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Abstract—This paper investigates the problem of distributed
resource management (i.e., joint device association, spectrum
allocation, and power allocation) in two-tier heterogeneous net-
works without any central controller. Considering the fact that
the network is highly complex with large state and action spaces,
a multi-agent dueling deep-Q network-based algorithm combined
with distributed coordinated learning is proposed to effectively
learn the optimized intelligent resource management policy,
where the algorithm adopts dueling deep network to learn the
action-value distribution by estimating both the state-value and
action advantage functions. Under the distributed coordinated
learning manner and dueling architecture, the learning algorithm
can rapidly converge to the optimized policy. Simulation results
demonstrate that the proposed distributed coordinated learn-
ing algorithm outperforms other existing learning algorithms
in terms of learning efficiency, network data rate, and QoS
satisfaction probability.

Index Terms—Heterogeneous wireless networks, distributed
resource management, dueling deep reinforcement learning.

I. INTRODUCTION

DENSE deployment of small base stations (BSs) in multi-
tier heterogeneous networks has been considered as one

of important effective solutions to meet the ever-increasing
wireless communication demands in fifth-generation (5G) and
beyond networks [1]-[2]. The heterogeneous networks can
deploy a number of small-coverage micro or pico cells within
a macrocell for enhancing spectrum utilization efficiency and
network coverage [1], [2]. Specifically, micro BSs and pico
BSs reuse and share the same spectrum with macro BSs to
improve the spectrum efficiency. Thus, heterogeneous net-
works not only enhance the network capacity, but also satisfy
the growing communication demands of users in the future
wireless networks [1]-[3].

Although the wireless network performance can be im-
proved, the deployment of heterogeneous networks also brings
new challenges, such as mobile device association, inter-
cell interference (ICI) management, spectrum allocation, and
power allocation [2]. In this context, network resource opti-
mization becomes a critical issue, and there is need for ad-
vanced solutions to overcome it. Two joint device association
and resource allocation algorithms were proposed to maxi-
mize the network capacity [4], [5], where the mixed-integer

nonlinear optimization problem was addressed by decoupling
it into two sub-problems. Considering that mobile devices
have different quality-of-service (QoS) requirements, i.e., de-
lay constraint and minimum rate requirement, QoS-aware
device association and resource management approaches were
proposed for heterogeneous wireless networks [6]-[8].

Since the complete information and environment’s evolution
are generally unknown in mobile environments, model-free
reinforcement learning (RL) or deep RL (DRL) [9] has been
adopted to address optimization problems in heterogeneous
networks. Chen et al. [10] designed a centralized Q-learning
algorithm for heterogeneous cellular networks, where a central
controller gradually improves the global traffic offloading
policy for small cells based on collected information. To max-
imize the overall designed quality of experience (QoE) metric
or mean opinion score (MOS) in heterogeneous networks,
centralized RL approaches for the optimization of traffic-
aware resource allocation strategy were developed [11], [12],
however, centralized approaches have the expensive cost of
global information sharing and privacy information maybe
leaked during this process.

In [13], [14], distributed resource optimization solutions
based on multi-agent RL (MARL) were developed to jointly
optimize the device association and resource allocation policy
in dense heterogeneous networks, through enabling multiple
agents to interact with unknown wireless environment. Gu
et al. [15] and Alnwaimi et al. [16] proposed distributed
strategies based on RL to enable each BS to operate individu-
ally configuration/optimization, which significantly reduce the
expensive cost of knowing global information. Furthermore,
in [17] and [18], the authors investigated energy-efficient
resource management for interference channels in two-layer
heterogeneous networks, and distributed RL aided power al-
location algorithms were developed to improve the network
energy efficiency while guaranteeing devices’ QoS require-
ments. Asheralieva et al. [19] proposed a novel Bayesian RL
framework to address distributed resource sharing problem in
heterogeneous cellular networks.

In this paper, we investigate a joint device association, spec-
trum allocation, and power allocation optimization problem in
two-tier heterogeneous wireless networks. As the network is
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Fig. 1. A two-tier heterogeneous wireless network.

complex and dynamic with large state and action spaces, by
using the tools of DRL along with the distributed coordinated
learning mechanism, a distributed coordinated multi-agent
dueling deep Q-network (DC-MA-DDQN) is proposed to learn
the optimized intelligent resource management policy with fast
convergence speed. Moreover, we evaluate and compare its
superior performance to other existing learning algorithms in
terms of network capacity and QoS satisfaction probability.

