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†Orange-Labs, 44, Avenue de la République, 92320 Châtillon, France
∗University of Versailles, 55 Avenue de Paris, 78000 Versailles, France

Abstract—Fifth generation mobile networks (i.e, 5G) are not
only characterized by higher capacity and throughput, but also by
the support of heterogeneous services, characterized by different
Quality of Service (QoS) requirements in terms of throughput,
delay or energy consumption. Such multi-service networks require
the partitioning of the available radio resources into mutliple
slices, where each service occupies one slice in an isolated manner.
However, a static isolation scheme among slices might have a
negative impact on radio resource efficiency. For example, when
one slice is highly loaded, while the second is lowly loaded, the
resources of the first slice are over-utilized, whereas the resources
of the second are under-utilized. Consequently, a Dynamic Radio
Access Networks (RAN) slicing algorithm is paramount so as to
adapt to the different load conditions of services. In that way, the
radio resource utilization efficiency is increased, while the different
QoS requirements of services are satisfied. In this paper, we tackle
this problem by proposing a Dynamic RAN Slicing algorithm
based on a crowding game. The algorithm efficiently allocates the
resources among heterogeneous RAN slices in a way to satisfy the
different QoS requirements of users belonging to different services
while increasing the resource utilization efficiency. The results
show that our proposed solution overcomes the Static Scheme in
terms of QoS guarantee and utilization efficiency.

Index Terms—5G, Dynamic RAN Slicing, Crowding Game, Best
Response, Pure Nash Equilibrium

I. INTRODUCTION

The support of a simultaneous range of business models,
such as Internet of Things (IoT) technologies, self-driven cars
and smart cities is a main target of the Fifth Generation
(5G) mobile networks. Such heterogeneity among different
applications, having each its own QoS requirements in terms
of high throughput, strict delay and low energy consumption,
requires an efficient partitioning of the scarce Radio Access
Network (RAN) resources. In this context, RAN slicing has
been recently proposed and consists of partitioning the RAN
resources into multiple logical networks (i.e, slice), where each
slice would be customized to support one service type having
its own QoS requirements. In this way, multiple services co-
exist over one single infrastructure and commonly share the
RAN resources in terms of hardware equipment and spectral
resources. Capital Expenditures (CAPEX) are consequently
reduced, while RAN resources are efficiently utilized.

In order to perform slicing, the third Generation Partnership
Project (3GPP) suggests an isolation among the different slices
sharing the spectral resources of one base station [1]. In
fact, a minimum isolation among slices is crucial in order

to prevent one service from affecting the performance of the
other services. However, given the fluctuations and the non-
uniform space-time distribution of the mobile traffic over time,
the resource utilization efficiency might be compromised if a
strict isolation is applied. In fact, a Dynamic RAN Slicing is
paramount in order to achieve adaptability to different demands
and mobile traffic variations. At one hand a Dynamic RAN
Slicing scheme allows for an efficient use of the radio resources,
on the other hand, this might compromise the isolation among
slices. Thus, a challenge would be to design a Dynamic RAN
Slicing algorithm which adapts to different load conditions
while satisfying the various QoS requirements for all services.

In this paper, we address the Dynamic RAN Slicing problem.
In particular, we design an efficient slice resource allocation
algorithm based on a crowding game [2]. In our proposed
scheme, users having any service type (i.e, S-NSSAI) select
their own resources according to predefined cost functions. The
cost functions are carefully defined and tuned so as to fit the
QoS of each service. For the sake of simplicity, we compare the
results of our proposition with a static isolation scheme where
a subset of the spectral resources are exclusively dedicated to
each slice. Additionally, we analyze the time complexity of our
algorithm and discuss a scenario of implementation in the case
of the O-RAN architecture (Open RAN) [3].

