
1

An Analytical Energy Performance Evaluation
Methodology for 5G Base Stations

S. Krishna Gowtam Peesapati1,2, Magnus Olsson2, Meysam Masoudi1, Sören Andersson2, Cicek Cavdar1
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Abstract—The implementation of various base station (BS)
energy saving (ES) features and the widely varying network
traffic demand makes it imperative to quantitatively evaluate the
energy consumption (EC) of 5G BSs. An accurate evaluation is
essential to understand how to adapt a BS’s resources to reduce
its EC. On the other hand, modeling the variation in the power
consumption (PC) of a BS with its resources considering the user
equipment (UE) performance is mathematically rigorous. In this
work, we present a novel analytical methodology to evaluate the
EC of a 5G BS under varying traffic load. We mathematically
formulate the impact of massive multiple-input and multiple-
output (MIMO) arrays, vast spectral resources, and the spatial
multiplexing ability of these systems on the UE performance and
activity of the BS. Next, we present an updated power model
to capture the PC variation of two BSs types: a 4T and a 64T
BS. Our proposed analytical methodology simplifies the complex
network EC evaluation. Using this methodology, we show that
identifying the right BS type for a given deployment area can
reduce the overall network EC by up to 60%. Furthermore, by
implementing deep sleep modes (SMs) facilitated by 5G, one can
gain considerable energy savings (ES), especially during the off
peak hours of the day.

Index Terms—Energy performance, energy efficiency, evalu-
ation methodology, 5G, activity factor, massive MIMO, carrier
aggregation, spatial multiplexing

I. INTRODUCTION

The fifth-generation (5G) of mobile networks are designed
to cater to 1000x times higher traffic demands while consum-
ing the same or lower energy [1]. On the other hand, the roll-
out of 5G over the existing technologies and the deployment
of complex BSs in smaller cells could lead to a higher
network EC. It could mean higher operational expenditure
(OPEX) for the network operators and increased global carbon
emissions [2]–[4]. Therefore, improving the energy efficiency
(EE) of wireless networks has gained interest from industry
and academia.

The next-generation 5G BSs are powered with advanced
massive MIMO systems and vast spectral resources to serve
the UEs efficiently. However, various studies [3]–[7] have
shown that these resources are often under-utilized due to a
large variation between the peak and non-peak hour traffic
demands leading to an unnecessarily high BS and network EC.
One promising approach to improve resource utilization and
reduce network EC is by dynamically adapting the resources
following the input traffic demand.

Evaluating the EC of a BS in a dynamic environment can
be quite challenging as it depends intricately on the resources
used and the SMs implemented. The EARTH project [7]
had provided the initial impetus for an integrated solution
to evaluate a network’s EC by holistically analyzing the
impact of the BS’s components and different network-level
deployment strategies on the ES obtained. However, the
solution assumed slightly inefficient BSs deployed in an over-
dimensioned baseline network for comparison [8]. In [8], the
authors proposed updates to [7] by considering deployment
and traffic models more suitable in a 5G time frame. By
detailed system-level simulations and with rather simplistic BS
power models, these works managed to evaluate a network’s
EC under varying loads.

Nevertheless, we need more detailed and accurate PC
models as different resources have a different impact on a
BS’s PC [9]. In [9] and [10], the authors modeled the variation
in the PC with the number of active antenna elements and
bandwidth. Not considering the impact of SMs on the EC,
the authors implement an adaptive massive MIMO system
to maximize the downlink EE under varying load. On the
other hand, the authors in [11]–[14] mainly focused on SM
management under different traffic loads by assuming fixed
BS resources. In [15], we combined radio resource adaptation
with SMs and proposed a dynamic Q-learning based algorithm
to adapt a BS’s resources according to the traffic demand and
reduce the overall EC. While the areas covering PC models
and EC evaluation methodologies have seen some progress,
the quest for a simplified, unified and analytical network-level
EC evaluation methodology remains open.

In this work, we propose an analytical network-level EC
evaluation methodology that connects resources used with
SMs and analyzes its impact on the BS’s EC under varying
traffic loads. We also consider the benefits of a lean carrier
design, spatial multiplexing, massive MIMO, and bandwidth
adaptation on the EC. The main contributions of this work are
summarized as follows.
• We present a novel power model which captures the

impact of three BS parameters, namely: the bandwidth,
the active array size, and the spatial multiplexing factor
on the instantaneous PC of the BS. This model also takes
into account the 5G BS’s advanced SMs.

