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Abstract—Due to the widespread of dashcams, we will have

more videos that capture roads/streets in driving. Consequently,
a vast amount of the videos will be available and can be utilized
for analyzing road safety and similar purposes. For example,
suppose different dashcams can take vehicle/pedestrian traffic
at a risky intersection at different timings. In that case, the
collection of such videos will effectively recognize the cause of
dangerous situations without surveillance camera infrastructure.
However, identifying a Road Segment of Interest (RSI) in the
video, such as near the intersection region, is challenging as the
video frames do not usually include location tags. In this paper,
we present a unique approach to attack this challenge. Assume
that a video segment, called reference video, captures an RSI.
We re-identify the RSI taken in another video (called test video)
that captures the roads containing that RSI. By this approach,
we can automatically extract the video segment corresponding
to RSI from a given test video, using the reference video. We
introduce AKAZE features to assess frame-level similarity and
develop an algorithm to find frame-by-frame matching between
reference and test videos. We have evaluated our method using
10 reference videos that correspond to 10 RSIs, each with 5
test videos. The result has shown that the average frame error
distance was only 3.03 in daytime and 4.93 in nighttime, which
are sufficiently low to re-identify RSI in the newly obtained test
videos.

I. INTRODUCTION

The latest survey in Japan [1] has reported that in FY2020,
the number of dashcams sold in the Japanese market was about
4.6 million, among 76 million vehicles in Japan. Moreover,
the state-of-the-art onboard units have already integrated dash-
cams to support safe driving. Consequently, a lot of services
have been designed and proposed that make use of dashcam
videos. For example, in [2] the authors have proposed a
method to detect vacant parking spaces using deep learning
approaches. The BBC News has reported that road users can
submit footage of dangerous driving to police in England and
Wales [3].

However, we may often want to obtain the video segment
that takes a particular region, i.e., a Road Segment of Interest
(RSI), within a long video. For example, suppose that we want
to analyze the vehicle/pedestrian traffic at a small intersection
of narrow roads, where accidents or risky situations are likely
to happen, to identify the cause of the risk. Assuming that not
a few vehicles pass the intersection every day, we may rely
on crowds to provide their dashcam videos and extract the
video segment taken at the RSI, e.g., roads near the intersec-
tion. However, this segmentation task is time-consuming for
humans, as the collected videos do not usually have location

tags. Even though recent dashcams can specify GNSS location
tags to the video, it is difficult to provide an exact location tag
to each frame due to the non-synchronicity of two different
sources (video and GNSS). Besides, GNSS errors may often
occur, which make more drift from the ground truth.

In this paper, we present an approach to re-identifying an
RSI given as a reference video, within a video given as a test
video that contains that RSI. Figure 1 illustrates a scenario. On
day 0, a vehicle drove on a road and obtained a dashcam video.
We manually extract the video segment (colored by orange)
that captures RSI (near intersection region in this scenario) and
uses it as a reference video, as shown in the upper part of the
figure. On days 1, 2, and 3, we obtained three videos as test
videos. We apply our matching technique using the reference
video to find video segments that correspond to the RSI (the
orange parts in the test videos, in the lower part of the figure).

The challenge here is that we do not rely on any location in-
formation. Since the time, days, speeds, lanes, and behavior of
vehicles differ between two videos, we should carefully design
the matching algorithm. For example, one vehicle did stop-
and-go a lot at the RSI in the evening with congested traffic,
while another smoothly passed through RSI with less traffic at
noon. Therefore, we adopt a frame-by-frame feature extraction
and matching to find the segment-level similarity, pursuing
both accuracy and computational time. More specifically, we
introduce AKAZE features for similarity calculation, which
achieve a good tradeoff between computational overhead and
feature quality, and develop an algorithm to find frame-by-
frame matching between two videos.

We have evaluated our method using 10 reference videos
that correspond to 10 RSIs, each with 5 test videos. The result
has shown that the average frame error distance was only 3.03
in daytime and 4.93 in nighttime, which are sufficiently low
to re-identify RSI in the newly obtained test videos.

