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Abstract—Effective planning requires understanding the move-
ment patterns of pedestrians and vehicles. This can be achieved
by passive localization of WiFi-enabled devices using RSSI
measurements from WiFi probe requests received at nearby
sensors. In this paper, we continue our work on a mobility
intelligence system (MobIntel) [1] and study the performance of
two broad approaches to RSSI-based passive outdoor localization.
The first is adapted from traditional active localization methods,
including multilateration and fingerprinting. The second relies on
machine learning methods, including machine learning-boosted
multilateration and classification. We compare the localization
performance of the two approaches and find that the machine
learning methods consistently outperform the adapted traditional
methods. The results demonstrate machine learning methods as
promising tools for RSSI-based passive outdoor localization.

Index Terms—Mobility intelligence, passive localization, WiFi
probe requests, RSSI

I. INTRODUCTION

Monitoring mobility patterns of pedestrians and vehicles
provides vital information for city planning. This can be
achieved by passive localization using received signal strength
indicator (RSSI) measurements from probe requests emitted by
WiFi-enabled devices. We consider two modes of RSSI-based
localization: active and passive [2]. The former requires device
cooperation, whereas the latter does not. Active localization
may not be suitable to a city, as it typically requires large-scale
mobile app adoption. Thus, passive localization is preferred.

One challenge in RSSI-based localization is high vari-
ability in RSSI measurements [3]. Some active localization
approaches address this by requiring devices to transmit ad-
ditional information, such as round-trip time [4] or device
orientation [5]. However, these data points are not available in
passive localization. Others have shown that active localization
is possible using only RSSI measurements from access points
(APs) [6]. Given its resemblance to passive localization, these
approaches might be transferable. However, transferability
must be verified due to inherent differences between active
and passive localization. For instance, active localization can
handle missing RSSI measurements by collecting them again,
yet this is not always possible in passive localization.

Previous work on passive localization handles only small- or
large-scale applications (Section II-B). This leaves opportunity
for a solution targeting the medium scale, such as a city
street. Therefore, it is necessary to examine the feasibility
of adapting active localization methods (hereafter referred to

as “traditional active localization methods”) to the passive
context, and to explore new approaches to RSSI-based passive
localization in outdoor environments.

To facilitate this goal, we have developed a privacy-centric
system, MobIntel, to capture and analyze RSSI measurements
from anonymized WiFi probe requests. In this paper, our
contributions include: 1) a systematic performance analysis of
RSSI-based passive outdoor localization methods for medium-
scale application adapted from traditional active localization
(multilateration and fingerprinting); and 2) a systematic anal-
ysis of the accuracy impact of integrating machine learning
within these methods.

II. RELATED WORK

We present a brief review of related work in both active
and passive RSSI-based localization. Emphasis is given to
applicability issues related to the scale of a city street.

A. Active Localization

Multilateration is commonly used in active localization. It
employs an RSSI-distance model to estimate distances from
target devices to nearby APs, and then applies linear least
squares regression to estimate the most likely location of
the device. Most research focuses on improving the RSSI-
distance model. Some approaches add additional information
to mitigate RSSI variability, such as the WiFi fine timing
measurement frame [4]. However, these approaches typically
require cooperation from the target device. Others drop RSSI
completely and use measurements such as RF signal angle-
of-arrival or time-of-arrival to yield higher multilateration
accuracy [7]. Yet, collecting these measurements requires
specialized tools, whose cost and complexity are at odds
with large-scale deployment and maintenance on a city street.
Therefore, a more desirable way to leverage multilateration is
to adapt an RSSI-based method to passive localization.