II. RELATED WORK

Network slicing has taken much attention in the recent
studies. Many Standard Developing Organizations (SDOs),
such as 3GPP, O-RAN alliance, ETSI, ITU and IETF are
working to concretize this concept and make it feasible. Net-
work slicing involves core slicing and RAN slicing [4]. For
example, the work in [5] proposes a core slicing solution
enabled by the Software Defined Networks (SDN), while [6]
discusses many challenges related to RAN Slicing. In fact,
many studies (e.g, [7], [8]) consider the Dynamic RAN Slicing
problem among mutliple operators (i.e, tenants), sharing one
single infrastructure and having each their own Service Level
Agreement (SLA) to satisfy. Those works rely solely on an
elastic traffic model which is not realistic in presence with other
types of services. Contrarily, [9] tackles the Dynamic RAN
Slicing problem and considers two different types of services
(i.e, IoT and video streaming). Additionally, [10] proposes a
game theoretical framework for the Dynamic RAN Slicing
considering only the inelastic services with minimum rates to
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guarantee. While all those works tackle the Dynamic RAN
Slicing problem, they do not consider the effect of inter-slice
interference due to inter-cell interference in the case of a multi-
cellular network. Nonetheless, few studies such as [11] and [12]
address the problem of inter-slice interference that might affect
the isolation among slices. However, those works do not focus
on the resource allocation problem among slices. In other terms,
the Dynamic RAN Slicing problem is not treated. Conversely,
our work tackles the Dynamic RAN Slicing problem which is
formulated as a crowding game. Unlike previous studies, our
work considers two different types of services with different
QoS requirements to satisfy. Particularly, we consider Ultra-
Reliable and Low Latency Communications (URLLC) service
which is characterized by a high reliability requirement and
strict delay, along with enhanced Mobile Broadband (eMBB)
service which requires high throughput. Further, different cost
functions per service type are considered and well tuned so as
to improve radio resource utilization efficiency while meeting
the different QoS constraints. An important practical aspect
is also highlighted and consists of proposing a scenario of
implementation in the case of O-RAN architecture.

The rest of the paper is organized as follows:
In section III the system model is discussed. Section IV
presents the crowding game framework for the resource alloca-
tion algorithm and discusses the cost functions definition and
tuning. Section V analyses the time complexity of our proposed
solution and discusses a scenario of implementation in the case
of O-RAN architecture. Section VI evaluates the performance
of our proposed solution in comparison with the Static Scheme.
Section VII concludes the paper.

III. SYSTEM MODEL

Our system model consists of a set of N users having each
one communication service type. Within a practical scenario,
one user could have eight different slices. Consequently, there is
a one-to-M mapping between one user and the different slices,
where Mmax = 8 [13]. However, for the sake of simplicity, we
consider a one-to-one mapping between one user and one slice.
In other terms, a user has only one communication service type,
and consequently is served by one slice only. As previously
mentioned, two different types of communication service are
present:
• Ultra-Reliable Low-Latency Communication: The URLLC

is characterized by high reliability and stringent delay re-
quirements. Usually such type of communication concern
real-type applications, such as connected cars, emergency
services, and connected medicine applications.

• enhanced Mobile Broadband: The eMBB is known for
its extremely high demand in terms of throughput and a
satisfaction that increases with the amount of granted re-
sources. Such type of communication includes applications
like augmented reality, Ultra High Definition (UHD) video
streaming, and online gaming.

We consider the smallest spectral resource unit to be one
Resource Block (RB). Therefore, the total bandwidth of a base

station would be divided into Ntot RBs. The total resources are
divided into two subsets, where each subset is allocated to one
slice. We consider that nmin resources (i.e, RBs) are initially
allocated for the eMBB slice which is identified by a S-NSSAI
(i.e, slice identifier according to 3GPP terminology) value of
‘1’, while the remaining part (i.e, NRB = Ntot − nmin) are
allocated for URLLC slice which is identified by a S-NSSAI
value of ‘2’.

A. Mean Performance Indicator

Within the Static Scheme, the allocated subset of resources
for each slice remains fixed. However, our model has more
flexibility as a user of type URLLC can select the subset of
resources initially allocated for the eMBB slice and vice versa if
a different resource subset (i.e, slice) endows it with lower cost
than the one allocated to its proper slice. It is worth noting that
the URLLC communication service is characterized by high
network reliability. In other terms, such service requires a 100%
guarantee of minimum delay. Consequently, we assume that a
user of URLLC type must have a delay equivalent to one RB.
Any additional allocated RB will not increase its satisfaction,
as such type of service does not require high throughput, as for
the eMBB service.
Before expressing a user rate, let us define the different abbre-
viations for the sake of clarity:
• NURLLC : is the number of users having S-NSSAI = 2
• NeMBB : is the number of users having S-NSSAI = 1
• N : is the total number of users within the system. It is

equal to NURLLC +NeMBB

• NU : is the number of users that URLLC slice resources
• NM : is the number of users that share the eMBB slice

