Forensic Analysis on Joker Family Android
Malware

Chen Shi, Chris Chao-Chun Cheng, and Yong Guan
Department of Electrical and Computer Engineering
NIST Center of Excellence in Forensic Science - CSAFE
Iowa State University
cshi, cccheng, guan@iastate.edu

Abstract—Android is the most popular operating system
among mobile devices and the malware targeted explicitly for
Android is rapidly growing and spreading across the mobile
ecosystem. In this paper, we propose a hybrid analysis of Android
malware to retrieve evidential data, generated from or accessed
by such mobile malware, which can be adopted as critical
evidence for civil and criminal cases. We target on Android
malware from Joker Family where we collected and analyzed 62
recently discovered malicious apps, we found that: 11 apps access
and store user’s location information, 17 apps track user’s SMS
text messages and 58 apps send out user personal information
to remote servers. Our proposed approach found that, evidence
data including location, timestamp, IP address are still able to be
identified from the local file system and logging system. Our main
contribution in this research is to provide an effective forensic
analysis report on Android malware that can extract critical
evidence from the local file systems as well as system logs.

Index Terms—Android Malware, Mobile Security, Forensic

I. INTRODUCTION

Smartphones and mobile devices are becoming indispens-
able as remote learning and working from home have increased
during the pandemic, mobile malware is a serious concern and
threat for users in terms of security and privacy. According to
the report [1], Joker is one of the most prevalent malware
families that continually infects Android devices. Google Play
store [2] has removed more than 1,700 Joker apps since its
initial release, however, despite awareness of this particular
malware, it keeps finding its way to bypass Google Play
app vetting mechanism by employing changes in its code,
execution methods, and payload-retrieving techniques.

Currently, forensics analysis on Android malicious apps is
quite limited, considering most of the research works are focus
on malware detection. To the best of our knowledge, we are the
first work focusing on large-scale forensic analysis on Android
malicious apps of the Joker family on the Android platform.
First, existing studies [3], [4] could not recover the file paths
of the evidential data which is generated by Joker malware.
Second, existing studies do not examine the frameworks and
libraries which are unitizing by Joker malware which overlook
critical evidence. Moreover, existing works only a collected
limited number of Joker infected apps on a certain period, the
analysis result might be uncompleted. Therefore, we proposed
to perform an improved forensic analysis on Android Joker
malware.

Our work: We proposed an improved forensic analysis
procedure and technique of finding evidence generated by
Android malicious apps from the Joker family. Our technique
examine both system logs and file system. We have collected
62 Android malicious apps from the Joker family to evaluate
our proposed approach. The evaluation result demonstrates
that, through our proposed approach, all of the 62 created
different types of evidence and stored in local storage.

The contribution of this work is summarized below.

+ We identified and presented 72 evidence records with type
and file path, which assisting forensic examiners with the
digital investigation of Android device.

o Our work demonstrates that 58 apps collect and store user
private information including location, timestamp, visited
URL, etc.

o To the best of our knowledge, we are the first work that
includes framework and libraries in the forensic analysis
of Android malware.

II. METHODOLOGY

This section presents our approach to performing forensic
analysis toward Android malicious apps. Building a com-
prehensive analysis result is a key challenge. We take an
APK as the input for forensic analysis and de-compile the
APK into three components, dex files, ManiFest & Resources
files and libraries. We leverage DEX2IR [5] for code lifting
from Dalvik byte-code to Smali and use Resources Parser
to collect application information. The DCL tracker records
the information of dynamically loading code and remotely
downloaded files. Through the instruments of two class loader
DexClassLoader and PathClassLoader, it monitors JNI APIs
load() and loadLibrary() and other APIs that are related to
file renaming. The Native Info Analyzer receives information
from DCL tracker to generate the Native Method Mapping and
Native Activity Info. Taint Engine maintains shadow registers
to store the related taint tags and the propagation logicl follows
the Union operation.

