
Applicability of Lightweight Groups to Fog
Computing Systems

Diogo Lima1,2
1 Escola Superior de Hotelaria
e Turismo do Estoril, Portugal
Email: dlima@lasige.di.fc.ul.pt

Hugo Miranda2
2 LASIGE, Faculdade de Ciências,
Universidade de Lisboa, Portugal

Email: hamiranda@ciencias.ulisboa.pt

Abstract—The tradeoff between scalability and consistency has
been addressed by deploying distributed applications in the cloud.
However, cloud-based applications penalize performance with the
unavoidable latency and jitter resulting from the geographical
distance between clients and application servers. Fog Computing
architectures mitigate this impact by deploying state fragments
and computing power on surrogate servers at the network edge.
To improve performance, one must deploy each fragment of the
application state at the most convenient surrogate and maintain
an efficient coordination when manipulating state stored in mul-
tiple locations. This paper formalizes a two-tier view synchronous
group communication model for Fog Computing to improve
performance of large scale mobile distributed applications and
evaluates it using data derived from a real dataset.

Index Terms—Mobile Distributed Applications, Fog Comput-
ing, Middleware, Consistency, Lightweight Groups

I. INTRODUCTION

Large scale mobile distributed applications such as massive
online augmented reality games (e.g. Ingress), tourism appli-
cations (e.g Yelp), or traffic management in smart cities [1]
are required to manage a large number of shared objects (the
application state), while providing a consistent view to every
participant. The current trend is to centralize the application
state in large scale datacenters in the Cloud, using frameworks
such as Google Firebase.1 This simplifies state management,
but performance suffers from the geographical barrier between
the end users and the application state, due to network latency
and jitter.

Fog Computing [2] addresses this problem by approximat-
ing the cloud to the users with the deployment of surrogate
servers. Surrogates provide the computing power and storage
space required to manage application state at the network
edge. Best performance can be achieved if the application
state is divided by surrogates according to its usage and
location patterns. However, state distribution by surrogates
raises a number of challenges that could not be found in
the centralized cloud approach. One is location management:
deciding the most suitable location for state components,
coordinate migrations, and facilitate their location by other
participants (mobility). The second is concerned with keeping
performance at an acceptable level considering the increasing
number of participants in distributed transactions (distributed
environment).

1https://firebase.google.com/

A promising solution relies on organizing the surrogates
into groups arranged according to the state they store and
manipulate. Virtual synchrony [3] is a good candidate as it or-
ganizes processes into groups and guarantees that messages are
delivered to either all correct group members or to none at all,
simplifying the satisfaction of any consistency requirements.
However, virtual synchrony suffers from scalability problems
and was not originally designed considering state mobility.
This paper explores how virtual synchrony can be tailored
to Fog Computing by extending the original concept with
dynamically defined fine grained virtual synchronous groups.
This technique, named LightWeight Groups (LWG) [4], [5],
has the advantage of being adaptable to user mobility, as
member affiliation costs are reduced to a small fraction of
those in the original heavyweight group. The paper’s main
contribution is the formalization and implementation of such
a two-tier view synchronous group communication abstraction
for Fog Computing. Evaluation uses data derived from a real
dataset to demonstrate the adaptability of the LWG solution to
different application usages patterns and its scalability in the
Fog Computing environment.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Throughout this paper we assume a scenario exemplified
by a large-scale forest surveillance system where heteroge-
neous devices (ground sensors, UAVs, etc.) cooperate on
early detection of wild fires, hikers search and rescue or
illegal logging. Devices communicate with Ground Stations
(GS), strategically deployed over the surveyed site, using any
available network technology including delay-tolerant network
(DTN) to circumvent network coverage limitations. The GS
represent the surrogates servers of the Fog Computing model,
acting as entry points of the surveillance devices to the system.
But besides collecting the large amount of data the latter
produce, GS are also required to make split second decisions,
e.g. to divert UAVs from their predefined route to investigate a
smoke alarm or coordinate UAVs to avoid mid-air collisions.

