
Integration of the ultra-low power WiseMAC with the µ111 Real

Time Operating System: a performance evaluation

Robin Berguerand, Lorenzo Bergamini, Philippe Dallemagne, Edoardo Franzi

Centre Suisse d’Électronique et Microtechnique – Rue Jaquet-Droz 1, Neuchâtel - Switzerland
 robin.berguerand, lorenzo.bergamini, philippe.dallemagne, edoardo.franzi @csem.ch

Abstract— Many communication solutions for low power

wireless sensor networks (WSN) rely on monolithic

implementations instead of Operating System (OS) features,

properties and services. Such OS-less approach implements the

timings, state-machines and functions into a single software

including scheduling and synchronization. This means that

porting a protocol on a new hardware requires the rewriting of

major software parts and at least the low-level drivers and

implies full re-testing. Using a low-resource, low footprint Real

Time Operating System (RTOS) would instead allow for an easy

and efficient implementation of applications, whose complexity

is reduced by using the OS features and services who acts as a

convenient abstraction layer. The general feeling is that,

however, the presence of the OS would impact the performance

of the wireless communication, in particular with respect to

latency and power consumption. This paper describes the

results obtained by integrating the µ111 RTOS with the ultra-

low power Medium Access Control (MAC) protocol for Wireless

Sensor Networks WiseMAC [1], [2], showing that the impact of

the OS in terms of energy consumption and hardware resources

utilization is minimal if not null.

Keywords— Wireless Sensor Networks, Network Protocols,

Real-time operating systems, Performance analysis.

I. INTRODUCTION

Initially introduced at the beginning of years 2000, WSN can
be defined as a self-configured wireless network composed of
low-power embedded devices with limited computational and
hardware resources commonly called Sensor Nodes or simply
nodes. Each node can serve a variety of purposes, such as
physical data collection (e.g., temperature, humidity), partial
processing or actuation (e.g., start fan, open door). The data
recorded from the different nodes is generally routed to a
single point of collection (sink) that usually acts as a gateway
to a computer or central server where the data is stored and
analysed. Minimizing the energy consumption is of critical
importance in WSN design, since replacing or recharging
batteries is often impractical. Radio communication is often
the main source of energy consumption, so a big number of
dedicated communication protocols have been developed
during the years to reduce energy usage while guaranteeing
adequate performance in terms of packet delivery reliability
and latency. Differently from the huge effort on the design and
evaluation of communication protocols, the WSN research
community never adopted a common framework for portable
and easily repeatable solutions, in spite of the initial popularity
of TinyOS [3], Contiki [4] or, more recently, FreeRTOS [5].
Most of the proposed protocols are based on monolithic
programs that run on a specific hardware and are able of
executing a single application. The main argument to avoid
the use of an OS could be that it would increase the power
consumption, or it would cause a delay in the protocol
operations, which can result in an increase in the number of
lost packets or in the latency.

In this work we want to show that this is not the case. We
implemented WiseMAC as both a monolithic program and as
a process running on µ111 RTOS on the same hardware
platform. We will show experimentally that differently from
what one could expect, the introduction of an OS does not
impact the power consumption nor the overall performance of
the MAC protocol. Throughout the paper, we will put in
evidence the several advantages of using an RTOS instead of
an OS-less implementation, like the possibility of running
multiple applications in parallel on the same processor (e.g.: a
communication protocol can be run at the same time as a data
collection application) or the reduction of the risk of
introducing bugs thanks to the encapsulation of applications
in a controlled environment.

After this introduction, we review some of the past works on
the subject of Mac protocols for WSN (section II.A) and we
discuss why we chose WiseMAC for our test; an overview of
operating Systems for WSN will be given in section II.B.
Section III describes in a nutshell the µ111 RTOS we selected
to run WiseMAC protocol, while the details of the protocol
implementations on the OS-less environment and on µ111 are
given in section IV. Section V contains our experimental
analysis and performance evaluation of the protocol in its OS-
based version when compared to the OS-less version, while
section VI concludes the paper and proposes some future
research directions.