We note that a large number of static analysis tools—such
as CHEX [6], FlowDroid [4] and HornDroid [3] have been
developed to detect sensitive data flows between sources and
sinks in Android apps, where a source is a method generate or
access evidential data and a sink is the method send over the
data or save the data in local storage. However, these tools

403

TABLE I
PROPAGATION RULE FOR ARM/THUMB INSTRUCTIONS

Instruction Format

Propagation Rule

TaintSet Path
mov Ry, C TaintSet(Ry) < 0 Rg.Path < 0
mov R4, Rm TaintSet(Ry) < TaintSet(Rm) Rgq.Path < Ry,.Path
unary — op Rgq, Rm TaintSet(Ry) « TaintSet(Rpy,) Rg.Path <+ Ry,.Path
binary — op Ry, Rm,Rn TaintSet(Ry) < TaintSet(Ry,) U TaintSet(Ry,) Rg.Path <+ R,,.Path + R,.Path
binary — op R4, Rm TaintSet(Ry) < TaintSet(Ry,) U TaintSet(Ry) Rgq.Path < Ry, .Path + Ry .Path
binary — op Rgq, Rm,C TaintSet(Ry) « TaintSet(Rpy,) Rg.Path < Ry,.Path
store Rg, Ry, C TaintSet(mAddr) < TaintSet(Ry) Rg.Path < R,.Path
load Ry, Rn,,C TaintSet(Ry) « TaintSet(Ry) U TaintSet(mAddr) Rg.Path < Ry.Path
push regL, Ry, C TaintSet(mAddr) < TaintSet(R;, R;) Rg.Path < R;.Path + ...+ R;.Path
pop regL, R,,,C TaintSet(mAddr) < TaintSet(R;, R;) Ry.Path < R;.Path + ...+ R;.Path

could not provide the file paths where the data are written
to which is critical information to extract the evidence. For
instance, these tools could detect that certain app will collect
GPS locations and save them to the file system, but they do
not record the file paths where the location information will
be written to.

Another significant improvement against approaches men-
tioned above is to include framework and library analysis
which was overlooked in the prior studies of forensic studies.
In order to bypass security check, one of the techniques
malicious apps utilized is uploading clean app bundled with
adware and malicious SDKs, we believe analyze the associated
frameworks and libraries are necessary in order to provide a
completed evidential data list.

A. Forensic analysis on Android malware

In this work, we focus on four types of evidential data
including location, SMS text message, timestamp, and visited
URL. To be noted, our source method list is combined from
existing tools including FlowDroid [4], and HornDroid [3]
which is not limited to these four types of evidential data.
However, we found that the combined source methods for
evidential data are still not complete, we can update the
sources and extend tags if a new source method is found.

Next, we discuss the sources of the four types of evidential
data.

1) Location: We included 40 source methods for a location
type of evidence. Location tracking is considered highly inva-
sive, it tracks users all the movements and who you associate
with. Location type of source methods include precise GPS
location (e.g, LocationManager.getLatitude()) which obtain
from satellites within a limited range and coarse-grained lo-
cation(e.g, Responder Location.ACCESS_FINE_LOCATION)
determined by WiFi and cellular data. According to our
findings, the two main types of tracking technology are GPS
and Beacon Bluetooth, which can detect a person’s location
within 30-40 feet.

2) Text message: We included 2 source methods for text
messages. Some of the malicious apps also require users to
enter their mobile numbers in order to receive alerts and
subscription notifications by text message.

3) Timestamp: We included 17 source methods for the
timestamp. Apparently, timestamps can be used to determine
user’s activities and served as important evidence in other
cases.

4) Visited URL and IP address: We included 5 source
methods for visited URL and IP address. We would like to
gather a list of URL and IP addresses of remote servers where
the evidential data sent to, in this way, forensic investigators
would be able to retrieve information back from a remote
server.

B. Forensic analysis on framework and libraries of Android
malware

As we mentioned above, Joker malicious apps utilize dy-
namic loading techniques and download malicious SDKs at
run time to bypass the security check. When building the app,
all the resources from the libraries are moved to one res
folder which is included in the <package name>.apk. By
checking the res folder and Android Manifest.xml In
the library forensic analysis, we examined the artifacts that
may be created in the local file system. The target of the library
forensic analysis is to identify the location of evidence and
define the rule of taint propagation that can help to generate
analysis results.

We apply forward analysis and create a work order with
method signature and library file, the Library Function Sum-
mary Builder first identifies the code range of the corre-
sponding library function of the method. Then it checks
every instrument to propagate the taint tags according to the
propagation rules. We create a Library Method Mapping data
structure to identify the callee of the Java method in app code,
where the key is the Java method signature and the value is the
corresponding function name and associated library. Whenever
the analyzer encounters any method/function invocation, it will
check with the list of source and sink API. If so, it will add
taint to the proper argument or record the associated file path
where the tainted argument was written to. When the analysis
is over, we extract the summary of the callee function with a
taint tag related to each argument and return the node to build
the summary.

