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Abstract—The proliferation of 360° video content and easy
availability of head-mounted devices propelled the popularity
of 360° video streaming on various platforms, including smart-
phones. However, the high bandwidth requirement of 360° video
streaming impedes its further growth, specifically in bandwidth
constraint cellular networks. Some viewport adaptive 360° video
streaming methods have been proposed recently to reduce the
bandwidth requirement by spatially reducing the transmitted
data. However, these methods require accurate prediction of the
future viewport, and a prediction error can significantly impair
the user’s Quality of Experience (QoE). In this work, we took a
different approach and propose a content-aware solution for tiled
360° video streaming that does not require viewport predictions.
In this work, we exploit the fact that the background scene does
not contain prominent details and can be transmitted at a lower
bit rate without affecting the user’s QoE. The proposed approach
uses the saliency map to identify prevalent tiles of the 360° video
through machine learning-based classification using the Kernel
Density Estimation (KDE). First, the tiles are classified based
on their saliency information, and then bitrates are assigned to
the tile clusters. The results show that the proposed approach
reduces the bandwidth requirement by 50% while delivering the
equivalent user’s QoE.

Index Terms—360° video streaming, Saliency Map, Bitrate
Allocation

I. INTRODUCTION

While 360° videos were introduced as early as 1900 [1] by
Disney, it gained vast popularity recently with the introduction
on major streaming platforms such as Facebook and YouTube.
The 360° video provides an immersive experience, which
can not be achieved through planar video. In 360° video, a
spherical view is presented to create an immersive experience,
where a viewer can rotate his/her head, with 3-degree of
freedom (yaw, pitch, and roll), to view the scene in any
direction. The size of 360° videos are larger than the regular
videos, which requires higher bandwidth for transmission.
This is the biggest challenge for 360° video streaming, and
it is imperative to address this issue to enable high-quality
360° video streaming over bandwidth-constrained wireless
networks, specifically cellular networks.

In 360° video streaming, a user views only a small part,
called Field-of-View (FoV), of the whole spherical 360° view
in a video frame. The tile-based streaming [2], [3], [4] exploits
this characteristic to reduce the bandwidth requirement of 360°
video streaming by either omitting the Out-of-Sight (OOS)
tiles or transmitting them in lower quality. To accomplish

it, the 360° video segments are spatially divided into tiles,
which can be encoded and transmitted independently. In the
tile-based 360° video streaming, the bandwidth requirement
is reduced by transmitting only the tiles which overlap with
the user’s FoV [5], [3]. However, the client needs to buffer
some future video segments for smooth playback. Therefore,
viewport adaptive tiled 360° video streaming requires the
prediction of the user’s future viewports. Existing solutions
employ various ways to deal with the OOS tiles in a video
segment. While some methods only fetch the FoV [5] tiles,
others transmit OOS tiles in the lowest quality [3] or gradually
decrease the quality of OOS tiles subject to their Euclidean
distance from the FoV.

Although existing methods significantly reduce the band-
width requirement of 360° video, unsolicited prediction errors
would adversely impact the user’s Quality of Experience
(QoE). When there is a viewport prediction error, a viewer
observes the blank tiles in the FoV or experiences a re-
buffering, which is notably detrimental to the user’s QoE.
To overcome this challenge, we propose a different approach
that uses the content features which does not require FoV
prediction to reduce the bandwidth requirement. The proposed
solution exploits the fact that the viewers do not pay much
attention to the non-salient region in the video frames, and
streaming quality of these parts does not significantly affect the
video quality [6]. The proposed content-aware bitrate selection
solution assigns the bitrate to individual tiles on the basis
of saliency information and reduces the bandwidth require-
ment without affecting the user’s QoE. The tiles containing
numerous salient points are assigned a higher bitrate, while
the tiles with lesser salient points are streamed in the lower bit
rate to attain a better user’s QoE. First, using Kernel Density
Estimation (KDE), the tiles are segregated into priority classes
based on the number of salient points, then the bitrates are as-
signed to these classes. In contrast to the existing works, which
primarily use the relative position of OOS tiles for bitrate
assignment, the proposed approach uses the content features
to assign tile bitrate irrespective of location. The results show
that the proposed method significantly reduces the bandwidth
requirement of 360° video streaming without exposing it to
frequent re-buffering due to tile miss on prediction error.