II. RELATED WORK

Videos captured by dashcams are used for many purposes,
for example, road surface damage detection [4]. Several ap-
proaches have introduced deep learning to detect different
kinds of cracks. Ref [2] also utilizes videos recorded by a
dashcam to detect vacant parking spaces for parking guidance
systems. In order to observe the situation in urban areas over
a long period, it is necessary to identify the location where the
video was taken. Our method compares still images in different
videos to detect the images recorded in close locations based
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Fig. 1. Road Segment of Interest (RSI) Re-identification in Videos

on image matching techniques. This is called re-identification
in this paper.

Several image matching techniques recognize objects or
scenes from multiple images using image features derived
from the images. Lowe proposes SIFT features that have
many properties that make them suitable for matching differing
images of a scene [5]. Since the SIFT features are invariant
to image scaling and rotation and partially invariant to change
in illumination and produce numerical descriptors for each
point in each image, these descriptors can identify points
or objects in images taken from different perspectives and
under different conditions. It means that the SIFT features
can accurately determine the position and orientation from
which an image was taken. Using the characteristic, Structure
from Motion (SfM) creates large-scale 3D models based on
the SIFT features from image sequences taken of objects or
scenes during the same period [6].

Meanwhile, photo geolocation techniques also utilize not
only image features but also additional information attached
to images to identify locations of a single image [10]–[13].
Im2GPS [10], [11] derive locations to a given image from
millions of geotagged images using global image descriptors.
Ref. [13] also proposes a localization method based on the
structured dataset of GPS-tagged Google Maps Street View
images. PlaNet [12] trains a convolutional neural network
(CNN) using millions of geotagged photos to predict the
locations of ambiguous photos.

On the other hand, several image localization approaches
focus on specializing in specific applications. For example,
several approaches are proposed to estimate positions from

images from UAVs [14]–[16]. Ref. [15] introduces a deep
learning technique for overhead imagery captured from UAVs
for large-scale datasets. For intelligent transport systems, Ref.
[17] proposes a robust and accurate localization technique
that combines visual odometry with map information from
OpenStreetMaps. Unlike these methods, our method compares
two videos to find pairs of images captured in the same
locations and uses only image features to achieve frame-level
accuracy with reasonable computation costs.

III. CAPTURED POSITION MATCHING METHOD

A. Preprocessing

At first, the proposed method drops frames of the test video
to reduce the processing time for similarity calculation. In this
work, the frame rate of the test video is empirically reduced to
6 fps. Next, the method compresses its resolution to 480x270
and converts the image to grayscale in the videos. Both of
these processes are intended to reduce the processing time
required for the calculation of similarity. Similarly, a given
reference video segment is also processed in the same way,
i.e., decreasing the frame rate by dropping four of every five
frames, compressing its resolution to 480 × 270, and convert-
ing the image to grayscale. This process also contributes to
reducing the processing time for similarity calculation.

B. Comparing Frames of Reference and Test Videos

In this section, we describe an algorithm that matches test
video frames and reference video frames using the AKAZE
features.
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1) Similarity Calculation: The same buildings and land-
scapes may appear in the frames of both reference and test
videos, if they are taken during the driving on the same road
toward the same direction. Therefore, by quantifying the visual
features of the buildings and landscapes, it is possible to
calculate the similarity of the locations of given two frames.
The proposed method uses such visual similarity of frames
to find the pair of frames (from test and reference) with the
highest similarity. Then we regard them as the frames from the
same location. In this work, we use a feature called AKAZE to
calculate the similarity. The AKAZE feature is a modification
of the SIFT feature [5], which has been traditionally used
in the image processing field, and is mainly used for image
matching. Since the AKAZE feature has more robustness to
changes in lighting conditions, we use this feature to calculate
the similarity. To use the AKAZE feature for similarity calcu-
lation, we first calculate the AKAZE feature points in the both
frames of the test and reference videos, where each feature
point is represented as a 1-D feature vector. Then feature
point matching is performed on a pair of frames from the both
videos. In this feature point matching, the Hamming distance
between each pair of the feature vectors of the two frames is
used to calculate similarity of the two feature points, and the
closest pair is regarded as the correspondence. Figure 2 shows
an example of feature point matching over two images, where
each horizontal line shows a matched pair of feature points.

Then we take the five pairs of feature points in the two
frames with the minimal Hamming distances among the other
pairs. Then we use the average Hamming distance of these
pairs as the similarity value of the given two frames. If
there are less than five pairs in the two frames, the frame
pair is not suitable for estimating the similarity, and is not
considered as similar location images. Figure 3 shows the
result of calculating the similarity between a frame of a test
video and each frame of the reference video. We can see that,
the average Hamming distance is the smallest with the 125th
frame of the reference video. This pair of frames is shown in
Fig. 4 where the two frames clearly show the same location.