II. RELATED WORK

To the best of our knowledge, this paper is one of the first to
compare the same WSN protocol in an OS and OS-less
environment on the same hardware platform. In this section,
we quickly describe the subject of MAC protocols, we
motivate why we chose WiseMAC, and we review available
RTOS for embedded systems and.

A. MAC Protocols for WSN

As mentioned in the introduction, WSN have been around for
more than two decades and saw an intense research activity,
leading to the development of efficient communication
protocols and low power solutions. The literature on the
subject of WSN protocols is vast ([6] to [11]) and includes
solutions ranging from the management of the MAC layer to
the routing layer for multi-hop topologies. Our paper is not
about a novel WSN protocol, so we believe that an exhaustive
review of the existing solutions is beyond the scope of this
paper. Interested readers can refer to the cited works and in
particular to the most recent ones [6, 11] for more detailed
information on the subject.
In this section we rather explain the reasons why we chose
WiseMAC for our experiments.
Among the different families of MAC protocols, namely
Time Division Multiple Access (TDMA), Frequency
Division Multiple Access (FDMA) and Carrier-Sense
Multiple Access (CSMA). We decided to focus on the latter This project is partly supported by the European Commission under the

Horizon 2020 EIC Fast Track to Innovation program (H2020-EIC-FTI-
2018-2020, GA #878950)

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob)

978-1-6654-2854-5/21/$31.00 ©2021 IEEE 301

category because when compared to TDMA and FDMA
solutions, CSMA protocols present little constraints in terms
of network synchronization; since this is a first experience in
porting to an RTOS, we wanted to minimize the impact of
external factors (e.g., clock management) to the performance
of the protocol.
CSMA refers to a family of protocols where nodes sense the
channel before transmitting any data to avoid packet
collisions. To send a packet, the node senses the channel and,
if free, it enters a back-off phase before the transmission
starts. The duration of the back-off is taken randomly in an
interval that varies depending on the traffic intensity. Since
the probability that two nodes will have the same duration of
the back-off period is small, a collision is unlikely. The size
of the interval is increased (usually multiplied by 2) with each
collision to minimize the likelihood of a subsequent collision.
The key advantage of this solution is the simplicity and
scalability of implementation. The node can enter the
network without any configuration. In addition, the CSMA
solution has almost no overhead and full bandwidth can be
used to send data. On the other hand, the radio of each device
must be switched on continuously to receive packets and this
causes a lot of passive (idle) listening as well as overhearing
and has a negative impact on power consumption. Different
solutions have been proposed (see [6] or [11] for detailed
descriptions), and WiseMAC belongs to this family of
protocols. The description of how WiseMAC works in
principle will be given in section IV. As for the reasons why
we selected this protocol, WiseMAC is a solution widely
accepted by the WSN community as one of the reference
protocols in the domain for low traffic applications
(according to Langendoen [9] “The WiseMAC protocol

showed a remarkable consistent behaviour across a wide

range of operational conditions, always achieving the best or

second-best performance”) and its complete software
implementation is well-known and available to the authors,
thus allowing a more complete analysis of the RTOS-related
aspects. Finally, WiseMAC in its OS-less version, was
already used and validated in several real-time scenarios and
thus a good amount of data for comparison was available.