The rest of the paper is structured as follows. The existing
works which are related to the present study are reviewed in
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Fig. 1: 360° Video frames and their corresponding saliency
maps, indicating a correlation between the details in the frame
and the salient points.

Section II. The details of the proposed solution are discussed
in Section III, explaining the proposed bitrate allocation of
tiles. The implementation details and results are presented in
Section IV. Finally, the work is concluded in Section V.

II. RELATED WORK

Le Feuvre [7] proposed an approach for adaptive streaming
of 360° videos using tiling, which uses the Spatial Represen-
tation Description (SRD) feature of DASH [8]. SRD enables
the spatial division of video segments into numerous tiles,
enabling the quality selection of a specific part of the frame
independently through tiling. Various viewport prediction-
based approaches [5], [3], [2] take advantage of the fact
that when the users watch 360° videos, they only see the
small area of the frame at a time, also called the viewport.
Flare [3] only fetches the part of the frame which is inside
the viewport. Rubiks [5] proposes an approach that can be
implemented on the smartphone as traditional methods are
computationally heavy for the smartphones. Parima [2] uses
past viewports of users along with the trajectories of prime
objects to predict future viewports. Viewport-based techniques
stream viewport in the highest quality even if only a small
part of viewport contains the region of interest. The proposed
approach tries to save bandwidth by identifying a region of
interest even in the viewport to save bandwidth. Multi-access
Edge Computing (MEC) plays a crucial role in offloading
the heavy computational load of the client system on the
nearest edge server. Lo [9] proposes an edge-assisted 360°
video streaming system, which leverages edge servers to
render viewports of 360° videos for viewers. The edge server
identifies the region of interest and assigns priorities to the
video chunks for transmission based on current bandwidth
availability.

Content-aware adaptive streaming has been explored pre-
viously in the context of planar video compression. These
methods identify Region of Interest (ROI) using saliency
map and adjust Quantization Parameter (QP) of video chunks
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Fig. 2: System diagram of the proposed solution being de-
ployed at MEC server on the base station.

during encoding. Hadizadeh et al. [10] presents a saliency-
aware video compression method that enhances the saliency
of the ROI region after compression and decreases the saliency
of the OOS region. Zhu et al. [11] propose a rate-distortion
calculation method to choose the pattern and guide the allo-
cation of bits during the video compression process. Sun et
al. [12] presents a content-aware rate control scheme for High
Efficiency Video Coding (HEVC) based on static and dynamic
saliency detection. It allocates specific QP to some parts of
the frame using saliency importance as a variable. These
ROI-based techniques try to compress the video by analyzing
video content to distribute bitrate for video compression.
Unlike these works, which deal with video compression, we
propose a solution to reduce the bandwidth requirement of
tiled 360° video streaming by utilizing the saliency map for
tiles prioritization through clustering and bitrate allocation.

III. PROPOSED APPROACH

As discussed earlier, 360° video streaming requires high
bandwidth, which is difficult to attain in wireless networks. In
this work, we propose a solution that reduces the bandwidth
requirement while delivering high-quality tiled 360° videos.
Viewport adaptive streaming techniques reduce the bandwidth
requirement by omitting the OOS tiles while streaming or by
allocating them a lower bitrate, but it demands an accurate
viewport prediction. 360° video streaming requires very low
latency for an adequate user experience, and if a user abruptly
rotates her/his head, it may lead to blank tiles in the user’s
FoV, which adversely affects the user experience. Furthermore,
viewport adaptive streaming techniques require real-time data
feed from the user device for viewport prediction, restricting
its application. This work proposes a server-side solution that
does not require the user’s past viewport data and only depends
on the saliency map of the video.