resources
• NRB : is the number of physical RBs allocated for the

URLLC slice
• nmin: is the number of physical RBs allocated for the

eMBB slice
• Ntot: is the total number of RBs and is equal to nmin +

NRB

While the algorithm runs, NU and NM could be users having
different S-NSSAI (i.e, 1 or 2). In other terms, they could be
users having different service types. When the algorithm out-
puts a solution, a different number of RBs would be allocated
for each slice. Thus, NRB and nmin change.
In our system model resources are differently allocated over
the bandwidth. In particular, NU users that select the URLLC
slice resources are granted 1 RB each. This case applies only
when NU ≤ NRB . Otherwise, URLLC resources are shared
using a fair resource sharing scheme. For the NM users that
select the eMBB slice resources, a fair resource sharing scheme
is always applied. As URLLC type users are interested with a
prompt service but limited amount of resources (i.e, 1 RB) our
model allocates the remaining RBs of the URLLC slice (i.e,
NRB −NU ) for eMBB slice whenever NU ≤ NRB . Thus, an
eMBB type user is motivated to select its natural slice (i.e,

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

182



eMBB slice) when the latter grants it high throughput (cf.
subsection IV-B).
In our studies, we consider average radio conditions. In fact,
the Dynamic RAN Slicing algorithm is not to be executed at
the smallest time scale. Such problem concerns the bandwidth
partitioning, rather than the RB allocation. Thus, we consider
average radio condition metrics per RB. We also denote by Ck

ap

the average rate achieved by one physical RB when average
radio conditions are considered.
If a user k selects the eMBB slice, the rate Thrk is calculated
as follows:

ThreMBB
k =


Ck

ap ·
(
nmin + (NRB −N +NM )

)
/NM

if NU ≤ NRB

Ck
ap ·

(
nmin/NM

)
Otherwhise

Otherwise, if user k selects the URLLC slice, Thrk is calcu-
lated as follows:

ThrURLLC
k =

{
Ck

ap if NU ≤ NRB

Ck
ap ·

(
NRB/NU

)
Otherwhise

Note that the performance indicator of an eMBB type user
is expressed in terms of throughput, whereas the performance
indicator of an URLLC type user is expressed in terms of delay.
A delay Delk of a user k is calculated as: Delk = 1/Thrk

IV. CROWDING GAME FRAMEWORK FOR RESOURCE
SELECTION

A crowding game consists of a non-cooperative game, where
players compete over a common resource. Hence, it is well
suited for an efficient resource selection algorithm. In our case,
the game is modeled as a multi-player game G, where users are
the players, whereas the subsets of allocated RBs for each slice
are the resources. The framework of the game is presented as
follows:
• The set K as the set of players (i.e, users)
• The set S = {e, u} as the set of strategies, where e

designates the eMBB slice, whereas u coins the URLLC
slice. An action of a user k consists of selecting one subset
s ∈ S

• The strategy of a user k is denoted as yk and whose
components are the binary variables yk,s which equate to 1
when user k chooses the slice s. Hence y = (yk)k∈K ∈ S
is a pure strategy profile, and S = S1 × S2...× SK is the
space of all profiles

• A set of cost functions {C1, C2, ..., CK} that quantify the
players’ preferences over the possible outcomes of the
game.

A. Cost Function

Each user seeks to minimize its own cost function by select-
ing an adequate strategy s (i.e, slice s). Note that a cost function
is defined according to a user type (i.e, S-NSSAI). Particularly,
the cost function of an eMBB type user is expressed in terms of
throughput, while the cost of an URLLC type user is expressed
in terms of delay (cf. subsection III-A).

When a user k selects the eMBB slice its cost function is
expressed as follows:

CeMBB
k =


(
Dk/Thr

eMBB
k

)
+ CeMBB

if user k is of type eMBB(
DeleMBB

k /TK

)
+ CeMBB

if user k is of type URLLC

Otherwise, if user k selects the URLLC slice, its cost function
would be expressed as:

CURLLC
k =


(Dk/Thr

URLLC
k ) + CURLLC

if user k is of type eMBB(
DelURLLC

k /TK

)
+ CURLLC

if user k is of type URLLC

Dk expresses the comfort rate of an eMBB type user, while Tk

expresses the comfort delay of an URLLC type user. CeMBB

expresses the cost of selecting the eMBB slices, while CURLLC

expresses the cost of selecting the URLLC slice. To enhance
the model efficiency, the cost functions parameters must be
well tuned in order to push the selfish users towards their most
adequate strategies which satisfy their QoS requirement. Within
the following, we detail the parameters choice to achieve such
goal.