• We develop a new formulation for the BS’s activity factor
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by considering the impact of the three BS parameters
on the overall cell throughput, and the performance
experienced by the UEs.

• Finally, by applying the proposed methodology, we an-
alyze the impact of the increasing traffic demands on
the EC over the next 10-years. We show the importance
of identifying the appropriate BS type for a given de-
ployment scenario to save energy and meet future traffic
demands.

The rest of this paper is organized as follows. In Section II,
the utilized features of 5G are presented. The system model is
presented in Section III followed by the power consumption
model and the traffic model in Sections IV and V, respectively.
Simulation results and discussions are given in Section VI.
Finally, the whole paper is concluded in Section VII.

II. 5G FEATURES

The implementation of flexible signaling periodicity in 5G
along with the use of larger antenna systems enable us to
improve the EC of the BS under varying traffic load. Massive
MIMO systems could improve the UE performance thereby
allowing the BS to gain on long idle periods during which it
could switch down to deeper sleep levels and conserve more
energy. In this section, we will look at two main features that
could lead to higher ES.
• Lean Signaling Design: Minimal signaling involves re-

ducing any transmissions not related to the delivery of
user data [16]. These include signals for synchronization,
idle mode mobility, and system and control information.
5G does away with the mandatory cell-specific reference
signals as in LTE and allows for a flexible periodicity
for the transmission of the synchronization signals (SSs).
The periodicity of the SS blocks in 5G can vary from
5-160 ms [11]–[13]. This flexibility could result in idle
periods that are 25-800 times longer as compared to LTE
under no load.

• Massive MIMO beamforming and spatial multiplexing:
Larger antenna arrays at the BS can be used to implement
UE specific beamforming. This technique improves the
performance of the UEs as they receive more spatially
focused transmission and reception beams [7], [17],
[18]. Due to the additional beamforming gain, the UEs
experience higher signal-to-interference-plus-noise ratio
(SINR) resulting in increased data rates reducing the time
required by the BS to serve them [19], [20]. By having
larger arrays, it is also possible to beamform to multiple
users simultaneously. The higher spatial multiplexing
gain so obtained improves the overall cell throughput
[21].

III. SYSTEM MODEL

In this work, we consider a network consisting of a
homogeneous deployment of 3-sector cells. The serving BS
i is surrounded by φc number of interferers. In this work, we
consider six interferering BSs, i.e., φc = 6 . The BS serves
a total of N active UEs in time T who are assumed to be

uniformly distributed in the cell of radius Do. Assuming a
fixed average requirement of Ω MB per UE, the hourly traffic
demand ξ can be expressed as,

ξ = N ∗ Ω (1)

The variation in the number of active UEs during the day is
assumed to follow the profile (Fig 5) in [7].

Considering the downlink (DL) scenario and assuming
perfect channel state information (CSI) to be available at the
transceivers, the achievable rate per UE k can be expressed
as:

rk = BiNk log2

(
1 +

Sk,i
Ik +Nk

)
(2)

Here, rk depends on the signal power Sk,i from the serving
BS i, and the interference from the neighbouring BSs Ik.
Furthermore, Ik depends on the activity of the interferers
ηj while rk varies with the bandwidth Bi and the number
of spatial multiplexing layers Nk. These parameters can be
expressed as:

Sk,i =
c

(Dik)
α

|HikWik|2

‖Wik‖2
piMi

Kc
(Mi −Nk) (3)

Ik =

φc∑
j=1

cηj
(Djk)

α
|HjkWjk|2

‖Wjk‖2
pjMj

Kc
(Mj −Nk) (4)

Nk = σ2 ‖Wjk‖2 (5)

In (3), Sk,i depends on the number of UEs served simul-
taneously Kc, power per power amplifier (PA) pi, and the
active array size Mi, and is given by piMi

Kc
. The array gain is

obtained by using larger antenna arrays at the BS. It improves
the signal power received at the UEs and is given by the
factor (Mi −Nk). This is also the maximum gain that can be
obtained considering a zero-forcing precoder at the transmitter
[10]. Dik and Djk are the distances of the UE from the serving
and interfering BSs respectively. c captures the gains of the
antennas at the BS and UE. The instantaneous cell throughput
can then be written as,

R =

Kc∑
k=1

rk =

Kc∑
k=1

BiNk log2

(
1 +

Sk,i
Ik +Nk

)
(6)

A. Base station activity factor

The fraction of the total time T that a BS i remains active
while serving the UEs is known as the activity factor [20].
Denoted by η, it is calculated as the fraction of the sum of
the time to serve each UE with a requirement of Ωk divided
by the total time T and is expressed as,