The proposed solution is considered to be deployed on
Mobile Edge Computing (MEC) architecture, which provides
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the computation and storage resources at the network edge,
to minimize the network latency. Fig. 2 displays the system
architecture of the proposed solution where the MEC server
is responsible for fetching videos, threshold selection using
KDE, bitrate allocation, and video recreation at the base
station. The proposed solution takes the video saliency map
as input and identifies the influence of each tile on user-
perceived quality using the salient points. Employing a fixed-
size tiling, the video frame is spatially divided into multiple
tiles, which can be streamed independently by the server. We
utilize the Spatial Relationship Description (SRD) feature of
MPEG-DASH [13] to enable the tiled 360° video streaming,
which spatially divides the video segments into the tiles. The
working of the proposed solution is described in Algorithm 1.

Algorithm 1: Saliency Based Bitrate Allocation
Input: Height, Width, saliencyMap,
T ile Size (M ×N), F rame− rate (F ),
Duration (T ), Quality levels (Q)

1 to grayscale (saliencyMapi),∀i ∈ T ;
2 mean←

1
NMT

∑T
i=0

∑Height
j=0

∑Width
k=0 saliencyMapi,j,k;

3 for i ∈ [1, T ], j ∈ [1,M ], k ∈ [1, N ] do /* pixel
value normalization */

4 if saliencyMapi,j,k >= mean;
5 then
6 saliencyMapi,j,k ← 1;
7 else
8 saliencyMapi,j,k ← 0;
9 end

10 end
11 for each frame in saliencyMap do /* caclulating

the frequency of salient points */
12 Divide frame into N ×M tiles ;
13 for i ∈ [1, T ], j ∈ [1,M ], k ∈ [1, N ] do
14 saliencyMatrixi,j,k =

count(saliencyMapi,j,k);
15 end
16 end
17 i← 1 ;
18 while i <= T do /* compressing the

lookup for each segment */
19 finalSaliencyMatrixi,j,k = maxj∈[i,i+F ]

saliencyMatrixi,p,q;
20 i← i+ F + 1;
21 end
22 clusters←

KDE.fit(flatten(finalSaliencyMatrix))
/* training KDE */;

23 for i ∈ [1, Q− 1] do /* bitrate allocation

*/
24 thresholdi ← minima(clusteri+1);
25 end
26 Allocate bitrate using derived thresholds;

A. Threshold Selection for Bitrate Mapping

The saliency map of the video signals the salient points
across the frame which represents the significant features in
the scene. The pixel value in the saliency map ranges from
0 to 255 and indicates its importance. The density of such
salient points determines the region’s importance in the video
frame. The wide range of pixel values generate mixed signals
in classification; therefore, pre-processing is required before
computing the salient point density in different tiles. In Line−
3 to 6 of Algorithm 1, the saliency map is converted to a
binary image using thresholding with a mean pixel value. The
number of saliency points is counted for each tile in a video
from the pre-processed binary saliency map. In Algorithm 1,
Line−13 to 15 describes the counting process of salient points
from the segmented video tiles. A 3-D array saliencyMatrix
of size [M,N, T×F ] is created, where M×N denotes the total
number of tiles, T denotes the duration of the video, and F
denotes the video’s frame rate. To allocate the bitrates to all the
tiles in each 1 Sec. video segment, saliencyMatrix is further
compressed into a 3-D array of size [M,N, T ]. The range
of the final saliency counts is very wide and depends on the
video resolution. Moreover, saliency counts are neither equally
distributed nor unique. Therefore, we use KDE to prioritize the
tiles for bitrate allocation by classifying them into different
clusters based on salient points.

After counting all the salient points, a one-dimensional
data array is created consisting of the saliency counts for all
the tiles. Saliency count data contains values ranging from
0 to 150, 000, which also depends on the video resolution.
Bitrate allocation requires some definite rules, but the cal-
culated saliency count matrix does not provide any pattern
or apparent distribution because of independent values. The
proposed solution uses 1-D clustering to classify the data and
enabling the bitrate allocation decisions. 1-D KDE is employed
in the proposed solution for clustering a list of saliency
counts. KDE uses bandwidth as a smoothing parameter, which
eventually decides the number of clusters for the given data.
Bandwidth is identified empirically to get the required number
of clusters from the data in the proposed approach. All the
clusters generated by KDE have minima and maxima values in
which minima is used as a threshold to classify saliency counts
for bitrate allocation as described in Line−24 of Algorithm 1.