Another common method in active localization is based on
fingerprinting. In the offline stage, a radio map is constructed
from RSSI measurement vectors (i.e., fingerprints) that origi-
nate from nearby APs and are captured by a testing device at
each reference point. In the online stage, RSSI measurements
collected by a target device are compared to the fingerprints,
and the reference point with the best match is the predicted
location. Radio map quality can be improved by including
additional information, such as device azimuth [5].
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Similar to multilateration, fingerprinting is adaptable to
passive localization if cooperative measurements are not used
to construct the radio map. One challenge is that radio map
construction scales poorly in large outdoor environments be-
cause to achieve sufficient granularity, many reference point
measurements are needed. In active localization, this can be
alleviated via crowdsourcing, as RSSI fingerprints can be
easily collected and uploaded by any device [8]. Yet, this is
not the case with passive localization, since the radio map is
not constructed from mobile devices, but sensors. This means
the targets of crowdsourcing would be local, stationary WiFi
devices (e.g., public or private APs) that agree to volunteer
as sensors. Finding such volunteers and retrieving data from
them is likely to be challenging.

B. Passive Localization

Disturbance-based passive localization can track any object,
including non-RF objects, in a small area surrounded by APs
[9]. The APs constantly send beacons and collect baseline
RSSI measurements from other beacons. When an object
enters the AP-covered area, the disturbance pattern in RSSI
measurements reveals the location of the intruding object.
Unfortunately, this method is not scalable to a large outdoor
area because the number of objects that can be tracked
simultaneously is low. If too many objects (e.g., pedestrians)
are present in the AP-covered area, the disturbance pattern will
be too chaotic to be informative.

Another type of passive localization leverages WiFi probe
requests in a qualitative manner. Guillen-Perez and Cano [10]
propose that a target device can be assigned the same location
as the sensor that captured its probe request with the strongest
signal. It is suitable on a large scale, but too imprecise for a
city street. Resolution can be enhanced with more sensors,
but this would incur scalability issues. Kulshrestha et al.
[11] temporarily improve the resolution of qualitative passive
localization by attaching sensors to volunteers and having them
move in the same general direction as target devices. However,
this is not a generalized or long-term solution.

Overall, these passive localization methods cannot meet
the requirements of mobility monitoring on a city street. A
more appropriate method should leverage routing traffic sent
by devices (e.g., probe requests), as the alternative RSSI-
disturbance-based methods are inappropriate at scale. Quan-
titative methods are preferred, because qualitative methods
either lack or cannot sustain long-term precision.

III. METHODS

In this section, we describe our approaches to enabling
RSSI-based passive localization, including adaptation of tradi-
tional multilateration and fingerprinting methods, and formu-
lation of machine learning-boosted multilateration and classi-
fication methods.

A. Multilateration

Adapting traditional multilateration methods to passive lo-
calization requires that the RSSI measurements be obtained

by sensors instead of target devices. The basic RSSI path-
loss model (Equation (1)) is used, where R is the RSSI
measurement, d is the distance between sensor and target
device, A is RSSI measured at a reference distance from the
device (usually 1 m), and n is the mean, environment-specific
path-loss index that describes the rate of signal loss with
distance [12]. In a stable environment, A and n are constants.
Therefore, the relation between R and log (d) can be captured
by linear regression.

R = A− 10n log (d) (1)

Once device-to-sensor distances are estimated, they are sent
to a least squares estimator to find the coordinates (x̂, ŷ) that
minimize the residual error shown in Equation (2), where di is
the estimated distance from the target device to the i-th sensor,
and (xi, yi) are the coordinates of the i-th sensor.

Residue =
N∑
i=1

(
di −

√
(xi − x̂)2 + (yi − ŷ)2

)2
(2)

B. Fingerprinting

Similar to multilateration, adapting fingerprinting to the
passive context entails switching how RSSI measurements are
collected. The radio map is constructed from vectors of RSSI
measurements, with each vector corresponding to a reference
point and consisting of the mean RSSI measurements from
each sensor [13]. Suppose there are N sensors S1, S2, ..., SN ,
M reference points P1, P2, ..., PM , and all reference points are
within the detection range of all sensors. RSSI measurements
obtained by a sensor Sj (1 ≤ j ≤ N ) at reference point Pi

(1 ≤ i ≤M ) can be expressed as Rij1, Rij2, ..., RijT , where
T is the number of probe requests captured. Let µij be the
mean value of all RSSI measurements obtained by Sj at Pi.
The RSSI fingerprint of Pi is Fi = [µi1, µi2, ..., µiN ].