Implementing a system with these characteristics is chal-
lenging. The real time constraints that are required for com-
munication suggest that the most favorable approach is to
transfer for each GS the control of the devices nearby as well
as the management of the large amounts of data collected.
However, decisions must be coordinated with nearby GS,

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

978-1-6654-2854-5/21/$31.00 ©2021 IEEE 345

for example if the rerouting of UAVs has the potential to
create mid-air collisions or is unclear to which region can
be attributed a smoke alarm. Given that all these scenarios
depend on the state collected by the devices, the model further
assumes that state can be partitioned in 3 categories. Global
state is the information that is relevant to all participants in
the system (GS, UAVs, command center), such as the current
warnings/alarms and their possible cause. Geo-dependent state
refers to data which is relevant to the participants located in
a specific area and unlikely to be accessed by more distant
participants. In our example, good examples of Geo-dependent
state are the set of measurements registered by the UAVs (i.e.
humidity levels, temperature, wind), as well as the current
number and location of UAVs and sensors in that area. Finally,
mobile state refers to the information specific to the mobile
devices such as current battery level or flight autonomy.

The approaches to target each of this data items to one
category and location is discussed elsewhere (e.g. [6]) and
outside the scope of this paper. Instead, this paper focus on
the challenge of keeping the replicas of these items consistent
in spite of multiple, possibly concurrent, updates provided by
distinct GS. This paper addresses this problem by revisiting
the virtual synchrony abstraction.

III. RELATED WORK

Data consistency management can be centralized or decen-
tralized. In contrast with some Fog Computing approaches that
delegate consistency management on centralized Cloud-based
SQL and NoSQL big data systems [7], this section discusses
decentralized approaches. These are believed to cope better
with the split second decisions required by applications like
the surveillance application example.

A. Group View Synchronous Communication

The State Machine Replication (SMR) abstraction [8] ap-
plies the same sequence of deterministic operations to a set
of state machines with the same initial state, leading to the
same final state on every state machine. Challenges are on
ensuring that operations are delivered in the same order to
every replica in a faulty environment, a concept coined as
Atomic Broadcast. It has been shown that atomic broadcast
requires a consensus algorithm, such as Paxos [9] or Raft [10].
Unfortunately, consensus algorithms are well-known for their
scalability problems and addressing the scalability limitations
of consensus necessarily implies a compromise elsewhere.

DS-SMR [11] distributes state components by system parti-
tions, composed by one or more participants. The state is kept
consistent by delegating the execution of each operation to a
single partition. However, this model requires state items to
be transferred between partitions, in order to ensure that the
most up-to-date version of each state item is used on every
operation.

DPaxos [12] is a variant of Paxos intended to be used as the
SMR component for Fog Computing systems and addresses
scalability by proposing smaller and dynamic leader election
quorums. It considers a geographically setting divided into

zones and proposes Zone-centric quorums instead of majority-
based quorums to avoid wide-area communications and reduce
latency. The objective is to achieve leader election quorums
as small as a single zone and expand as conflicts are detected.
Therefore, both DS-SMR and DPaxos exploit access locality
and are optimized for workloads where operations do not
frequently access objects in multiple partitions.

Virtual synchrony [3] simplifies consensus implementation
by restricting the fault model and organizing processes into
groups. The concept of view is key for the implementation
of virtual synchrony. A view is defined by an ordered list of
the correct processes of the group [13] and a monotonically
increasing ID number. The ordered list of correct processes
implicitly defines a view leader. The view ID allows each
message to be uniquely associated to a view and, within that
group view, the message must be delivered to all correct
group view members, or to none at all. In practice, view
synchrony provides a simple abstraction to facilitate inter-
process communication and state synchronization given that if
a process installs two consecutive views V1 and V2 it was nec-
essarily correct on V1 and therefore received all the messages
broadcast in V1. To recover from a failure, the system simply
needs to keep track of the latest view each process installed
and implement some synchronization protocol once a view
is installed. There have been different frameworks to support
virtual synchrony (e.g. [14], [15]), with different impacts
on performance. Spread [14] relies on daemons to create
virtual synchronous groups that aggregate all communication
services. If a daemon crashes, all processes attached to it are
affected. Appia [15], on the other hand, follows a decentralized
approach where a crash only disconnects that process from the
virtual synchony service.