B. Tuning the Cost Function Parameters

Dk verifies Dk ≥ n.Ck
ap, where n is an integer greater than

1. The reason of such a value is to push an eMBB type user
to favor the slice that gives it more than one RBs (i.e, slice e)
and thus, increases its throughput. Recall that Ck

ap is the rate
achieved by one RB. We set Tk to 1/Ck

ap to give incentive to
an URLLC type user to choose the strategy that endows it with
1 RB. Both CeMBB and CURLLC are greater than 0 and verify
CeMBB ≥ CURLLC . The reason of such constraint is to push
the URLLC type users to select the slice u when the latter
grants them one physical RB each, or in other terms, when
NU ≤ NRB . In fact, we want to grant an URLLC type user no
more than 1 RB as giving away more RBs does not increase
its satisfaction. In that way, more RBs would be available for
eMBB type users that are in need of high throughput. However,
when NU > NRB , Delk/TK would have a high value, which
increases the cost of an URLLC type user in case the latter
selects slice u. Thus, an URLLC user must endeavor to satisfy
its reliability requirement by selecting the slice that grants it at
least one physical RB (in such as case, slice e).
To summarize, when NU ≤ NRB , Delk/Tk would be small
enough in slice u. In that way, an URLLC type user favors
more slice u since CeMBB ≥ CURLLC . On the other hand,
when NU > NRB , Delk/Tk significantly increases in slice
u. Consequently, an URLLC type user favors the slice e that
grants it at least one physical RB.
After the algorithm converges, NRB and nmin are adjusted for
each slice. In fact, the convergence of the algorithm is attained
when the Pure Nash Equilibrium (PNE) is reached. Within the
following subsection IV-C we describe how the PNE is reached
and proof of its existence.

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

183



C. Attaining the Pure Nash Equilibrium

In a non-cooperative game, a solution is obtained when all
players adhere to a Nash Equilibrium (NE). A NE is a profile
of strategies in which no player will profit from deviating its
strategy unilaterally. Hence, it is a strategy profile where each
player’s strategy is an optimal response to the other players’
strategies.
Our game G is a finite game and in general such games are
not guaranteed to have PNEs . Nevertheless, they possess a
mixed NE where each player has to continually change its
slice selection according to a distribution probability over the
strategy set. However, our game has the Finite Improvement
Path (FIP) property which is a valuable property. In fact,
for such games, simple dynamics converge to PNE [14]. The
common feature of such games is the existence of a potential
function which represents commonly the quality of the various
strategy profiles for all players [15]. The unilateral change of
one user strategy results in a change of its cost function that is
equal to the change of the so-called potential function.

Proposition 1 The game G has the FIP property.

PROOF The game G is an unweighted crowding game, as it
is a normal-form game in which users share a common set of
actions and the cost function of user k for choosing a particular
action is player specific and a non-increasing function of the
total number of users choosing that same action. Unweighted
crowding games have PNE. Furthermore, when players have
only two strategies (i.e, e and u), the game has the Finite
Improvement Path (FIP) property and hence a Best Response
[16] algorithm permits attaining the PNE of the game [17].

The Best Response algorithm is presented as follows:
1) Best Response algorithm: : At each round of the Best

Response, a user k goes through all available strategies and
chooses the strategy (i.e, s ∈ S) that provides it the lowest
cost. Convergence is attained when all users choose the same
strategies as in the previous round. We denote by ak∈K(i)
and yk∈K(i) the action and the strategy of user k at round
i respectively. The behavior of the Best Response is described
in algorithm 1:

1 Initialize all vectors yk∈K(0) of pure strategies;
2 repeat
3 Each user goes through all strategies of set S and

chooses a startegy s∗ that respects
s∗ = argmins∈SCk;

4 Actions ak∈K(i) of each user are updated;
5 until Attaining PNE;

Algorithm 1: Stage 1: Best Response

Within the following, we analyze the amount of time the
Best Response needs to converge. Additionally, we discuss
a scenario for implementing the algorithm in the O-RAN
architecture.