Given RSSI measurements U = [R′
1, R

′
2, ..., R

′
N ] acquired

from a target device at an unknown location, the matching
penalty between U and Fi can be approximated by Euclidean
distance. The smaller the distance, the more likely U and Fi

originate from the same Pi. In practice, reference points of
the top k best matches are averaged to compute the predicted
location, with k determined via cross validation.

C. Machine Learning-boosted Multilateration

In multilateration, the RSSI path-loss model (Equation (1))
does not capture all errors [14]. While it is possible to attach
more error terms to the model, a less complex approach is
to let a machine learning architecture “learn” the relation
between RSSI measurements and distances. Machine learning
offers an advantage in that it is not constrained by a physical
model and is thus able to handle non-ideal scenarios. We
use three standard machine learning architectures: multi-layer
perceptron (MLP), support vector machine (SVM), and k-
nearest neighbors (K-NN) to train an RSSI-distance regressor
for each sensor. Each regressor is used in multilateration the
same way as described in Section III-A.
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D. Machine Learning Classification

The high-level fingerprinting workflow involves passing
RSSI measurements to a radio map-based algorithm that
predicts a target location. This process can be achieved through
machine learning classification, where RSSI measurements
are the features, and the reference points are the labels. The
difference between fingerprinting and classification is that the
former has predefined rules regarding how RSSI measurements
match reference points (e.g., Euclidean distance), whereas the
latter “learns” the matching process from the data. We again
use three machine learning architectures (MLP, SVM, and K-
NN) to train the classifiers.

IV. DATA COLLECTION

To examine the localization performance of the methods
discussed above, RSSI measurements from mock probe re-
quests and reference point coordinates were collected in a
semi-controlled environment. In the following sections, the
data collection and preparation procedures are presented.

A. Experimental Design

Figure 1(A) shows our 15×15 m experimental field, divided
into 1 × 1 m cells. Red dots denote sensor locations; blue
dots denote reference points. Figure 1(B) shows the actual
obstacle-free field (GPS: 26.381488, -80.099640). During data
collection, sensors were mounted on tripods approximately
1.8 m above the ground. An emitter, mounted on a tripod
approximately 1 m above the ground, was placed on each
reference point for 50 seconds, during which time approx-
imately one-thousand mock probe requests were sent. Each
mock probe request carries a MAC address that is traceable
to the reference point, distinguishable from a genuine probe
request, and unique. The RSSI measurement and the mock
probe request timestamp were uploaded to an AWS store by
each sensor.

s1 s2

s3 s4

1 2 13 140 15

1

2

13

14

15

(A) (B)

Fig. 1: Experimental Design and Satellite View of Experimental Field

B. Hardware - Sensor

The same sensing device described in [1] was used in
this paper. Briefly, the sensor captures WiFi probe requests,
removes duplicates for each 30-second window, and uploads
the aggregated data to AWS.

C. Hardware - Emitter

The same device used for stress testing in [1] was used as
the emitter. It sends WiFi probe requests with a customized
MAC address, on a specified channel, and at a specified rate.

D. Data Preparation

Raw data was collected on 07/16/2020. Due to the nature
of passive localization, missing data in RSSI measurements
is not uncommon. Here, missing data refers to a situation
where a probe request is not captured by every sensor, despite
all sensors being within the normal detection range. Since
analyzing the effect of missing data is outside the scope of this
paper, we only use raw data with full RSSI measurements to
derive multiple datasets for analysis. Figure 2 illustrates the
relationships among the derived datasets, with their names,
number of rows, and derivation methods.

Raw Dataset
221,553

Cleaned Dataset
171,537

Sampled Dataset
25,200

Mean Training Set
252

Sampled Training Set
20,160

Sampled Testing Set
5,040

Mean Testing Set
252

Sampled Validation Set
1,000

Exclude missing data

Take mean
100 random samples
per reference point

Random split
1000 random samples

Take mean

Fig. 2: Relationships Among Datasets

The sampled and mean training sets are used to train
sampled models and mean models, respectively. Given that
taking the mean of RSSI measurements reduces random error
[3], but also shrinks sample size, it is interesting to see
how mean model performance compares to sampled model
performance.