η =

∑N
k=1

Ωk

rk

T
(7)

Replacing rk in (7) with (2), we get,

ηi =
1

TKc

 N∑
k=1

Ωk

BiNk log2

(
1 + Sik

Ik+Nk

)
 (8)
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The maximum spectral efficiency obtained with a given
antenna array also depends on the number of antennas used
at the UE Nk. The upper bound on this efficiency is given by
[22]:

Gupperbound =
(√

Mi +
√
Nk

)2

(9)

Taking into account the upper bounds on the spectral
efficiency, the activity factor of the BS is now modified as,

ηi =
1

TKc

[
N∑
k=1

Ωk
max [rk, rmax (Mi, Nk)]

]
(10)

where rmax is the maximum data rate that can be achieved
by a UE with Mi transmit and Nk receive antennas. T
represents the observation window over which we measure
the activity of the BS. In this work, we set T to be equal to
the periodicity of the SS block transmission. The observation
window and the hourly input traffic demand determine the
overall activity factor of the BS.

IV. POWER CONSUMPTION MODEL

The power model quantifies the variation in the PC of a
BS with the load. An accurate power model helps to analyze
the impact of various components on the overall EC of the
BS. A model is dependent on the BS type and therefore, it
is necessary to ensure that the implemented model accurately
models the BS under consideration [3]. Inspired by the works
[3], [9], [11], [23], we propose a novel power model that takes
into account the 5G features as mentioned in Section II.

The total PC of the BS consists of the i) load-dependent,
and ii) load-independent parts and can be expressed as:

Ptotal = Pload−dependent + Pload−independent (11)

The load-dependent PC is further divided into the baseband
(BB) and PA’s PC. The BB PC varies with Bi, Kc, and Mi

[9]. Representing the normalized load experienced by the BS
with p (0 ≤ p ≤ 1), the load-dependent PC can be expressed
as:

Pload−dependent = Pbaseband + PPA (p) (12)

Pbaseband(Mi,Kc, Bi) =

[
ARc +

MiBi
Lbs

(
2 +

1

Tc

)]
Kc

+

(
3BiMi

Lbs

)
K2
c +

(
Bi

3TcLbs

)
K3
c (13)

PPA (p) =Mi

[
1

(1 + ε) η
(p+ εPmax,PA)

]
(14)

Pload−independent = Psyn +MiPbs + Pfixed (15)

The various parameters in the equations above are given in
Table I.

A. Base station sleep modes

SMs reduce the PC of a BS during the idle period by
deactivating various hardware resources. The SMs have been
categorized into 4 levels based on the minimum sleep duration
and the activation/deactivation time of the hardware resources.

Deeper sleep levels (SM2, SM3 and SM4) reduce the
BS’s PC by a large amount as more hardware resources are
deactivated. However, the increased burstiness in the traffic
demand during the peak hours makes it difficult to switch
down to deeper sleep levels having long transition times. Also,
with the maximum periodicity of the SSB transmission in 5G
being 160 ms, it is not possible for the BS to switch down
to SM4 with a transition time of 1s. We therefore restrict
ourselves to the first three sleep levels. The sleep deltas and
the corresponding transition times for the various sleep levels
used in this work are presented in Table I and are obtained
from [23]. The BS PC model taking into account the various
SMs can be expressed as:

P 5G
BS = Ns∗



Ptotal if p > 0

PB if p = 0 without sleep
δ1PB if p = 0, 72µs ≤ Tsleep < 1ms

δ2PB if p = 0, 1ms ≤ Tsleep < 10ms

δ3PB if p = 0, Tsleep ≥ 10ms

(16)

Here, Ns is the number of sectors and PB is the no-load
PC of the BS which is given as:

PB =Mi

[
1

(1 + ε) η
(εPmax,PA)

]
+Psyn+MiPbs+Pfixed (17)

The BS’s EC during the period T also depends on the
transition time to the opted SM Tac,δi and is given by:

Ei = ηiTNsPtotal +

(
3∑
i=1

SiδiPB

)
(T ′ − Tac,δi) (18)

The overall network EC in an area Ar with a BS density β
can then be computed as:

Etotal = EiβAr (19)

TABLE I
POWER CONSUMPTION MODEL PARAMETERS AND THEIR VALUES

Variable Definition Value(s)
Power consumption modeling

Rc Average cell throughput
Bi Bandwidth per UE 40 MHz
A Sum of encoding and decoding power consumption [9] 1W
Lbs BS computational efficiency in (Gflops/W) [9] 12.8e9 (Gflops/W)
Tc Channel coherence time in symbols [9] 5000 symbols
ε Fixed constant (PA dependent) [9] 0.0082
η Efficiency of the PA 0.25