B. Bitrate Selection

After a lookup for the video bitrate allocation is created that
helps in determining the quality of every tile during streaming.
The proposed method does not differentiate between the FoV
region and the OOS region in bitrate allocation because
all the tiles in FoV do not necessarily contain the salient
regions. Since, only a few tiles, with some object, building, or
vehicle, in the FoV may contain the salient regions. Existing
works stream the entire FoV in the highest possible quality
without considering the content in individual tiles, resulting
in bandwidth wastage. The proposed solution considers the
video content and accordingly makes the bitrate selection for
each tile, including the FoV tiles. For example, if there are
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Fig. 3: Bandwidth reduction for different videos in the dataset [4] and effect of change in tile size.

four tiles in the FoV and only one tile contains the salient
points then the proposed approach allocates a higher bitrate to
this tile while the rest of the tiles are allocated lower bitrates.
Moreover, the tiles with salient points outside FoV are also
assigned a higher bit rate, ensuring a better QoE on a sudden
change in the user’s viewport.

IV. RESULTS AND DISCUSSION

This section discusses the dataset used for evaluating the
proposed method, tools used, and the system configuration of
the testbed.

1) Dataset: To evaluate the proposed solution, a 360° video
viewing dataset [4] is used. This dataset contains ten different
360° videos from YouTube under three categories; (i) CG,
fast-paced,(ii) Natural Image, fast-paced (iii) Natural Image,
slow-paced. Initial 60 Sec. of the video is extracted from the
original video to use for the playbacks, and each video is in
30 fps amounting to 1800 frames in each playback trace.
Salient regions are identified per frame using a Convolutional
Neural Network (CNN) and then stitched back to make a
60 Sec. saliency video.

2) Tools: For HEVC encoding and tiling, Kvazzar [14]
encoder is used, whereas FFMPEG [15], which provides
various options for trimming and calculating the PSNR of the
videos, is used for pre-processing the videos and adjusting
attributes. The MP4Box tool from GPAC [16], which provides
various tools to manage the tiled 360° videos, is used for
dashing the encoded videos, tilling, and stitching back the
video segments. It also provides mp4client, which can play
multi-track 360° videos without aggregating all video tracks. If
required, a multi-track video can be converted to a single-track

video using MP4Box. A system with Intel®Xeon®Processor
E5-2630 v4 processor and 64 GB RAM is used for the priority
and bitrate allocation process.

TABLE I: Reduction in video size (MB) using the proposed
solutions for different tile sizes.

V ideo\T iles Size 3x3 5x5 8x8 10x10 Original

Driving 11 MB 6 MB 6.5 MB 7 MB 17 MB
Kangaroo Island 7.4 MB 7.7 MB 6.6 MB 7 MB 15 MB
Pacman 4.3 MB 4.5 MB 5.4 MB 6.5 MB 10 MB
Hog Rider 15 MB 11 MB 8.1 MB 8.5 MB 24 MB
Roller Coaster 7.7 MB 4 MB 4.9 MB 6.1 MB 16 MB
SFR 4.6 MB 5.3 MB 6.5 MB 6.6 MB 11 MB
Shark Dive 7.3 MB 4.1 MB 4.5 MB 4.9 MB 13 MB

A. Prepossessing

Encoding: Videos are encoded using HEVC with motion
constraints enabled. Every encoded video is first temporally
divided into one-second segments, and then every segment is
spatially divided in M ×N tiles. For each T second video, Q
bitrate versions for every tile of T segments are available.

Processing the Saliency Information: As shown in Fig. 1,
saliency information of the videos is provided as an MP4 video
file with highlighted salient regions. This MP4 file is a single
channel video whose pixel values lie in [0, 255]. The mean
of the smallest pixel and the highest pixel values are used
to convert the pixel values to binary using thresholding as
described in Algorithm 1. The videos and saliency maps are
spatially divided into M × N tiles. After counting saliency
points in all M ×N tiles, a 3-D array of size [M,N,F × T ]
is created, where F is the frame rate of the video.
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Fig. 4: Objective Quality Assessment (QA) using PSNR of the 360° videos in the dataset [4].