V. TRADITIONAL METHODS

We adapt multilateration and fingerprinting to passive lo-
calization and analyze the resulting performance. Localiza-
tion performance is visualized by the cumulative distribution
function (CDF) of localization error, which is defined as the
Euclidean distance between the predicted and true coordinates
of a test observation. Generally speaking, the larger the area-
under-the-curve, the better the performance.

A. Multilateration

The sampled and mean RSSI path-loss models are generated
by linear regression for each sensor based on Equation (1).
Table I shows the error metrics when evaluated on the sampled
testing set. R2 describes the variance in the training data
explainable by the path-loss model, and mean absolute error
(MAE) describes the error of distance prediction. Within
each sensor, the sampled and mean models exhibit almost
identical performance. Across models for different sensors,
s4 exhibits the best performance, whereas s1 the worst. A
possible explanation is that a source of interference may be
present on the northwest corner of the experimental field,
which affects s1 the most, and s4 the least. A likely candidate
of such interference is the local airport, which is located about
650 m to the northwest of the experimental field.
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TABLE I: Metrics of Path-loss [12] Models on the Sampled Testing Set

Sensor Sampled Mean
R2 MAE R2 MAE

s1 0.61 4.62 0.61 4.63
s2 0.65 4.06 0.65 4.07
s3 0.61 4.03 0.61 4.03
s4 0.71 3.44 0.71 3.46

The sampled and mean multilateration models are produced
from the sampled and mean RSSI path-loss models, respec-
tively. Figure 3(A) summarizes their performance when eval-
uated on different testing sets. The x-axis denotes localization
error, and the y-axis denotes the probability that a model’s
error is less than or equal to the error value. The blue, orange,
and green curves represent the performance of three scenarios:
(1) the sampled model tested on the sampled testing set
(sampled-sampled), (2) the mean model tested on the sampled
testing set (mean-sampled), and (3) the mean model tested on
the mean testing set (mean-mean), respectively.

The sampled-sampled curve overlaps the mean-sampled
curve, illustrating similar performance between the two scenar-
ios. The mean-mean curve shows slightly better performance
than the other two, but this is likely an artifact due to
the similarity between the mean training and testing sets.
Recall that the mean training set derives from the cleaned
dataset, and the mean testing set from the sampled testing
set (Figure 2). Since the sampled testing set is a subset of the
cleaned dataset, there is information overlap between the mean
testing and training sets. This inflates the observed mean-mean
performance.

0 2 4 6 8 10 12 14
Localization Error (m)

0.00

0.25

0.50

0.75

1.00

CD
F

(A) Multilatertion

sampled-sampled
mean-sampled
mean-mean

0 2 4 6 8 10 12 14
Localization Error (m)

(B) Fingerprinting

mean-sampled
mean-mean

Fig. 3: CDF of Error with Traditional Methods [4, 13]

B. Fingerprinting

The radio map for fingerprinting is a 252×4 matrix prepared
from the mean training set. We determine k as follows:
A series of fingerprinting models, constructed via k-nearest
neighbors, with k ranging from 1 to 20, are examined on
the sampled validation set consisting of 1,000 observations
from the sampled testing set (Figure 2). We find that k = 2
results in the least validation error, defined as the root mean
squared localization error [13]. With k = 2, the performance
of fingerprinting is shown in Figure 3(B). The CDF layout
is the same as described earlier. The blue and orange curves
represent localization performance on the sampled and mean
testing sets, respectively. The sampled validation set is not
included in the sampled testing set during evaluation. Similar
to traditional multilateration, information overlap between the
mean testing and training sets likely yields inflated mean-mean
performance.