2) Block-wise estimation: Since the similarity calculation
described above is done on a frame-by-frame basis, the high
similarity may appear with frames taken at different locations
but with similar scenery. Also they similarity may be affected
by lighting conditions and some other factors. Therefore the
same location images do not always show the highest similar-
ity value. Therefore, we use the sequential characteristics of
videos, where frame similarity values between two videos are
kept high if they capture the same road. For this purpose, we
divide the test video into equal-sized blocks and processing
them in the following way.

We first consider a block consisting of N consecutive test
video frames. Then we let xi denote the frame number of the
test video that appears as i-th frame in the block, and let yi de-
note the fraem of the reference video that is best-matched (i.e.
most similar) with the xi-th frame. where xi ∈ {1, 2, ..., IF}
and yi ∈ {1, 2, ...,HF}, IF is the total number of frames
of the test video and HF is the total number of frames of

the reference video. We consider pairs Pi = (xi, yi) where
i ∈ {1, 2, ..., N}, and plot them on the 2D-space. Then, from
the points plotted in the two-dimensional space, we consider
N(N-1)/2 straight lines represented by the following equation,
and adopt the line with the most points in the vicinity of
the straight line as the matching result in that block. In the
following, we denote the line passing through the points Pi

and Pj as the line Li,j .

Li,j : y − yi =
yi − yj
xi − xj

(x− xi) (1)

Figure 5 shows example plotting and lines in two-
dimensional space. The left figure shows that line L3,4 con-
tains several corresponding points near the line, while L4,5

of the right figure shows almost no points are near the line.
In this case, L3,4 is more likely to represent the correct
correspondence. After finding the best line, we may identify
outliers, that do not follow the tread represented by the line.
Allowing outliers to some extent, we decide whether the block
is matched or not.

3) Video Matching: Finally, we match the reference video
with the test video to identify the correspondence. We note
that the number of reference video frames used to calculate
the similarity for a given test video frame has a significant
impact on the execution time of the entire process. Therefore,
it is desirable to limit the number of reference frames when
calculating the similarity. The proposed method reduces it by
the following procedure.

After the pre-processing, the matching procedure searches
the head location of the test video block among the reference
video. In finding correspondence, we use frame-by-frame pro-
cessing using the similarity calculation described above, and
block-by-block processing to remove outlier effect. The head
position is estimated by calculating the similarity between the
first block of the test frame and all the frames of the reference
video. After this, in order to reduce the number of reference
video frames to be used to calculate the similarity, we only use
18 reference video frames right after the last matched frames
of the reference video. This continues until all the blocks are
examined. This sequential matching can reduce the number
of similarity calculations, which contributes to speedup the
procedure. We note that the frame rate of the test video and the
reference video is set to 6 fps by the pre-processing. Therefore,
18 frames represent 3 seconds in the reference video. This
means that the similarity is calculated with a sufficient range
of frames in time.

IV. EVALUATION

A. Dataset

In this section, we describe the dataset used in the experi-
ments to investigate the accuracy of the proposed method.

In this work, we deal with dashcam videos captured on the
same road. Therefore, we prepared a vehicle equipped with an
onboard camera [18] and collected daily commuting dashcam
videos to create a dataset.
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Fig. 2. Example of feature point matching using AKAZE feature

Fig. 3. Transition of similarity in a video

Fig. 4. Similarity calculation results

The commuting route contains both urban areas with many
characteristic buildings and rural roads with few buildings.
Since all the trips are for commuting, the videos were taken
at a similar time every day (6 days totally). Still, the conditions
such as weather, driving speed, the number of vehicles in the
vicinity, and occlusion are very different in the dataset.

To create reference videos, we picked up six locations
(RSIs) on the route traveled during the daytime and four
locations (RSIs) on the route traveled during the nighttime.
Then for each RSI, we used a 20-second video of day 1 on
the route that contains the RSI as a reference video.

Then, for each RSI, 10-second videos containing the RSI
from day 2 to day 6, were used as test videos. Each of the test
videos is obtained as a portion of the route and has different
characteristics in terms of weather, travel speed, the number
of surrounding vehicles, and occlusion.