The rest of this paper is organized as follows. The two-tier
heterogeneous network model and problem formulation are
provided in Section II. The intelligent resource management
based on DC-MA-DDQN algorithm is proposed in Section III.
Section IV presents simulation results and analysis. Finally, we
conclude this paper in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, the considered two-tier heterogeneous
network is composed of macrocell tier and picocell tier,
and each tier is classified based on its coverage range. The
macrocell tier is associated with a macro BS (MBS) and it can
support a large coverage area as shown in Fig. 1. The picocell
tier is associated with multiple pico BSs (PBSs) with smaller
coverage areas. As illustrated in Fig. 1, in general, as PBSs are
non-uniformly distributed within the macrocell coverage area,
a part number of picocells have overlapped area with each
other while other picocells may have no overlapped area. In
this context, the mobile devices located on the overlapped area
suffer ICI from other nearby picocells on the same spectrum.

We consider a downlink transmission scenario with one
MBS and C PBSs. There are K mobile devices randomly
located in the network. The set of devices and PBSs are re-
spectively denoted by K = {1, 2, ...,K} and C = {1, 2, ..., C}.
Both the MBS and PBSs provide wireless services for mobile
devices by using orthogonal frequency division multiple access
(OFDMA) technique, where the bandwidth is equally divided
into N subchannels with a set of N = {1, 2, ..., N}. Here, the
unity frequency reuse (UFR) mechanism is used in two-tier
heterogeneous networks to improve the spectrum utilization
efficiency, where the communication band is reused across all
cells. Here, let gpc,k denote the channel gain between the c-th
PBS and the k-th device, and gmk denote the channel gain from
the MBS to the k-th device.

In the picocell tier, if the k-th device is associated with the
c-th PBS on the n-th subchannel (n ∈ N ), its received signal-
to-interference-plus-noise ratio (SINR) can be expressed as

γpc,k,n =
P p
c,ng

p
c,k∑

c′∈C P
p
c′,k,ng

p
c′,k + Pm

n g
m
k + δ2k

, (1)

where P p
c,n denotes the transmit power allocated on the n-

th subchannel at the c-th PBS, and δ2k denotes the back-
ground noise power. In (1), if the device is located on
the overlapped area, it also suffers the inter-tier interference
(Pm
n g

m
k ) from the macrocell tier in addition to the received

ICI (
∑
c′∈C P

p
c′,k,ng

p
c′,k) from the adjacent cells in the same

tier when it operates in the same band as the macrocell tier.
In addition, if the k-th device is associated with the MBS

on subchannel n, its received SINR can be written as

γmk,n =
Pm
n g

m
k∑

c∈C P
p
c,k,ng

p
c,k + δ2k

, (2)

where Pm
n denotes the transmit power allocated on the n-th

subchannel at the MBS. In (2), for the k-th device, it may
suffer the inter-tier interference (

∑
c∈C P

p
c,k,ng

p
c,k) from the

picocell tier when it locates in the overlapped area and operates
in the same band.

Accordingly, the instantaneous achievable rate in Mbps of
the k-th device on the n-th subchannel at the picocell tier or
the macrocell tier can be respectively expressed as

Rp
c,k,n = Bsublog2

(
1 + γpc,k,n

)
, (3)

Rm
k,n = Bsublog2

(
1 + γmk,n

)
, (4)

where Bsub is the subchannel bandwidth, and Bsub = B/N
with B being the available system bandwidth. Here, equal
bandwidth is assumed among subcannels for simplicity.

B. Problem Formulation

The achievable rate of device k over its allocated subchan-
nels with its associated BS is expressed as

Rk =
∑
c∈C

xk
∑
n∈N

ρk,nR
p
c,k,n + (1− xk)

∑
n∈N

ρk,nR
m
k,n, (5)

where xk is the BS association indicator that it associates with
an PBS or an MBS, and it has a binary value of “1” or “0”.
ρk,n is also a binary variable, i.e., ρk,n ∈ {0, 1}, ρk,n = 1
indicates that the k-th device is allocated on subchannel n,
otherwise, ρk,n = 0.