B. Operating Systems for WSN

As mentioned in the introduction, many wireless
communication protocols for WSN were developed as
monolithic solutions, following an OS-less approach. Early
approaches to develop protocols in an OS-like way
supporting time-critical tasks date back to the initial existence
of WSN and include TinyOS [3], or SensorOS [12]. The
interest for these solutions has dropped with the advent of
significantly more powerful hardware and richer software
environments which allows the execution of more complex
systems usually indicated as RTOS.
The term real-time often means that the operating system
guarantees that the application it runs respects temporal
constraints, such as durations, deadlines, synchronization,
etc. In addition, it often provides the tools for building time
aware services, which can for example notify the application
in case the system does not meet the temporal requirements.
The literature classifies RTOS based on characteristics such
as scheduling algorithms, number of priority levels, threading
model, interrupt and event handling, objects and mechanisms
for inter-process communication & synchronisation, time

constraint specification, memory management, etc. Beyond
the core characteristics of an RTOS, other features make the
life of the developers and users easier, such as upgradability,
data communication, control, monitoring, device interfacing,
data acquisition and signal processing, database interfaces
and level of standardisation. Some applications require the
compliance to specific standards such as POSIX, ISO or
domain specific standards such as ECSS for space or
RTCA/DO-17x for aeronautics.
An interesting survey of potentially relevant OS for
embedded devices is [18]. A partial list is also given below,
to illustrate the diversity of solutions found on the market and
that of the addressed requirements, both from commercial
vendors and open-source initiatives.
• ITRON is an open RTOS specification for embedded

systems for which many implementations exist from
Fujitsu, Hitachi, Mitsubishi, Miyazaki, Morson, NEC,
Sony Corp., Three Ace Computer Corp., Toshiba, etc.

• OSEK-VDX is an RTOS specification adopted by the
automotive industry for their embedded systems.

• QNX is a real-time, extensible POSIX compliant OS
based on a micro-kernel, which was very popular in the
90s and years 2000 and found a new home in IoT.

• VRTX is an RTOS certified to RTCA/DO-178B
standard for mission-critical aerospace systems. It is
based on a Nanokernel.

• Wind River VxWorks is a commercial RTOS with a long
history in the market [11].

• Microsoft Azure ThreadX (formerly Express Logic
ThreadX) is an RTOS available for ST, Microchip, NXP
and Renesas microcontrollers and others, which smallest
instance 2KB of code and 1KB of RAM. It is certified
for IEC-61508 SIL 4, IEC-62304 SW Safety Class C,
ISO 26262 ASIL D and EN 50128.

• TI-RTOS, also known as SYS/BIOS features IPv4 and
IPv6-compliant TCP/IP stack and tools such as DNS,
HTTP, and DHCP. It includes the support for the
wireless connectivity using Wi-Fi, Bluetooth LE and
ZigBee.

• LynxOS is a UNIX-compatible, POSIX-conformant
real-time operating system for embedded applications.
RTAI takes a unique approach of running Linux as a task
(lowest priority) that competes with other real-time tasks
for the CPU.

We could continue this list (RTEMS, Nut/OS, µC/OS-II,
embOS, TNKernel, ChibiOS/RT, RTLinux, pSOS….), but
going further is beyond the scope of this work.

III. U111 RTOS IN A NUTSHELL

μ111 RTOS (simply μ111 in the rest of the paper) is a
multitasking operating system developed at CSEM. µ111 is
the latest incarnation of the fully customisable µKOS
microkernel OS for offering a multitasking environment to
low resource embedded systems. Its development started in
1992. µKOS was originally designed and used for the Khepera
mobile robot [13], [14] with the aim of controlling it. µKOS
operated these robots in advanced space applications as early
as 1997 at JPL [15] and numerous other miniature and low
power systems at CSEM. The first implementation was
written in the CALM assembler tool developed at EPFL, then
ported to C in 1996 (with MPW in OS/9 on Macintosh, then
with GNU-GCC). µ111 has been ported to many micro-

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob)

302

controllers over the years and it now runs on the most recent
RISC-V and ARM platforms, such as the NRF52 chip on
which the present experiments have been performed. The
main purpose of μ111 is to offer tools and platforms to
develop real-time applications. The OS is also already
available for a wide range of microcontrollers (allowing
simple application porting) and is highly customizable; a
distribution of the OS is available for researchers or
developers upon request (contact one of the authors).