Pmax,PA Maximum output power of the PA 3.125W
Pfixed Baseline/No-load power consumption of the BS
Psyn BS local oscillator power consumption [9] 1W
Pbs BS circuit power [9] 1W
δi Sleep level deltas (SM1/SM2/SM3) [16] 0.84/0.69/0.5
Ns Number of sectors 3
Ni Receiver diversity 2/4
fc Carrier frequency 1.8 GHz
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TABLE II
DEVICE CATEGORIES, THEIR MIXES AND THEIR CORRESPONDING

GROWTH RATES

Device category Device mix, %
Growth rate of:

Number of
devices,%

Data traffic
per device,%

Smartphones 94.00 0.92 26
Mobile PCs 3.50 0.92 11
Tablets 2.50 0.86 15

TABLE III
DATA TRAFFIC VOLUME IN GB/MONTH FOR DIFFERENT DEVICE TYPES

FOR THE YEARS 2020, 2025, 2030 [8], [24]

Device category Year

2020 2025 2030
Smartphone 9.39 30.00 95.28
Mobile PC 14.27 24.05 40.51
Tablet 7.36 14.80 29.78

V. TRAFFIC MODELING

Traffic modeling involves understanding the network level
traffic variation over 24 hours in different deployment areas.
It consists of two parts: i) Large-scale traffic modeling and ii)
Long-term traffic modeling.
• Large-scale traffic modeling involves understanding the

traffic variations in different deployment areas based
on the geographical statistics of the country and the
distribution of the population. Similar to the methodology
followed in [7], [8], we consider six different deployment
areas, namely: super dense urban (SDU), dense urban
(DU), urban (U), suburban (SU), rural (R), and wilderness
(W) classified based on their population densities.

• Long-term traffic modeling involves predicting the growth
in the peak traffic demands in an area over the next few
years. Assuming a device mix as given in Table II, and
using the device growth statistics from [24], we follow
the methodology in [3] to obtain an estimate of the peak
data traffic demand in different deployment areas over a
10 year span (see Table IV). These estimates are based
on the current statistics and could vary in the future.

The hourly traffic demand is calculated using Eq.(1) and
takes into account the daily traffic variation profile used in [3].
This variation is assumed to be the same across all deployment
areas. The percentage of active UEs (α(t)) has been found to
vary between 16% to 2.25% during the peak and off-peak
hours respectively with an average of 9.64% during a day [3],
[7]. The data volumes per subscriber expected over 10 years
is as calculated from the data in [24] and presented in Table
III. These values are then used to estimate the traffic demand
per network operator R(t) given by:

R(t) =
ρ

Nop
α(t)

∑
a

raλa (20)

where ρ is the total traffic demand in a given area, Nop is the
number of operators, ra is the average data rate demand and
λa is the ratio of subscribers of device type a. In this study,

we assume Nop = 1. Using the above statistics, the estimated
peak traffic demand in different deployment areas for the years
2020, 2025 and 2030 are calculated and presented in Table IV.

TABLE IV
PEAK TRAFFIC DEMAND IN DIFFERENT DEPLOYMENT AREAS FOR THE

YEARS 2020, 2025, 2030

Area Traffic demand [Mbps/km2]

2020 2025 2030
Super dense urban 1201.81 3718.21 11595.21
Dense urban 180.00 557.73 1728.28
Urban 60.00 185.91 579.76
Sub urban 30.04 92.95 289.88
Rural 6.01 18.59 57.98
Wilderness 1.50 4.64 14.49

VI. ENERGY PERFORMANCE EVALUATION

In this section, we apply the new methodology to study
network EC resulting from the deployment of two types of
5G BSs in different deployment scenarios. We then illustrate
the importance of identifying the right BS for a deployment
scenario by plotting the daily variation in the EC and activity
of the two BSs considered. The network-level evaluation is
implemented and executed in an internal network evaluation
tool.

A. System setup

We consider a homogeneous 3-sector hexagonal network
deployment consisting of a total of 7 BSs with the serving BS
in the center surrounded by 6 interfering BSs. We evaluate the
EC of two types of BSs: i) a 4T BS; and ii) a 64T BS; with
different baseline PC that can be calculated from the values
given in Table I. The frequency reuse factor is set to 1 and the
total bandwidth B of the system is limited to 40 MHz. The
observation window T is set to 20ms which is also the default
periodicity of the SS block transmission. A uniform inter-site
distance (ISD) of 1500 m is assumed across all deployment
scenarios. For the parameters of the power model, we assume
the sleep deltas to be 0.84 for SM1, 0.69 for SM2, and 0.5
for SM3 [16], the efficiency of the PA’s η to be 0.25, the fixed
PA dependent parameter ε to be 0.082 [9].