404

TABLE II
EVIDENCE REPORT OF COM.GOODERS.PDFSCANNER.GP

Package name Installs Evidence Type [Evidence File Path]
Logging system File Paths/ Urls
com.gooders.pdfscanner.gp 50K TimeStamp * /data/user/0/com.gooders.pdf scanner.gp/shared_prefs/acra
_criticaldata_store.xml
Visited URL * https://logger-dyu6ojodva-uk.a.run.app
Cookie *
Location /data/data/com.gooders.pdf scanner.gp/app_lib/realm — jni

III. EVALUATION

In this section, we aim to evaluate the forensic analysis
results of Joker infected apps. Case studies are presented to
discuss the frequent types of evidence found in our large-scale
analysis result, which corresponds to the result of forensic
analysis of malicious apps and dynamic loading SDKs respec-
tively. At last, the analysis result of large-scale malicious apps
of the Joker family is presented, which may assist forensic
practitioners with performing evidence extraction in the real
world.

We obtained 62 Joker infected apps from 11 different
Android app markets. We leverage Monkey [7] to generate
random user events for these apps. Since some apps are larger
and take a longer time to be fully analyzed and we aim to
generate a completed analysis result, we set an 8-hours timeout
for each app.

Table II summarizes our analysis results for each type of
evidential data. A reported file could include at least one type
of evidential data including location, visited URL, timestamp,
and text message. If a file path contains any patterns of the
jtimestamp;, ;UUID;, and jintent;, we will treat it as a
dynamic file path, all other kinds of file paths are treated as
static file paths.

TABLE III
SUMMARY OF THE ANALYSIS RESULTS FOR 62 JOKER INFECTED APPS

Evidence Type | App Evidence File Path
Static File Path | Dynamic File Path

Location 11 9 2

Time 30 30 2

Text Message 17 19 1

Visited URL 21 20 3

Others 47 45 7

A. Case Study of Analysis Result

We utilize both static and dynamic analysis to discover the
artifacts stored in the file system as well as the logging system.
In our large-scale evaluation result, we found that 94% of Joker
infected apps do leave forensic artifacts at local storage which
may be extracted in the future for forensic study. To understand
the evaluation result, we use a case study of All Good PDF
Scanner version 2.8(com.gooders.pdfscanner.gp) as
an example to elaborate the detail of the report.

As shown on Table II , two places in the logging system
and one place in the file system are reported to have evidences

stored. A brief discussion of how these evidences would help
forensic practitioners in real cases is presented as followed.

First, the report shows that log messages contain both
timestamp and visited URL. If we combine the URL with
timestamp together, we could reconstruct the user’s browsing
history. Since extracting log messages does not require root
permission, forensic practitioners can retrieve user browsing
history traces on a non-rooted device if this Joker infected
app is installed.

Second, the cookie is also reported in the logging system.
Note that cookie is a simple key-value pair data sent from the
website and each record of cookie associates with a website
URL, therefore, the user’s browsing history can be obtained
by mapping the cookie with its corresponding last access
timestamp together.

Third, the report shows that timestamp type of evidence
is stored under app’s internal storage with the file path of
/data/user/0/com.gooders.pdfscanner.gp/shared_prefs/acra_cri
ticaldata_store.xml and location can be extracted from
/data/data/com.gooders.pdfscanner.gp/app_lib/realm-jni. Both
the timestamp and location can be found at local storage,
correlate the location with timestamp can provide user’s
geo-location activity for forensic analysis.

B. Large-Scale Forensic Analysis Result of malicious apps of
Joker family

Since Joker infected apps are bundled with different func-
tionalities and have their own specific implementations, the
storage location and structure of data that contains evidence
might be variable. Therefore, we evaluated the effectiveness
of our proposed approach on collected Joker infected apps.
We note that the evaluation result can significantly improve
the forensic practitioner’s work from both time efficiency,
precision as well as completeness. By crawling from Google
Play Store [2], and 63 other Android app markets, we collected
62 Joker infected app with more than 472,000 download times.

Joker Malware target on user from the specific countries by
checking Mobile Country Codes (MCC). After downloading
the second stage payload which is the core component, it
periodically requests new commands from the remote C&C
server. One of the malicious behaviors of Joker malware is
the premium subscription which will be billed to the user’s
wireless account. When the Joker app receives commands, it
proceeds to open the URL, retrieve the authentication code to

405

sends an SMS message for the premium service without user
consent.

From our findings as shown in Table III, 58 out of 62
malicious apps from the Joker family are identified to store
evidential data either in the local file system or logging
system. Among these 58 apps, 11 apps store user’s location
information in app internal storage; 30 apps periodic record
device timestamp and store it in both logging system and file
system; 17 apps store user’s SMS text system and 21 out of
62 malicious apps do not prevent the visited web-page URLSs
appearing in log messages. Particularly, 58 of them are storing
other kinds of evidential data, which provides great chances
of extracting evidence for forensic analysis in the real world.