A. General architecture

μ111 can run multiple tasks (processes) in parallel and
offers then a multithreading environment. Its architecture is
based on hierarchical layers of modules. At the top of the
architecture there is the Application layer (the high-level
modules capable of exploiting the hardware and the software
resources of the system). This layer is organized into families
of modules. Under the Application layer there is the Library
layer. This layer allows the interface between the Application
layer and the different managers (BIOS). The Manager layer
is the HAL (Hardware Abstraction Layer) implementing the
interface between the system call functions and the physical
world (chips, interfaces, electronics, etc.). Moreover, it
reduces the effort for porting the system onto other platforms.
In parallel, this also increases the ease of portability and
debugging of additional components of the RTOS, such as
communication protocols.

Figure 1: system architecture of µ111

A detailed description of a the different components is
beyond the scope of this paper, but a few details about the
Application Layer, which is the one we mostly used to realize
our porting, are reported in the remainder of this section.
The Application layer is composed of families of modules
designed to have a specific behaviour. Essentially, the boot
procedure deals with starting the kernel processes (called
Daemons) needed to run the basic operations of the OS. Once
the kernel is up and running, the user can start from the
Startup Console (typically a UART connection to a terminal
on a PC, or in some cases a wireless console) any needed
process, including wireless protocols like WiseMAC.
Process execution is governed by a system of priorities and
in normal conditions the switch between processes occurs at
a timeout or when a particular event happens (e.g., peripheral
interruption). The OS kernel provides different mechanisms
so that processes can interact with each other and with the
kernel (presented in Section III.B). Peripherals can generate
interruptions that are executed at a high priority level and
interrupt the execution of any process.

Figure 2: µ111 families of modules

B. Kernel functionalities for wireless operations

Among the services proposed by the RTOS, there are two
functionalities which are of critical importance for our
wireless protocol:
1. Semaphore: a functionality designed to guarantee

exclusive access to shared resources. They are used to
prevent two or more processes to simultaneously access
the same resource. Since our wireless protocol needs to
co-exist with other processes running on the OS, this
functionality is essential to guarantee that critical
resources like for example the radio are available and its
usage is guaranteed to be exclusive.

2. Signal and precise signal: Signals allow processes to be
synchronized with one or more events. A process can
wait for a signal coming from another process or an
interruption. A special class of signals is called precise
signals. They allow the process to set up a signal that will
be signaled after a specified amount of time. This
functionality is maintained by means of a node’s real-
time clock that allows good precision. The event is
signaled by an RTC interruption. The process that waits
for a precise signal should have a high priority in order
to ensure that it is scheduled by the OS when the event is
signaled.

IV. WISEMAC: PRINCIPLES AND IMPLEMENTATIONS

In this section we describe in general terms how WiseMAC
works and how it was implemented first on its OS-less
original implementation and then on its µ111 version,
focusing on the main difference between the two versions and
the expected impact on the overall behaviour of the protocol.

A. WiseMAC principles

As mentioned before, WiseMAC [1] is a low-power protocol
for WSN introduced in 2004 which belongs to the CSMA
family of protocols with periodic preamble sampling.
The basic idea is that all the nodes belonging to the network
periodically sample the channel (an extremely low power
operation) and if there is no traffic for them to receive, they
go back to their lowest consumption mode (sleep). The
sampling schedule offsets are independent, meaning that
when a transmitter wants to send a packet to an unknown
node, it must use a so-called Long Preamble, i.e., it should
transmit multiple copies of the same packet for a time interval

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob)

303

greater than the defined preamble sampling interval. On the
receiving side, as soon as a node detects a transmission
intended for it, it stays awake until the reception of the last
copy of the message; if the packet is not intended for it, a
listening node can detect this after the first received copy and
go to sleep thus reducing the time of overhearing. This
communication scheme is pretty expensive on the transmitter
side, because a transmission should last for a relatively long
time. To mitigate this issue, when the receiver receives the
last copy of the packet, it acknowledges the correct reception
to the transmitter and it additionally includes an information
about its next wake-up interval. With this information, the
original sender can now include the receiver in its local list of
known neighbours, and it will be able to send an eventual
future packet using a shortened wake-up preamble named
Short Preamble, i.e., multiple copies of the packet for an
interval which is only taking into account the drift of local
clocks and not the entire preamble sampling interval (Short

Preamble << Long Preamble). The knowledge of the
sampling scheme of each direct neighbour is updated during
every data exchange, and since a node is expected to have just
a few direct neighbours, even nodes with limited memory are
capable of storing this information. This communication
scheme is depicted in Figure 3.