V. ALGORITHM IMPLEMENTATION IN O-RAN
ARCHITECTURE

The O-RAN architecture involves several entities. We de-
scribe hereafter two main ones as we consider that our algo-
rithm would be implemented at their level:
• The non-Real time RAN Intelligent Controller (non-Real-

Time RIC): The non-real-Time RIC consists of a virtual
entity offering the possibility to manage the radio re-
sources in non-real-time (i.e, within a time scale larger
than 1 s). The non-Real-Time RIC bases on Artificial
Intelligence and machine learning algorithms to set RAN
optimization policies.

• The near-real time RAN Intelligent Controller (near-Real-
Time RIC): The near-Real-Time RIC consists of a virtual
entity that offers the possibility to manage the radio
resources in near-real-time (i.e, within an interval of 10
ms to 1 s). The near-real-time RIC operates on user and
cell-specific metrics.

In fact, non-real-time policy sets are executed at the level of
the near-real-time RIC which enriches the non-real-time RIC
by specific KPIs used to feed the machine learning algorithms
so as to output efficient optimization policies based on long-
term measurements [18]. In the case of our proposed solution,
the Best Response algorithm is to be executed at the level
of the near-real-time RIC since convergence is attained fastly
(cf. figure 4). In that case, a user selects a slice within one
slot (0.5 ms in the case of LTE) and reports its KPI in terms
of throughput or delay to the near-real-time RIC which is in
charge of performing the cost calculation for all users and
registering their adequate strategies in each round. One user
needs S slots to select all strategies, where S is the total
number of strategies. Consequently, all users need N × S
to finish one round of the Best Response algorithm. Thus, a
solution is obtained in maximum N × S ×Rmax slots, where
Rmax is the maximum number of rounds for convergence.
Our algorithm presents a very low value of Rmax (cf. figure
4). Consequently, when N and S have reasonable values, the
algorithm converges within a time interval of 10 ms to 1 s,
which corresponds to the interval time of the near-real time
RIC. However, when a reinforcement learning algorithm is
employed to reach convergence, the algorithm converges at a
time scale larger than 1 s, since Rmax would be significantly
high. In that case, KPIs have to be reported to the non-real-
time RIC, where cost calculations and decisions are performed
and transmitted over the A1 interface connecting the non-real-
time RIC to the near-real-time RIC which has the charge of
decisions execution.

VI. PERFORMANCE EVALUATION

We use Matlab for simulations and evaluate the different
metrics with respect to the number of URLLC type users
denoted as NURLLC . The different metrics used to evaluate
the results are the following:
• The URLLC Service Reliability which is equal to 100%

if all URLLC users are served by their minimum delay
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requirement, in other terms when all URLLC type users
are guaranteed to have at least 1 RB in any scheduling
epoch (i.e, NURLLC ≤ NRB). Otherwise, the Service
Reliability would be expressed as follows:

Number of RBs allocated for URLLC slice
NURLLC

× 100

In that case (i.e, NURLLC > NRB), the above measure-
ment reflects the percentage of time a user has its required
delay as a fair Resource time sharing is applied.

• The Total Throughput of eMBB type Users
• The Resource Utilization Efficiency of URLLC Slice
• The Total Number of Rounds of the Best Response algo-

rithm
The simulation parameters are shown in table I.

TABLE I
SIMULATION PARAMETERS

Parameter Description Value
Ck

ap Average radio conditions per RB 1 Mb/s
Ntot Total number of RBs 50 RB
N Total number of users 40 users
Dk The comfort rate of a eMBB type user 2 · Ck

ap

Tk The comfort delay of a URLLC type user 1/Ck
ap

CeMBB The cost of selecting the eMBB slice 1.375
CURLLC The cost of selecting the URLLC slice 1

NRB = 20 RB are initially allocated for the URLLC slice
and nmin = 30 RB for the eMBB slice. Within the Static
Scheme NRB and nmin, are fixed and do not change.

We start by displaying the URLLC Service Reliability with
respect to NURLLC . Recall that NeMBB = N − NURLLC .
We notice that the Dynamic RAN Slicing Scheme is showing
a 100% of service reliability for any number of URLLC type
users (i.e, NURLLC). This is due to the adaptability of the
slice resource allocation when service load variation occurs.
It also highlights the efficiency of the proposed algorithm
as it is able to offer a 100% reliability for any URLLC
load conditions, while having a high resource utilization rate
(cf. figure 3). However, the Static Scheme shows a 100% of
reliability only when NURLLC ≤ 20. In fact, the initial subset
of resources allocated for the URLLC slice consists of 20
RBs. Consequently, the Static Scheme guarantees the minimum
required delay for an URLLC type user since the minimum
delay requirement for one user is equivalent to 1 RB. When
NURLLC > 20, the Static Scheme shows a degradation in this
metric as there is not enough resources to satisfy the required
QoS. When NURLLC reaches 40, we notice a reliability value
that plummets to 50%. In this case 40 URLLC users are sharing
20 RBs. Consequently, each user is guaranteed its minimum
required delay half of the time.