In our considered two-tier heterogeneous network, mobile
devices have QoS requirements. Let Rmin

k denotes the min-
imum rate threshold, and the QoS requirement of the k-th
device can be given by

Rk ≥ Rmin
k ,∀k ∈ K. (6)

It is inefficient to apply traditional optimization algorithms
to search for the optimal policy. Model-free RL is a dynamic
programming which can be used to address the problem by
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formulating the optimization problem as an MARL [9], where
each BS acts as a learning agent.

We adopt MARL to model the optimization problem, which
enables each BS to dynamically perform action selection to
maximize the long-term benefit. Generally, in MARL, from
the view point of the two-tier heterogeneous network, the
network acts as an environment which is comprised of multiple
picocells and the macrocell. In addition, the MARL can be
defined by 〈J ,S,A,P, r〉 with the help of Markov decision
process (MDP) concept, where J is the set of participating
agents, S denotes a set of network states, A represents a
set of available actions, P is the state transition probability,
and r denotes the reward function of the network. All these
mentioned elements are described in detail as follows:

Agent: Multiple agents (i.e., one MBS and C PBSs) par-
ticipate the learning process in the two-tier heterogeneous
network.

State space: We define the state st ∈ S as one net-
work state and define sk,t as the state of the k-th device.
The state sk,t of each device consists of four parts: the
previous received SINR values on its allocated subchannels
γk(t − 1) = {γk,n(t− 1)}n∈N , the previous BS selection
indicators xk = {xk,j(t − 1)}j∈J , the previous subchannel
allocation indicators ρk(t − 1) = {ρk,n(t− 1)}n∈N , and the

current channel information gk(t) =
{
gpk,c(t), or, g

m
k (t)

}
c∈C

.
Hence, the state sk,t of each device and the overall network
state st at the t-th time slot can be respectively described as

sk,t = {γk(t− 1), xk(t− 1), ρk(t− 1), gk(t)} ,
st =

{
{sk,t}k∈K

}
.

(7)

As we consider the MARL framework in the network, each
agent j (i.e., BS) only observes its network state from the
environment, which is expressed as sj,t = {{sk,t}k∈Kj

},
where Kj denotes all the associated devices in the j-th agent’s
cell.

Action space: At the t-th slot, the learning agent j chooses
an action aj,t ∈ Aj based on its observed state sj,t, and it
contains the BS association indicator xj,t = {xk(t)}k∈Kj

,
the subchannel allocation ρj,t = {ρk,n(t)}n∈N , k∈Kj

, and the
power allocation Pj,t =

{
P p
c,n(t), or, P

m
n (t)

}
c∈C,n∈N , that is

aj,t = {xj,t, ρj,t, Pj,t} . (8)

Transition probability: P(s′|s, a) shows the state transi-
tion probability from the current state s to a next state s′ by
implementing an action a.

Reward function: In our framework, the reward function
includes two parts, namely, the network data rate of all
associated devices, and the QoS requirements (i.e., minimum
data rate requirements) of these devices. Before building the
reward function, let us define poutagek as the violated QoS
constraint, which is mathematically expressed as

poutagek =

{
1, if Rk < Rmin

k ,
0, otherwise.

(9)

In (9), poutagek = 1 if the QoS constraint of the k-th

device is violated; otherwise, poutagek = 0. According the
above analysis, considering the QoS requirements, the QoS-
aware reward function of the j-th agent (i.e., BS) with all the
associated device set Kj is defined as

rt =
∑
k∈Kj

Rk − λ
∑
k∈Kj

poutagek (10)

where λ is a positive weight of the reward function, and it is
utilized to balance the revenue (

∑
k∈Kj

Rk) and the penalty
(
∑
k∈Kj

poutagek ). In (10), the penalties increase if the QoS
requirements of devices are violated frequently.

In order to achieve good performance in the long term,
both the immediate reward and the long-term rewards are
considered in RL. The goal of each agent is to find an
optimal policy π∗ (π is a function mapping from sates in
to probabilities of choosing each available action in A) to
maximize the expected cumulative discounted reward, i.e.,

Ut =
∞∑
i=0

ξirt+i+1, (11)

where ξ ∈ (0, 1) denotes the discount factor.