Figure 3: WiseMAC basic operations

When Node 1 sends a packet to the Sink for the first time, it
uses a Long Preamble (leftmost red squares); when
performing a second communication to the same node, a
Short Preamble is used (rightmost red squares).
For the interested reader, the work in [16] contains a detailed
analysis of the power consumption needed to perform the
main operations of WiseMAC.

B. OS-Less Implementation

WiseMAC operations are based on a state machine, with a
state transition happening in one of two cases: a timer firing
or a radio interruption. Since its first version in 2004,
WiseMAC was implemented in an OS-less fashion, with a
basic scheduler, essentially implemented as two FIFO (First
in First Out) queues: a high priority queue and a standard
priority one. This code is entirely based on interrupts to
manage the radio operations and there is no possibility of
multithreading. Pre-emption is possible by a proper
configuration of interrupt priorities.
When running the code, the OS-less implementation features
an infinite loop where the system periodically runs the next
event present in the queues (it first checks the high priority
queue, then the standard one) and if there is no event
scheduled, then the processor goes in sleep mode. All the
transactions required by the state machine of the protocol are
represented as events to be placed in the queue that will be
run at a later time by the scheduler. In case of an interrupt
(timer, radio, etc.), the relative interrupt routine will be
executed according to the state machine indications.

C. µ111 Implementation

The key point to address when porting the code to µ111 was
to rewrite part of the core functionalities of the protocol to
make them interact in the correct way with the RTOS blocks.
This implied, namely
• Rewriting the radio driver according to µ111 format and

keep it compatible with the protocol state machine.
• Protect the radio operations from concurrent access from

other processes (Section III.B – Semaphores)
• Replace the timers of the OS-less version with the system

calls available on µ111 (Section III.B – Signals)
• Interface the protocol with µ111 scheduler to have it

work in a multithreading environment.
These operations need to respect three key constraints
imposed by the protocol itself, without which the porting
would be a useless exercise:
• Respect the timing constraints imposed by WiseMAC

operations
• Limit the code executed in the interruption routines to

not disrupt the multithreading structure of the RTOS
• Keep CPU operations and power consumption at their

lowest possible value.
In the current implementation, WiseMAC protocol is
executed as a µ111 process; it consists essentially of an
infinite loop that waits for signals. While the process is
waiting for the next signal, the OS scheduler can run another
process or put the system in sleep mode to avoid unnecessary
power consumption. Each signal has an associated callback
that is executed by the process. Similarly, to the OS-less
implementation, the state transitions are signaled by timeout
and radio interruption. The timers are implemented with the
precise signals presented in section III.B. The process is set
to the highest level of priority to ensure its execution when a
signal is signaled. Ideally other applications that run in
parallel should have a lower priority and minimized the code
that is executed with disabled interruption. The main
difference with the OS-less version is the absence of the FIFO
queues, which have been replaced by the OS-Scheduler,
while WiseMAC became a stand-alone process which is part
of the OS environment.

V. PERFORMANCE EVALUATION

The purpose of our analysis is to quantify the impact of using
an OS on the performance of WiseMAC.
Our analysis is performed by running a series of identical
tests on the same reference hardware, and by collecting and
comparing the results of 4 metrics:
1. Energy Consumption: what is the difference (if any)

between the two versions of the protocol?
2. Memory Footprint: in terms of memory space, is there

any difference between the two versions?
3. Latency: measured from the moment when the packet is

placed in the transmission queue to when it is delivered
to the application layer of the receiver, what is the
difference between the two versions?

