and
we assume uniform satellites (i.e. all satellites use the same
number of beams).

The satellite grid is moving vertically and horizontally such
that service cells (and parts of them) are dynamically assigned
to the proper satellites.

The simulation demonstrates the service cell validation
algorithm complexity and correctness. The simulation is coded
in Python and was executed on a dual core i5 Intel PC running
Windows10 OS. The simulated scenarios include:

• The service cell validation algorithm is used to validate
the service cells. The algorithm adds the service cells that
were approved to a two dimensional geo-cells array.

• The service cell validation algorithm correctness is eval-
uated by checking beam pointing failures (a satellite has
reached its maximum number of beams).

A. Maximum Number of Service Cells

In this section we present the impact of the number of user
beams and service cell size on the number of valid service
cells.

As expected, the number of valid service cells decreases as
we increase the size of service cells and increases as we add
more beams. The impact of the increase in the service cell
size is logarithmic and the impact of increasing the number of
user beams is linear (see Figure 7). Figure 6 demonstrates the
combined impact of changes in number of beams and service
cell size when trying to add 1000 service cells at random
locations.

2021 Fourteenth International Workshop on Selected Topics in Mobile and Wireless Computing

119

Fig. 6: Combined Impact Analysis of Number of User Beams
and Service Cell Size on the Maximum Number of Service
Cells.

Fig. 7: Maximum Number of Service Cells.

B. Service Cell Validation Algorithm Complexity

In order to evaluate the complexity of the service cell
validation algorithm, the following telemetries are collected
in each validation cycle:
• Reference-zone size: How many service cells are in the

reference zone.
• Number of CFoV rectangles: The number of CFoV

rectangles in the reference zone, that are evaluated by
the algorithm.

• Number of relevant CFoV rectangles: The number of
CFoV rectangles in the reference zone, that include the
new service cell and are checked for maximal number of
service beams and power limit.

The results (Figure 8) support the expected theoretical
complexity. In addition, the correctness of the algorithm was
evaluated by running beam pointing algorithm to cover the
service cells.

VI. DISCUSSION

Stepping beams constellations provide a more efficient
coverage, yet require complex algorithms for managing the
beams, and validating new service areas. We presented a
novel stepping beam validation algorithm for validating a new

Fig. 8: Service Cell Validation Complexity Analysis.

service area at a complexity of O(m3) (where m is the number
of beams in a satellite). Future research can prove a tighter
computational and memory complexity bounds.

REFERENCES

[1] Shiyi X, Quanjiang J, Cheng Z, Guotong L, ”Beam Coverage Compar-
ison of LEO Satellite Systems Based on User Diversification,” IEEE
ACCESS, 2019.

[2] J. V. Evans, ”Proposed U.S. Global satellite systems operating at Ka-
Band,” IEEE Aerosp. Conf, Vol. 4, Mar. 1998, pp. 525-537.

[3] G. B. Shaw, D. W. Miller, and D. E. Hastings, ”The generalized infor-
mation network analysis methodology for distributed satellite systems,”,
textifPh.D. dissertation, Dept. Aeronaut. , Massachusetts Inst. Technol.,
Cambridge, MA, USA, 1999.

[4] I. del Portillo, B. G. Cameron, and E. F. Crawley, ”A technical
comparison of three low Earth orbit satellite constellation systems to
provide global broadband,”, Acta Astronautica, vol. 159, pp. 123-135,
Jun. 2019.

[5] ”Propagation Data and Prediction Methods Required for the Design of
Earth-Space Telecommunication Systems, document Recommendation”,
ITU-R618ı́C13, 2017.

[6] Inigo del Portillo, Bruce G. Cameron, Edward F. Crawley, ”A technical
comparison of three low earth orbit satellite constellation systems to
provide global broadband,”, Acta Astronautica, Volume 159,2019, Pages
123-135, ISSN 0094-5765.

[7] Guangming DaiXiaoyu, ChenXiaoyu ChenMaoca, WangMaocai Wang-
Show, ”Analysis of Satellite Constellations for the Continuous Coverage
of Ground Regions”, Journal of Spacecraft and Rockets,54(3):1-10, Aug
2017.

[8] Haotian Zhou, Liang Liu, Huadong Ma, ”Coverage and Capacity Anal-
ysis of LEO Satellite Network Supporting Internet of Things,”, IEEE
ICC, May 2019, DOI: 10.1109/ICC.2019.8761682.

[9] Zoltán Katona, Michael Gräßlin, Anton Donner, Norman Kranich,
Hartmut Brandt, Hermann Bischl, Martin Brück, ”A flexible LEO
satellite modem with Ka-band RF frontend for a data relay satellite
system”, Journal of Satellite Comm. and Networking, 2018, 00:1-18,
DOI: 10.1002/sat.

[10] LeoSat Non-Geostationary Satellite System Attachment,, A: Technical
Annex to Supplement Schedule S. Accessed: Mar. 20, 2018. [On-
line]. Available: http://licensing.fcc.gov/myibfs/download. do attachment
key=115822”

[11] M. A. Sturza, ”The teledesic satellitesystem: Overview and design
trades,”, in Proc. Annu. Wireless Symp, Feb. 1995, pp. 402-409.

[12] WorldVu Satellites Limited. OneWeb Ka-Band NGSO Constellation
FCC Filing SAT-LOI- 20160428-00041. [Online]. Available:
http://licensing.fcc.gov/myibfs/forwardtopublictabaction.o?,le
number=SATLOI2016042800041

[13] Telesat Canada. Telesat Ka-Band NGSO Constellation FCC Filing SAT-
PDR-20161115-00108.

[14] I.M. Derici, M. T. Panu, ”Determining the maximum clique size in large
random geometric graphs,”,Conf. on High Performance Computing and
Simulation, 2011, pp. 143-154, doi: 10.1109/HPCSim.2011.5999818.

2021 Fourteenth International Workshop on Selected Topics in Mobile and Wireless Computing

120