III. INTELLIGENT RESOURCE MANAGEMENT BASED ON
MARL

In this section, the coordinated multi-agent DDQN frame-
work for device association, spectrum and power allocation in
two-tier heterogeneous networks is proposed.

In RL, the expected reward is generally defined as the state-
action value function Qπ(s, a) and it is given as

Qπ(s, a) = Eπ

[ ∞∑
i=0

ξirt+i+1|st = s, at = a

]
. (12)

The function Qπ(s, a) satisfies the Bellman equation [13]

Qπ(s, a) = Eπ

[
r(s, a) + ξ

∑
s′∈S

P(s′|s, a)
∑
a′∈A

π(s′, a′)Qπ(s′, a′)

]
.

(13)

Q-learning is widely used to learn the optimal policy π∗, in
order to achieve the optimal Q-function which is given by

Q∗(s, a) = r(s, a) + ξ
∑
s′∈S

P (s′|s, a)max
a′∈A

Q∗(s, a). (14)

Note that Q-learning can effectively search for the optimal
policy when the state space and action spaces are small.
However, it is practically inapplicable in our presented multi-
tier heterogeneous network where the state and action spaces
are large, leading to the slow convergence if we employ the Q-
learning algorithm. In the sequel, leveraging the DRL, we can
exploit a deep Q-network (DQN) Q(s, a;θ) to estimate the
Q-function, e.g., Q(s, a) ≈ Q(s, a;θ), where θ denotes the
deep neural network (DNN) parameter. In order to stabilize the
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overall learning performance, the DQN updates its parameter
θ by minimizing the following loss function defined as

L(θ) = E
[(
yDQN −Q(s, a;θ)

)2]
, (15)

where yDQN = r + ξmax
a′∈A

Q̂(s′, a′;θ−), and θ− represents

the DNN parameter of the target Q network Q̂(s, a;θ−).
In DDQN, instead of directly evaluating the action-value

function, the value function and advantage function can be sep-
arately estimated by using the two streams of fully connected
layers. The value function is used to evaluate the quality of
the learning policy with a certain state, while the advantage
function captures the relationship between a certain action and
other actions, and finally these functions are combined together
in the final layer to generate the Q-value [20].

In DDQN, when a policy π is given, the value function of
Qπ(s, a) of a state-action pair (s, a) and the value function
V π(s) of a state s can be respectively expressed as

Qπ(s, a) = E {Ut|st = s, at = a, π} ,
V π(s) = Ea∼π(s) {Qπ(s, a)} .

(16)

According to the value functions of (16), the advantage
function of actions is defined as

Wπ(s, a) = Qπ(s, a)− V π(s). (17)

In (17), note that the function V π(s) is used to measure the
quality of its performance in a specific state s and the function
Qπ(s, a) evaluates the Q-value of selecting an action a in the
state s. It is worth noting that Ea∼π(s) {Wπ(s, a)} = 0 [20].
Moreover, when a deterministic policy a∗ = argmax

a′∈A
Q(s, a′)

is given, we have Q(s, a∗) = V (s) and hence W (s, a∗) = 0.
In order to estimate the value functions of V (s) and

W (s, a), a dueling neural network is generally used to make
one stream of connected layers outputs a scalar V (s;θ, µ)
and other streams output an dimensional vector W (s, a;θ, α),
where α and µ denote the weights of the fully-connected
layers. After combining these streams, the output of the
dueling neural network can be expressed as

Q(s, a;θ, α, µ) = V (s;θ, µ) +W (s, a;θ, α). (18)

However, Q(s, a;θ, α, µ) is only a parameterized approxi-
mator of the accurate Q-function. Moreover, given Q-function,
we cannot recover A(s, a) and V (s) uniquely, which causes
an unidentifiability of (19) and thus the poor performance. In
other words, adding a constant to V (s;θ, µ) and subtract the
same constant from W (s, a;θ, α) results in the same Q-value.
To address this problem, the dueling neural network can be
implemented by the following mapping

Q(s, a;θ, α, µ) = V (s;θ, µ) + (W (s, a;θ, α)−
argmax
a′∈A

W (s, a′;θ, α)). (19)