B. Results

• Activity factor and power modeling analysis

In Sections III-A and IV, we presented the mathematical
relationship between a BS’s configuration and its instanta-
neous PC. In Fig.1, we analyzed the impact of bandwidth
on the activity factor of a 64T BS deployed in a scenario
with a peak traffic demand of 2000 Mbps/km2. As seen,
by increasing the total bandwidth from 5 to 100 MHz, the
activity factor of the BS could be reduced by approximately
26x times. This decrease is due to the increased throughput
experienced by the UEs. However, as seen in Fig.2, the total
bandwidth utilized has a significant impact on the BS’s PC.
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These results highlight the importance of identifying the
total bandwidth that must be allocated to BS depending on
the traffic demands to reduce its overall EC.

Fig. 1. Daily variation in the activity factor of a 64T BS with varying total
bandwidth.

Fig. 2. Variation in the instantaneous power consumption of a 64T BS with
bandwidth B and the spatial multiplexing factor Kc.

• Impact of deep sleep modes on the EC of a BS

In Fig.3, we analyzed the impact of having deep SMs on
the EC of the BS over 24 hours. For this, we considered a
SDU (2020) scenario with a peak traffic demand of 1200
Mbps/km2. By activating deep SMs, we were able to
achieve up to 57% higher ES during the off-peak hours
of the day as compared to the scenario with no SMs. These
savings are 40% higher as compared to symbol level SMs
commonly implemented in LTE systems.

The impact of SMs varies with the type of BS. For exam-
ple, in Fig.4 we compared the ES obtained by deploying the
two different BS types in an area with a peak traffic demand
of 4000 Mbps/km2. This traffic demand is close to what we
expect in a SDU scenario in the year 2025. Our results show
that by having deep SMs, we obtained about 20% reduction
in the daily EC of a 4T BS. This is comparatively lower to
the 56% drop in EC observed by deploying a 64T BS in the
same area. The higher ES obtained in a 64T BS is due to
the higher array and spatial multiplexing gains which result
in improved spectral efficiency and lowered BS’s activity
factor. These enable the BS to switch down to deeper SMs
and conserve more energy during the longer idle periods.

Fig. 3. Relative reduction in the EC of a BS with the activation of different
sleep modes.

Fig. 4. Impact of deep sleep modes on the average EC of the two BS types
in the same deployment scenario.

• Variation in the EC of the two types of BSs in different
deployment scenarios

In Fig.5, we plot the EC variation of the two BS types
in three different deployment scenarios. As seen, the peak
traffic demand has a direct impact on the overall EC. In
rural scenarios, we find that a 64T BS is energy-inefficient
and power-hungry due to the very low (100x times lower)
traffic demands in these scenarios as compared to a SDU
scenario. Moreover, the higher idle mode PC of a 64T BS
as compared to a 4T BS results in an increased overall EC.
Whereas in SDU scenarios, the higher spectral efficiencies
and array gains obtained by 64T BSs help in serving high
traffic demands (UEs) at a faster rate, thereby allowing
the BS to switch down to deeper sleep levels to conserve
more energy. In such a scenario, we find that a 64T BS
consumes up to 60% less energy as compared to a 4T
BS. The dependency of the ES on the peak traffic demand
highlights the importance of identifying the right type of
BS for a deployment scenario.

VII. CONCLUSION

In this paper, we proposed a novel analytical methodology to
simplify the evaluation of the EC of a massive MIMO BS in a
network by taking into account the impact of its configuration
on its activity factor and PC. By considering the possibility
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Fig. 5. Variation in the energy consumption of a 4T and 64T BS in three different deployment scenarios (SDU, urban and rural) in the year 2020.

to switch the BS down to deep SMs during the idle periods,
we developed a rigorous and detailed mathematical process
to evaluate the impact of BS configuration on the overall EC
of the BS. Our evaluation results show that the type of BS
deployed and its configuration can have a significant impact
on the overall network EC in a deployment scenario. In future,
one could extend our simplified evaluation methodology to
improve a network’s EC through BS resource adaptation. One
could also study the impact of varying BS resources on the
quality of service experienced by the UEs.
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