4. Packet Delivery Ratio (PDR): is the overall number of
correctly delivered packets affected by the RTOS or not?

Our experiments were performed on a Wisenode VXI board
(WN), a custom hardware designed at CSEM. The WN
features a Nordic Semiconductor NRF52840 CPU with
integrated 2.4 GHz radio transmitter [17], a few onboard

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob)

304

sensors and an external 868MHz radio (not used either). To
keep the evaluation as simple as possible in terms of energy
consumption, we implemented our protocol to use the
internal radio of the NRF52840, while all the other elements
on the board are switched off, so the only component
consuming energy is the processor itself with its integrated
radio.
To avoid concurrent processes biasing the evaluation, during
the experiments we executed WiseMAC as the only running
process.

A. Energy Consumption

The consumption of the WN was measured using a Keysight
CX3324A Current Analyzer, with an external power supply
voltage of 3V. The radio transmission power is set to 0dBm.
We identified the following 5 main operations of WiseMAC
expected to consume most of the energy:
• Idle, which does not consume a lot but it is the base

operation running for > 99% of the time (IDLE)
• Sampling, short periodic operation implying the

activation of the radio (SAMPLE)
• Transmission using a long preamble (TX-Long)
• Transmission using a short preamble (TX-Short)
• Reception of short preambles (RX)
We decided to not consider the energy needed for the
reception of a long preamble because its value strongly
depends on the random moment when the receiver starts
listening to the transmitted packet with long preamble, thus
its value is always biased by this unpredictable factor.
In the following table, we report the values we measured for
the 4 operations we mentioned above. For each operation we
indicate the average power consumption expressed in µA
over a duration of 1 second. Each value is the result of an
average over 10 different measurements.

Table 1: Energy consumption comparison

Consumption (µA) OS-less µ111

IDLE 46.7 46.7

SAMPLE 184.2 186.9

TX-Long 3397.7 3381.5

TX-Short 592.4 599.4

RX 372.3 380.5

As we can see, the consumption is very similar in both the
OS-less and µ111. The difference we recorded between the
two versions are so small that they are imputable more to
randomness rather than indicate a real pattern, so we can
conclude that the introduction of the RTOS has no impact on
the overall energy consumption of WiseMAC.

B. WiseMAC performance

To evaluate the PDR and the latency we considered two
different scenarios. We remind that WiseMAC is meant to be
used in scenarios implying low traffic and quick reaction, as
for example periodic monitoring applications with the
possibility of quickly raising alarms in case of
abnormal/dangerous values.
For both scenarios, each run of the experiment corresponds
to the transmission of 100 packets, and we executed 5 runs
for each version (OS-less or OS-based) to average results.
The WiseMAC sampling period for each node is set to

250ms. The measures were performed in a controlled
environment without any forced interference, apart from the
Wi-Fi network of the office (one access point, one laptop
connected to it) which has a negligible impact on the
WiseMAC experiments.
In the first scenario, 2 WN are used with 1 node acting as the
transmitter and the other as receiver. The transmitter emits
packets at the rate of 1 packet/second. Results are
summarized below.

Table 2: WiseMAC performance for scenario 1

Settings Packet

Delivery Ratio

Latency

(ms)

µ111 WiseMAC 100% 546

OS-Less WiseMAC 100% 626.2

As we could expect in such a simple scenario, the PDR was
perfect in each test, thanks to the reliability of WiseMAC and
to the fact that there are no interference or collisions because
only 2 nodes where considered. There is on the other hand an
interesting indication for what concerns the latency: the OS
version is quicker in delivering packets (about 80ms less). We
will discuss this result in more details after the presentation
of the second set of experiments.
In the second scenario, we used 1 node as receiver (sink) and
4 transmitter nodes. Each transmitter generates packets at the
rate of 0.5 packets/second.