VI. MACHINE LEARNING METHODS

Machine learning-boosted multilateration and classification
methods are evaluated using three architectures—MLP, SVM,
and K-NN. Each is trained to produce a sampled and mean
model. Hyperparameter tuning for each model is conducted via
two rounds of cross-validation. For the sampled model, five-
fold cross-validation is used. For the mean model, multi-fold
cross-validation is not feasible due to lack of data redundancy
in the mean training set; hence, all tuning is conducted on the
sampled validation set. After tuning, the finalized hyperparam-
eters are used to re-train the model before evaluation.

A. Machine Learning-boosted Multilateration
In machine learning-boosted multilateration, we replace the

RSSI path-loss model with a machine learning-based RSSI-
distance regressor. Table II lists the R2 and MAE values
for the regressors when evaluated on the sampled testing
set. Within each architecture, the sampled and mean models
show similar regression performance. Across architectures,
there is also little difference separating the sampled and mean
models. Across the sensors, s4 has the lowest error, whereas
s1 has the highest. This mirrors the findings in the path-
loss model evaluation. Overall, the machine learning-based
RSSI-distance regressors outperform the path-loss model in
distance estimation; the regressors reduce MAE by half, while
maintaining similar R2 scores.

Each regressor is then used to build a machine learning-
boosted multilateration model, as described in Section V-A.
The localization performance is demonstrated in Figures 4(A),
(B), and (C). Within each architecture, all three CDF curves
illustrate similar performance. This is not surprising given
the similar RSSI-distance regression performance. The slightly
better performance from the mean-mean curve is likely an
artifact, as explained earlier.

We also compare the performance of the best CDF curves
across all three architectures, with the mean-mean curve
excluded. The results are shown in Figure 4(D). There is no
clear winner among the three curves.

0.00

0.25

0.50

0.75

1.00

CD
F

(A) MLP

mlp-sampled-sampled
mlp-mean-sampled
mlp-mean-mean

(B) SVM

svm-sampled-sampled
svm-mean-sampled
svm-mean-mean

0 2 4 6 8 10 12 14
Localization Error (m)

0.00

0.25

0.50

0.75

1.00

CD
F

(C) K-NN

knn-sampled-sampled
knn-mean-sampled
knn-mean-mean

0 2 4 6 8 10 12 14
Localization Error (m)

(D) Comparison

mlp-sampled-sampled
svm-sampled-sampled
knn-sampled-sampled

Fig. 4: CDF of Error with Machine Learning-boosted Multilateration

B. Machine Learning Classification
The localization process based on machine learning classifi-

cation mimics that of fingerprinting, except that the Euclidean
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TABLE II: Metrics of Machine Learning-based RSSI-Distance Regressors Evaluated on the Sampled Testing Set

MLP SVM K-NN
Sampled Mean Sampled Mean Sampled Mean

Sensor R2 MAE R2 MAE R2 MAE R2 MAE R2 MAE R2 MAE

s1 0.53 2.48 0.52 2.50 0.53 2.45 0.53 2.47 0.52 2.48 0.53 2.48
s2 0.64 2.05 0.64 2.05 0.63 2.05 0.63 2.06 0.63 2.12 0.64 2.07
s3 0.57 2.39 0.56 2.40 0.56 2.35 0.55 2.36 0.57 2.39 0.56 2.44
s4 0.68 1.92 0.67 1.93 0.67 1.89 0.66 1.92 0.67 1.89 0.67 1.92

distance-based matching penalty is replaced by penalties
learned directly from the data. Table III summarizes the true
and “adjacent” accuracy of each machine learning classifier
evaluated on the sampled testing set. True accuracy reflects
the proportion of test observations whose labels were correctly
predicted. Adjacent accuracy reflects the proportion of testing
observations whose predicted labels either matched the true
labels or one of the eight surrounding labels. Since adjacent
accuracy is above 80%, it means even when the prediction is
wrong, it is usually only slightly off target. Within each ar-
chitecture, the sampled model has slightly better classification
performance than the mean model. Across architectures, MLP
has the worst classification performance, whereas SVM and
K-NN perform similarly.