Figure 2 shows the Total Throughput of eMBB type Users
with respect to NURLLC . When NURLLC ≤ 20, the total
throughput achieved by the Dynamic RAN Slicing Scheme is
higher than the one achieved by the Static Scheme. The reason
is that all of the spared resources of the URLLC slice are
allocated for the eMBB slice. However, when NURLLC > 20,
the Static Scheme realizes more throughput. In that case, a part
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Fig. 1. URLLC Service Reliability (%)

of the eMBB slice resources would be allocated for URLLC
type users. Recall that an URLLC cost function is tuned so
as to push users to select the slice that grants them at least
one physical RB in case of shortage (cf. subsection IV-B).
Consequently, the resource allocation is adjusted in a way to
satisfy the increased demand of URLLC service. Contrarily,
within the Static Scheme the eMBB resources are only occupied
by eMBB type users regardless of the value of NURLLC . This
comes at the detriment of the URLLC Service Reliability (cf.
figure 1). We also notice that the throughput linearly decreases
for the Dynamic RAN Slicing Scheme. In fact, when NURLLC

increases, one additional RB would be occupied by a user
of type URLLC, which decrements the number of available
RBs for the eMBB slice. Again, Such behavior highlights
the adaptability of our proposed scheme, which achieves an
efficient compromise between two different service types. For
both schemes, the total throughput is 0 when NURLLC reaches
40. In this case, NeMBB would be null.
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Fig. 2. Total Throughput of eMBB type Users (Mb/s)

Figure 3 displays the Resource Utilization efficiency of the
URLLC Slice with respect to NURLLC . Within the Dynamic
RAN Slicing Scheme, the utilization efficiency of the URLLC
resources is 100% for any value of NURLLC . The reason is that
all users of type URLLC are occupying all RBs allocated for
the slice. This highlights the efficiency of our proposition that
allocates the right amount of URLLC resources to satisfy the
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QoS requirements. However, for the Static Scheme, we notice
an under-utilization of the URLLC resources when NURLLC ≤
20 and an over-utilization when NURLLC > 20. Recall that a
fixed number of RBs is allocated per service in the case of Static
Scheme. Consequently, resources would be over-provisioned in
case of low NURLLC values (i.e, NURLLC ≤ 20), and under-
provisioned for high NURLLC values (i.e, NURLLC > 20).
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Figure 4 shows the Total Number of Rounds of the Best
Response Scheme to converge to PNE with respect to NURLLC .
For NURLLC ≤ 20, one round is enough to attain the con-
vergence. In fact, the initial conditions of the Best Response
algorithm are set in a way to allocate any spared resource
from URLLC slice to eMBB users. Owing to such reasonable
initial setting, the PNE is attained in only one round. When
NURLLC > 20, the PNE is attained in two rounds. In fact,
URLLC users type need an additional round to select the eMBB
resources when their minimum delay is not guaranteed. Note
that many PNEs exist. In fact, when the initial resource dis-
tribution is different, a different solution is obtained. However,
the initial conditions are set in a way to achieve good results
with very small amount of time.
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Fig. 4. Number of Rounds of Best Response

VII. CONCLUSION

In this paper, the Dynamic RAN Slicing problem is addressed
and formulated as a crowding game. The objective is to let

different type users select their most convenient resources
in a way to achieve their different QoS requirements while
improving the utilization efficiency of spectral resources. Cost
functions for different service types are proposed and well
tuned in order to push users to select their most appropriate
strategies in terms of QoS. Results are compared with the Static
Scheme where the bandwidth is statically partitioned among the
slices, and show that our proposed solution overcomes the Static
Scheme in terms of QoS and utilization efficiency. Additionally,
the time convergence of our algorithm is analyzed and assessed
which allows us to propose a practical scenario of algorithm
implementation in the case of O-RAN. For future work, we
aim to implement our proposed algorithm in a real O-RAN
platform. We also aim to study the problem in a multi-cellular
context, where inter-slice interference are in present and might
violate the isolation.
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