Table 3: WiseMAC performance for scenario 2

Settings Packet

Delivery Ratio

Latency

(msec)

µ111 WiseMAC 99.9% 615.5

OS-Less WiseMAC 99.7% 652.1

As we can see by comparing the results from the two
scenarios, the PDR remains pretty high in both cases, with the
OS version performing slightly better than the OS-less one,
but the difference (0.2%) is not significant.
For what concerns latency, on the other hand, we can notice
that the use of an OS allows a reduction of the latency of
about 12% in the first scenario and about 5% in the second.
We can explain the lower improvement in the second case as
follows. The overall latency is due to two factors: the rapidity
of the protocol and all the software application in managing
the packets and the communications and the charge of the
whole WSN which causes collisions and thus retransmissions
of packets. In the first scenario, we do not expect any
collision, so the latency value is essentially due to the
responsiveness of the application. In the second scenario, the
latency value is increased by the charge of the network. We
can conclude that the RTOS application is about 12% quicker
in managing packets and delivering them to the intended
destination. This advantage diminishes when the impact of
the charge of the network becomes the predominant factor in
the overall latency. The lower processing latency of the OS
can be explained by the fact that the OS guarantees a higher
efficiency in terms of scheduling and inter-process
communication.

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob)

305

C. Memory footprint

VI. CONCLUSIONS AND FUTURE WORK

In this work we presented our porting of the well-established
WSN protocol WiseMAC on a low-power RTOS (µ111). The
vast majority of proposed WSN protocols were normally
presented to the community as monolithic blocks of code,
with no or little possibility to perform multiple operations at
the same time. It is a common belief that an operating system
will generally introduce a significant overhead to the core
functions of the WSN nodes. Our experience shows that such
a statement is at least misleading, since the performance of
WiseMAC combined with µ111 is similar than that of an OS-
less implementation. An interesting observation, which
confirms the aims of an OS is that the OS implementation
exhibits a lower latency and higher packet delivery ratio than
the OS-less implementation. The reason is still under
investigation, our assumption being that the µ111 RTOS is
more thoroughly tested and debugged from a temporal point
of view.
The possibility of running a protocol in a multitasking
environment opens the possibility to run other application in
parallel, like for example an automatic tool to analyse the
network traffic or any other automatic process that could
improve the quality of the proposed solution.
Apart from the additional memory required by the OS, using
the µ111 OS has little to no impact to the protocol, both in
terms of energy consumption and in terms of protocol
performance.
After this promising outcome, µ111 will include in the future
other types of WSN protocols in addition to WiseMAC, such
as WiseMAC-HA (high availability, developed to guarantee
an improved responsivity [19]), a TDMA protocol and hybrid
solutions like WiseTOP (automatic switching between
CSMA and TDMA [16]). WiseMAC itself will be improved
by introducing the novelties brought by recent asynchronous
WSN protocols, such as FAWR [20].

REFERENCES
[1] A. El-Hoiydi, J.-D. Decotignie, C. Enz and E. Le Roux, “Wise-MAC:

An Ultra-Low Power MAC Protocol for the WiseNET Wireless Sensor
Network”, ACM 1-58813-707-9/03/0011, November 5–7, 2003, Los
Angeles, California, USA

[2] El-Hoiydi, A.; Decotignie, J.-D.: WiseMAC: An Ultra-Low Power
MAC Protocol for Multihop Wireless Sensor Networks, algosensors,
First International Workshop on Algorithmic Aspects of WSN,2007.

[3] Levis P. et al. (2005) TinyOS: An Operating System for Sensor
Networks. In: Weber W., Rabaey J.M., Aarts E. (eds) Ambient
Intelligence. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-
540-27139-2_7 http://www.tinyos.net/

[4] Dunkels, Adam (2004), "Contiki – a lightweight and flexible operating
system for tiny networked sensors", Proceedings of the 29th Annual
IEEE International Conference on Local Computer Networks., pp.
455–462.