Finally, we manually compared each test video with the
corresponding reference video for annotating the ground-truth.

Fig. 5. Two example of matching trend estimations. Left: the most likely
trend. Right: less likely trend.

More specifically, for every 10 frames of test video, we found
the counterpart in the reference video for ground truth labeling.
Figures 6 and 7 show the still images from the dashcam videos
in the daytime and nighttime, respectively.

B. Evaluation Result

1) Matching Accuracy: We have applied our method to
the dataset above. The results are shown in Table I. We
used 45,000 video frames as a total in this experiment, and
the evaluation results are summarized for both the daytime
nighttime data.

The errors in the table are defined as the distance from the
estimated frame and actual frame. For example, if a frame of a
test video is matched with the (i+a)-th frame of the reference
video but if i-th frame is the actual frame, the matching error
is |a|. As a result, the average error was 3.03 frames in the
daytime data, which corresponds to 0.105 seconds at the speed
of 50km/h. We note that since both the test and reference
videos were 29 fps, one frame corresponds to 1.45m at that
speed. On the other hand, the average error in the nighttime
data was 4.93 frames, corresponding to 0.170 seconds and 2.36
meters at the same speed. In both cases, the average values
are small enough for re-identification purposes. Meanwhile,
we have 50 and 58 errors (about 2-second difference) at the
maximum. This happens less among several frames, and the
small average values show the fact.

To further investigate the error distributions, we have mea-
sured the ratio of frames that satisfy a given error threshold.
Table II shows the ratio of frames with smaller errors than a
given threshold. We prepared two threshold values, 3 and 6.
We can see that about 85% of frames can be re-identified in
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Fig. 6. Daytime Dataset

Fig. 7. Nighttime Dataset

the daytime, allowing 0, 1, or 2 frame errors (¡3). Allowing up
to 5 frame errors, 93% of the frames could be re-identified. We
believe that these results are sufficiently accurate for the re-
identification of RSIs. The nighttime results are less accurate
than the daytime ones because some roads are illuminated little
by streetlights, making it difficult to find effective AKAZE
feature points.

The AKAZE Feature in the daytime and nighttime scenes
are visualized in Figures 8 and 9, respectively. As seen
from the figures, many feature points could be found in the
background in the daytime. Meanwhile, in the nighttime, the
feature points could only be found on moving objects such
as vehicles and surrounding environments such as guardrails.
The features directly affect the accuracy of both scenes – more

TABLE I
MATCHING ERROR (# OF FRAMES FROM TRUTH)

Daytime Nighttime
Average 3.0305 4.9310
Variance 39.14 71.52
Maximum 50 58

feature points result in better matching accuracy.
2) Processing Time: Next, in the same experiment as be-

fore, we also measured the processing time required to execute
the proposed method. We used a MacBook Pro laptop PC,
2.8GHz quad-core Intel Core i7, with 16GB main memory.

The average time for each process (a pair of 10s test videos
and 20s reference videos) was 17.2s. This means that it took

2021 Fourteenth International Workshop on Selected Topics in Mobile and Wireless Computing

23



TABLE II
RATIO OF IDENTIFIED FRAMES WITHIN ERROR THRESHOLD

daytime night
Error < 3 frames 0.8594 0.6694
Error < 6 frames 0.9337 0.8195

Fig. 8. Feature points in daytime

0.156s per frame for the start location identification phase
and 0.043s per frame for the subsequent processing. Although
the processing could not be in real-time, the factor is small
enough, and the order of the process is O(n + m) where n
and m are the length of test and reference videos, respectively.
Besides, our program was implemented using Python and the
standard library using a single processor core. We believe that
proper optimization and parallelization can be done, which
enables real-time processing.

V. CONCLUSION

In this paper, we have proposed re-identifying a road seg-
ment of interest (RSI) in a video. The method takes two videos
as input, where one is a reference video that captures an RSI,
and another contains RSI but is captured at different timing.
This method can be used to find the video clips of the same
region from many videos that may include video segments of
the location. The segmentation accuracy (matching accuracy)
was accurate enough. That is, only three frames drift from the
correct frames.

Our future work includes enabling real-time processing and
building a video repository that collects, via crowdsourcing,
risky location videos. Then our method allows clipping par-
ticular location videos, which are helpful for assessing safety
levels of the locations.
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