The objective of (19) is to make the advantage func-
tion approximator to have zero advantage when selecting

Algorithm 1 DC-MA-DDQN Based Intelligent Resource
Management
1: Input: Two-tier heterogeneous network simulator.
2: Initialize experience relay memory D to capacity D, and
a mini-batch.
3: Initialize the primary DDQN Q with parameters α and µ.
4: Initialize the target DDQN Q̂ as a copy of the DDQN with
parameters α− = α and µ− = µ.
5: for each episode = 1, 2, . . . , I do
6: Each agent observe its initial network state s;
7: for each time step t = 0, 1, 2, . . . , T do
8: Choose an action at at the state s using ε-greedy policy:

at = argmax
a∈A

Q(s, a;θ, α, µ), with probability 1− ε;
at = random{aj}aj∈A, with probability ε;

9: Perform the action at, and receive a reward rt and a next
state st+1;
10: Calculate two streams of DDQN value functions,
including V (st;θ, µ) and A(st, at;θ, α), and combine them
into Q(st, at;θ, α, µ) by (21);
11: Update loss function L̂ (θ, α, µ) and calculate parameter
θ using gradient descent by (26);
12: end for
13: end for
14: Each cell or BS share its action with nearby cells or BS.
15: Return the DDQN learning model.

actions. Note that given a∗ = argmax
a′∈A

Q(s, a′;θ, α, µ) =

argmax
a′∈A

W (s, a′;θ, α), we can achieve Q(s, a∗;θ, α, µ) =

V (s;θ, µ). Thus, the stream V (s;θ, µ) estimates the value
function of state s, while other streams provide an estimator
of the advantage function. In addition, (19) can be transformed
into a simple alternative module by replacing the maximum
value with an average, i.e.,

Q(s, a;θ, α, µ) = V (s;θ, µ) + (A(s, a;θ, α)−
1

|A|
∑
a′

A(s, a′;θ, α).
(20)

According to the above analysis, the proposed distributed
coordinated multi-agent DDQN (called DC-MA-DDQN) algo-
rithm for intelligent resource management in the two-tier het-
erogeneous network is shown in Algorithm 1. Note that when
a picocell has no overlapped coverage area with any other
picocell in the same tier, the action of the agent is selected
independently based on its own local observed information
without sharing its decision with other picocells. The reason
lies in the fact that the decision or action of the independent
cell does not affect the reward or strategy of other picocells
as they have no overlapped area [22]. Only when the picocell
has overlapped coverage area with neighbour cells, its action
(i.e., subchannel allocation and power allocation) information
for those devices located on overlapped area will be shared
with neighbour cells to minimize the overall ICI.
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Fig. 2. Algorithm convergence comparisons.

IV. SIMULATION RESULTS AND DISCUSSIONS

This section evaluates and analyzes the performance of the
proposed distributed coordinated learning algorithm for two-
tier heterogeneous networks. As shown in Fig. 1, an MBS is
located at the center of a macrocell with a covered radius of
250 m, while 6 PBSs are distributed in the coverage area of
the macrocell with each picocell being a covered radius of
80 m. Note that as shown in Fig. 1, two groups of picocells
have overlapped area so that the picocells in each pair can
coordinate with each other to maximize their sum rewards,
while one remaining picocell does not have overlapped area
with other picocells so that it can perform action selection
independently. The path loss in dB between the MBS and the
mobile device can be seen in [7]. Tradoff weight in (11) is 10,
the minimum data rate requirement is 4.5 Mbps, noise spectral
density is -174 dBm/Hz, the number of subchannels per cell
or BS is 16, the transmit power of MBS is {25, 30, 35, 40}
dBm, and the he transmit power of PBS is {20, 25, 30} dBm.

The DDQN model is trained to employ empirically hyper-
parameter, where deep neural networks (DNN) trains for 3000
epochs with 64 mini-batches being used in every epoch. The
DNN architecture that we adopted has three hidden layers,
include 512, 512, and 256 neurons, respectively. We set the
learning rate as α = 0.001 and the discount factor as γ = 0.98.
We initialize the exploration rate ε as 0.8 at the beginning, and
it then gradually anneals from 0.8 to 0.005 over the first 1000
episodes and remains constant afterwards.