[5] FreeRTOS, https://www.freertos.org/

[6] Ramasamy, Anubhama & Rajendran, T. (2017). A Survey on Mac
Protocols for Wireless Sensor Networks. 121-126. 10.15439/2017R26.

[7] Ye, Wei & Heidemann, John & Estrin, Deborah. (2001). An Energy-
Efficient MAC protocol for Wireless Sensor Networks. IEEE
INFOCOM. 2002.

[8] Dae T. & Langendoen K, An adaptive energy-efficient MAC protocol
for wireless sensor networks, The 1st ACM Conference on Embedded
Net- worked Sensor Systemes (Sensys 03), Los Angeles, CA, USA,
November, 2003.03.

[9] Koen Langendoen and Andreas Meier. 2010. Analyzing MAC
protocols for low data-rate applications. ACM Trans. Sen. Netw. 7, 1,
Article 10 (August 2010), 34 pages.
DOI=http://dx.doi.org/10.1145/1806895.1806905

[10] Chandel, Anita, Chouhan Vikram Singh, Sharma Sunil. 2021. A
Survey on Routing Protocols for Wireless Sensor Networks. Chapter
of book “Advances in Information Communication Technology and
Computing”. Springer Singapore

[11] Farhana Afroz and Robin Braun, Energy-efficient MAC protocols for
wireless sensor networks: a survey, Int. J. Sensor Networks, Vol. 32,
No. 3, 2020

[12] Kuorilehto M., Alho T., Hännikäinen M., Hämäläinen T.D. (2007)
SensorOS: A New Operating System for Time Critical WSN
Applications. In: Embedded Computer Systems: Architectures,
Modeling, and Simulation. SAMOS 2007.LNCS, vol 4599. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73625-7_44

[13] Francesco Mondada, Edoardo Franzi, and Paolo Ienne , Mobile robot
miniaturisation: A tool for investigation in control algorithms
Experimental Robotics III, Proceedings of the 3rd International
Symposium on Experimental Robotics, Kyoto, Japan, October 28-30,
1993, Springer Verlag, London, 1994, pp501-513.

[14] F. Mondada , E. Franzi , A. Guignard, The development of khepera, In
Proc. of the 1st International Khepera Workshop, pp. 7—13, 1999

[15] Alberto Behar, George Bekey, George Friedman, Rajiv Desai, SUB-
KILOGRAM INTELLIGENT TELE-ROBOTS (SKIT) FOR
ASTEROID EXPLORATION AND EXPLOITATION, Space
Manufacturing 11, Proceedings of the Thirteenth SSI/Princeton
Conference on Space Manufacturing, May 8-11, 1997,

[16] Bergamini Lorenzo, Decotignie Jean-Dominique, Dallemagne,
Philippe. (2018). WiseTOP: a multimode MAC protocol for wireless
implanted devices. 41-50. 10.1145/3273905.3273919

[17] https://www.nordicsemi.com/Products/Low-power-short-range-
wireless/nRF52840

[18] O. Hahm, E. Baccelli, H. Petersen and N. Tsiftes, "Operating Systems
for Low-End Devices in the Internet of Things: A Survey," in IEEE
Internet of Things Journal, vol. 3, no. 5, pp. 720-734, Oct. 2016, doi:
10.1109/JIOT.2015.2505901.

[19] [19] J. F. M. Gerrits, J. Rousselot, J. R. Farserotu, C. Hennemann, M.
Hübner, J.-D. Decotignie,, FM-UWB and WiseMAC-HA for Medical
BAN Applications. , CSEM Scientific and Technical Report 2009.

[20] A. Pegatoquet, T. N. Le and M. Magno, "A Wake-Up Radio-Based
MAC Protocol for Autonomous Wireless Sensor Networks," in
IEEE/ACM Transactions on Networking, vol. 27, no. 1, pp. 56-70, Feb.
2019, doi: 10.1109/TNET.2018.2880797.

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob)

306