TABLE III: True and Adjacent Accuracy of Machine Learning Classifiers

MLP SVM K-NN
Accuracy Sampled Mean Sampled Mean Sampled Mean

True 0.63 0.55 0.70 0.68 0.69 0.68
Adjacent 0.81 0.78 0.84 0.83 0.84 0.80

Localization performance of all three architectures is sum-
marized in Figures 5(A), (B), and (C). Within each architec-
ture, the sampled-sampled curve reflects slightly better perfor-
mance than the mean-sampled curve, but they are both dwarfed
by the mean-mean curve. The exceptional performance rep-
resented by the mean-mean curve is most likely an artifact
as discussed previously. However, overall performance also
appears exaggerated. This is due to the nature of classification,
where a correct match automatically yields 0 m error, inflating
the CDF curve.

The best CDF curves across all three architectures are also
compared, with the mean-mean curves excluded. The result
is shown in Figure 5(D), where SVM performs slightly better
than the others.

VII. BATTLE ROYAL

To compare localization performance across all methods,
the best CDF curve for each method, excluding the mean-
mean curves, are placed in the same plot (Figure 6). The blue,
orange, green, and red curves correspond to multilateration
(sampled-sampled), fingerprinting (mean-sampled), machine
learning-boosted multilateration (mlp-sampled-sampled), and
classification (svm-sampled-sampled), respectively. A few ob-
servations can be made.

First, the machine learning models outperform their tradi-
tional counterparts. This is not surprising, as machine learning
methods are free to interpret data that might be ignored or not

0.00

0.25

0.50

0.75

1.00

CD
F

(A) MLP

mlp-sampled-sampled
mlp-mean-sampled
mlp-mean-mean

(B) SVM

svm-sampled-sampled
svm-mean-sampled
svm-mean-mean

0 2 4 6 8 10 12 14
Localization Error (m)

0.00

0.25

0.50

0.75

1.00

CD
F

(C) K-NN

knn-sampled-sampled
knn-mean-sampled
knn-mean-mean

0 2 4 6 8 10 12 14
Localization Error (m)

(D) Comparison

mlp-sampled-sampled
svm-sampled-sampled
knn-sampled-sampled

Fig. 5: CDF of Error with Machine Learning Classification

properly modeled in the traditional methods. Second, the best
non-multilateration method outperforms the best multilatera-
tion method by a large margin. This is most likely due to
multilateration requiring two rounds of estimation, compared
to one round in other methods. Third, except for fingerprinting,
all Battle Royal CDF curves are sampled-sampled, which
means the sampled models either outperform, or perform as
well as the mean models. This answers the question raised in
Section IV-D: The benefit of reduced random error in the mean
training set does not outweigh the cost of reduced sample size.
Finally, the best performing method (i.e., machine learning
classifier) exhibits above 90% probability of achieving an error
below 3 m. This resolution is sufficient to tell that a device
has moved from one business to another on a city street.

0 2 4 6 8 10 12 14 16
Localization Error (m)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

traditional-multilateration
traditional-fingerprinting
ml-multilateration
ml-classification

Fig. 6: Comparison of Localization Error Among All Methods

VIII. CONCLUSION

In this paper, we have systematically evaluated the perfor-
mance of two traditional active localization methods adapted
for use in passive localization, along with their machine
learning-boosted counterparts. The results show that the ma-
chine learning methods perform better than the adapted tra-
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ditional methods. In particular, the SVM sampled classifier
appears to have sufficient resolution for mobility monitoring
in typical urban environments. However, several limitations
need to be addressed in future research.

First, all models are trained and tested on the data collected
in the same session. To demonstrate that a model possesses
temporal robustness, it must be evaluated on data collected
across different sessions and retain performance.

In addition, data in this paper was collected in an
obstruction-free environment and only those with no missing
data were included in the analysis. This is not representative
of city streets, as signal noise and RSSI measurement loss are
inevitable. Thus, future research will investigate how model
performance deteriorates when data collection is not ideal.

Finally, all models trained are based on inputs from exactly
four sensors. This presents a scalability issue, where change
in sensor count would require re-training of the model. Given
that scaling sensors up or down is common in practice, future
research will focus on generating a scalable model, whose
performance is resilient to small changes in sensor availability.
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