We compare the performance of the proposed distributed co-
ordinated MA-DDQN algorithm (denoted by DC-MA-DDQN)
with two following algorithms in the two-tier heterogeneous
network:

1) The distributed coordinated DQN based intelligent re-
source management algorithm (denoted by DC-MA-DQN),
similar to the work [28].

2) The fully distributed MA-DDQN algorithm based in-
telligent resource management (denoted by FD-MA-DDQN),
similar to the learning idea in [32], where each cell selfishly
maximizes its own received reward without considering the
generated interference to other cells.

Fig. 2 shows the convergence of the three algorithms in
terms of the average reward per cell when the number of
devices is K = 200. It can be seen that the three algorithms
can gradually converge to final levels with different numbers

Fig. 3. Performance comparisons versus different total numbers of devices.

of epochs despite some fluctuations due to dynamic environ-
ment characteristic and policy exploration. Among the three
algorithms, the proposed DC-MA-DDQN algorithm achieves
the best convergence rate and the highest average reward.
For DC-MA-DDQN and DC-MA-DQN, we can find that the
convergence rate of DC-MARL-DQN is approximately similar
to that of DC-MA-DDQN, and both of them converge at
about 1500 epochs. However, at that time, the average reward
calculated by DC-MA-DDQN is better than that of DC-MA-
DQN, and it does not reach the final optimized level yet. Thus,
when DC-MA-DDQN converges, the optimized reward of the
two-tier heterogeneous network is superior to that of DC-
MA-DQN. Besides, the FD-MARL-DDQN algorithm achieves
the worst reward among the three algorithms, because each
cell only aims to selfishly maximize its own received reward
without considering the interference generated to other nearby
cells.

Fig. 3 plots the network data rate and the QoS satisfaction
probability performances of the three algorithms with the
various total numbers of devices K. From Fig. 3(a), with
the growing number of devices K, we can observe that the
network data rate enhances obviously to a peak when K
is smaller than a certain value K ≤ 200, due to the high
probability of finding devices having high channel gains to
improve the network data rate (this phenomenon also called
device diversity). However, further increasing the number of
devices after the capacity reaches a maximum value. We
observe that the data rate decreases, because the network
resource requires to be allocated to the devices with poor
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channel quality to meet their QoS requirements which occupy
lots of network resource, as well as channel access collisions
increase with K, hence reducing the network data rate. In
addition, as shown in Fig. 3(b), for all DRL algorithms, the
QoS satisfaction probability is favorable when the number of
devices is small, but it declines clearly when K is large. The
reason lies in that the two-tier heterogeneous network cannot
complete all increased services due to the fixed spectrum and
power resource.

However, when the number of devices K is large, the
performance of all algorithms decreases, but the proposed DC-
MA-DDQN algorithm still has the best performance among
all algorithms. Moreover, the performance gap between them
increases for increasing the number of devices K. Besides,
as illustrated from Fig. 3(a), although the DC-MA-DQN
algorithm tends to achieve the comparable network data rate
performance to the proposed DC-MA-DDQN algorithm with
the increased number of devices, DC-MA-DDQN has better
performance than that of DC-MA-DQN, especially that the
QoS satisfaction probability is significantly improved in dense
device region. For example, when K = 200, DC-MA-DDQN
achieves the network data rate and QoS satisfaction probability
improvements of 7.57% and 6.91% compared with DC-MA-
DQN, and achieves the improvements of 17.27% and 17.77%
compared with FD-MA-DDQN.

V. CONCLUSIONS

In this paper, the distributed coordinated multi-agent DRL
algorithm has been proposed to achieve the joint device
association, spectrum allocation, and power allocation strategy
for two-tier heterogeneous wireless networks. As the network
is complex and dynamic with huge state and action spaces,
by employing the tools of DRL along with the distributed
coordinated learning mechanism, a DC-MA-DDQN algorithm
has been developed to learn the optimal intelligent resource
management policy with fast convergence speed. Simulations
have demonstrated the superior performance of the proposed
DC-MA-DDQN algorithm compared to other popular DRL al-
gorithms in terms of the improvement of the network capacity
and QoS satisfaction probability. We will apply this learning
model to address the optimization problem in intelligent
reflecting surface 6G networks in the future [22].
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