In addition, we notice that 17 Joker infected apps dynami-
cally loading the same dex and SDK, where the timestamp is
stored under the same pattern of file path /data/data/package
name/shared_prefs/rn_push_notification.xml. This result de-
termines that if other apps utilize this framework, most
likely, they’re infected with malicious behaviors and
forensic investigators could extract timestamp evidence
from the same file path. While most of the times-
tamp and visited URL are reported to be stored in
plain-text format, there are still a few special cases
different from that. For instance, app Smart Scanner
(com.rapidface.smart.scanner) keeps visited URL in ASCII
format that can be found at /data/data/com.rapidface.sm
art.scanner/shared_prefs/react-native-device-info.xml. Similar
situation can be found in the analysis result of app
com.wallpapers.dazzle.gp and app com.saying.wallpaper.bb.

Moreover, we find that app com.board.picture.editing write
devicelD and timestamp into Android default file manager
instead of its own internal storage directory. The full path is
/data/data/android.support.v4.content. FileProvider. Such op-
erations can be achieved either through the public Content-
Provider or Inter-component communication which belongs
to Android inter-app communication system.

Overall, the large-scale evaluation result verifies the ef-
fectiveness of our proposed approach working on forensic
analysis of malicious apps of the Joker family. Framework
and library analysis is demonstrated as a significant component
of our approach, which is beneficial for apps leveraging the
same code base. Moreover, the analysis result of the file system
could help forensic investigators quickly locate and extract the
evidence.

IV. RELATED WORK

Android malware forensics, a new branch in the digi-
tal forensic research community with increasing usage and
development of malware. Among the static analysis tools,
Flowdroid [4] is a well-known data-flow analysis framework
for detecting potential privacy leakage of Android applications.
It creates a dummy main method for an app, detects and
propagates the taints through a flow and context-sensitive al-
gorithm. However, FlowDroid did not cover the native method
invocation and treat all native libraries as black-box settings.

Chex [6] is designed to detect component hijacking prob-
lems in the Android platform and is the first static analysis
tool considering different types of entry points of an Android
app. It is built on top of Wala [8] where it first parses
app code and constructs app-split. Each app-splits is a code
segment that can be reached from an entry point. Then it
builds the data-flow summary for each of the app-split utilizing
the data-flow engine from Wala. Finally, it constructs the
possible information flows by linking app-splits summaries in
all possible permutations.

In conclusion, in order to treat the file system as a type of
sink and further discover the file paths where data are written
to, we decided to leverage both static and dynamic analysis
on the forensic analysis of Android malware.

V. CONCLUSION

This paper conducted a comprehensive forensic investiga-
tion on evidence generated by 62 Joker infected apps on
the Android platform. The approach is composed of both
application and framework analysis, examining evidential data
stored both in logging system and file system. Location
information, timestamp as well as other kinds of forensic
artifacts can be extracted from these malicious apps. Our
findings provide meaningful results for forensic practitioners
since Joker malware is one of the most active and prevalent
malicious apps. Manual verification is made to authenticate
the correctness of the analysis result. The case study of sample
application presents the detail of forensic artifact findings, the
evaluation of large-scale Joker infected apps demonstrate that
our proposed approach can be widely applied for evidence
discovery.

VI. ACKNOWLEDGMENTS

This work was partially supported by NIST CSAFE un-
der Cooperative Agreement No. 70NANB20HO019, NSF un-
der grants No. CNS-1527579, CNS-1619201, CNS-1730275,
DEB-1924178, ECCS-2030249, and Boeing Company. We
appreciate anonymous reviewers for their valuable suggestions
and comments.

REFERENCES

[1] Mobile app store marketing intelligence.

[2] Google play store.

[3] Stefano Calzavara, Ilya Grishchenko, and Matteo Maffei. Horndroid:
Practical and sound static analysis of android applications by SMT
solving. CoRR, abs/1707.07866, 2017.

[4] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre
Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. SIGPLAN Not., 49(6):259—
269, June 2014.

[5] baksmali 2017.

[6] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex:
Statically vetting android apps for component hijacking vulnerabilities.
In Proceedings of the 2012 ACM Conference on Computer and Commu-
nications Security, CCS 12, pages 229-240, New York, NY, USA, 2012.
ACM.

[7] Ui/application exerciser monkey.

[8] Wala - static analysis capabilities for java bytecode and related languages.

406