Since the videos are in 30 FPS, each one-second segment
contains 30 frames, and the saliency map of the frames
may differ. Because bitrate is allocated at the segment level,
saliency information of frames within a segment must be
considered jointly. The principle of max-pooling is applied
to combine the saliency counts, where the maximum saliency
count of a tile across F frames is taken. Even if there is only
one frame for a particular tile in one segment that displays an
important object, a high bit rate is allocated to that specific
tile. Processing the saliency maps results in a 3-D array of size
[M,N, T ], considering one-second segments, which contain
the saliency count of every tile in each segment. The streaming
server uses the computed final saliency count matrix as a look-
up table while allocating bitrate to the respective video tiles.

B. Compared Methods

1) FoV: FoV-only [17] is a viewport-based approach that
only fetches the FoV tiles. FoV-only [17] conducts the

user trial to capture their head movements for different
genres of the video and applies linear regression on past
viewports to predict the viewport for short periods (e.g.,
0.5 Sec., 1 Sec., and2 Sec.).

2) FoV+: FoV+ [18] is another viewport-based approach.
At time t, it predicts the viewport for time t+T using collected
movement traces of the user, where T denotes the prediction
window. Based on the predicted FoV, it fetches the OOS tiles
in the lowest quality to deal with the prediction error.

C. Evaluation Parameters

1) Bandwidth Requirement Reduction: While streaming
any media over the wireless network, it is crucial to minimize
bandwidth usage while providing the best user experiencing
with minimum re-buffering. This parameter helps in analyzing
the bandwidth requirement reduction capability of the pro-
posed solution. The reduction in the size of the streamed video
content is observed to assess the bandwidth usage.
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2) Peak to Signal Noise Ratio (PSNR): PSNR is an ob-
jective video quality metric that uses Mean Square Error
(MSE) to calculate the noise between two versions of the
same video. PSNR is observed to assert that reduction in the
bandwidth requirement is not degrading the observed video
quality. During the evaluation, PSNR is calculated for all video
frames.

D. Results and Analysis

1) Bandwidth Reduction: The proposed approach mini-
mizes the bandwidth usage while maintaining the quality of
the video. Data in Table I shows that the proposed solution
reduces the bandwidth requirement by 55.06% compared to
the source file. The results in Fig. 3 illustrate that the proposed
approach provides at least 20% extra size reduction than FoV+
for all the videos in the dataset. Since FoV+ allocates higher
bitrates to the FoV region, and the proposed method allocates
a lower bitrate to less salient tiles in the whole frame to
saves bandwidth. In some cases, FoV streaming-based method
outperform the proposed solution where most of the tiles
contain a significant amount of salient points and are assigned
a higher bitrate.

2) Effect on the Video PSNR: To analyze the video quality,
the PSNR value of the streamed video by the proposed
solution is compared with the PSNR values of FoV and
FoV+ approaches. The proposed solution achieves on average
PSNR of 28.5 dB for the complete video. Fig. 4 shows that
the achieved PSNR values vary for different videos. In the
proposed solution, if only a few tiles of the video segment
have the salient point, then assigning the lower bitrate to
non-salient tiles results in a lower PSNR value. In contrast,
the video segments with uniformly distributed salient points
attain a higher PSNR value. The proposed solution consistently
outperforms the FoV approach, as FoV doesn’t stream the
OOS part of the frame. The FoV+ method provides similar
PSNR results as compared to the proposed solution because
of the transmission of OOS tiles. Although FoV+ provides
similar PSNR values, the proposed solution attain significantly
reduction in bandwidth.

V. CONCLUSION

This work introduces a content-aware adaptive bitrate selec-
tion solution for 360° video streaming, which doesn’t consider
the user’s viewing pattern. The proposed solution determines
the important video tiles using the saliency map which helps to
overcome the dependency on the client feedback for the user’s
viewport. Though the viewport adaptive 360° video streaming
solutions successfully reduce the bandwidth requirement, they
endure QoE degradation where there is prediction error. The
proposed solution overcomes this issue by utilizing the content
features for bitrate selection through KDE-based tiles cluster-
ing. The results from our extensive experiments show that the
proposed solution achieves up to 50% bandwidth reduction as
compared to the legacy 360° video streaming. The proposed
solution saves 15% more bandwidth while maintaining an
average 28.5 dB PSNR as compared to the existing solutions.
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