B. Coordination in Internet-scale Systems

Apache ZooKeeper [16] is currently one of the most popular
services for coordinating processes in distributed applications.
To provide high availability, ZooKeeper replicates data on
every server that composes the service. Read requests are
executed locally by the server to which the client is connected,
while write requests are forwarded to the leader instance and
propagated from the leader to the other replicas through the
Zab [17] atomic broadcast protocol. ZooKeeper is a good
candidate for implementing our consistent multi group Fog
Computing system model. However, scalability problems may
arise if one surrogate is elected leader of multiple groups.
Moreover, since each group would be coordinated by a differ-
ent ZooKeeper instance, it is possible that one process may
already been seen as faulty in some groups while still being
considered correct in others, creating challenging consistency
problems. In contrast, our approach guarantees that, as long as
none of the processes crash, atomic broadcast is sufficient to
perform write operations. In addition, our approach provides
a consistent view of non-faulty processes.

Instead of a group approach, PathStore [18] considers a
session consistency model between the mobile client and
the closest replica where consistency is maintained in all

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

346

Figure 1: Two-tier group membership model.

operations performed within a session. Whenever the client
changes location and reaches another replica, the latter con-
tacts the initial replica to perform state synchronization. New
operations are halted until this reconciliation procedure is
finished. In opposition to this reactive approach, our solution
relies in proactively creating groups of processes avoiding
costly reconciliation procedures during client execution of an
operation. The notion of groups of replicas is also exploited
in FogStore [19], a key-value data store designed for low-
latency accesses in Fog Computing. A location-aware replica
deployment strategy is used to determine the most convenient
set of replicas for each data fragment to minimize access
latency, creating its Context-of-Interest (CoI) area. Consistency
is maintained within a CoI and relaxed for replicas outside the
CoI, which may result in having more distant users accessing
outdated data. In our model we guarantee consistency among
all replicas storing each data fragment.

IV. LIGHTWEIGHT GROUP VIEW-SYNCHRONOUS
COMMUNICATION

This section presents a framework to provide virtual
synchrony to Fog Computing applications by using the
LightWeight Group (LWG) [4] abstraction. LWG extends
the poorly scalable group view synchronous communication
paradigm (HWG) with fine grained, application defined, sub-
groups while keeping performance at acceptable levels without
compromising the properties provided by HWG. As depicted
in Fig. 1, LWG rests on top of two building blocks. A
Best Effort Broadcast (BEB) implementation will provide
the fast (although unreliable) dissemination of each message.
The HWG enforces the reliable delivery of messages and
supports membership management. Along this section we refer
the LightWeight Group communication service as LWG and
Sm = {l1, l2, l3, . . . } is the set of lightweight group instances
some member m is affiliated. The notation li refers to a single
group instance from the previous set.

A. LWG API

Applications interact with the LWG service using the inter-
face depicted in Table I. The l parameter associates each op-
eration to one of the existing groups in Sm. The API presents
two categories of operations: group membership management
and message exchange. The latter is composed of the Send and
Receive operations, which include a message m to be broadcast
to the lightweight group l.

Operation Description
Join(l) Request to join group with name l.
Leave(l) Request to leave group with name l.
Block(l) Indicates the app to stop broadcast new messages

in group l until a View or Unblock is received.
BlockOk(l) Confirmation that no message will be broadcast.
View(l) Indicates the app of a new view installed for l.
Unblock(l) Indication that new message broadcast can resume.
Send(m, l) Sends a message m within group l.
Receive(m, p, l) Delivers a message m broadcast by process p in l.

Table I: Service API of the LWG abstraction

Figure 2: Evolution of application states when interacting with
the LWG service.

Messages can only be exchanged once a process is a
member of a group l and a view is installed. Fig. 2 depicts
the application states when interacting with the LWG com-
munication service. The application starts by expressing its
intention to become member of a group with the Join opera-
tion. Eventually, a View indication is received to confirm the
group membership. At this point, the application can broadcast
messages, with the service guaranteeing the reliable or atomic
broadcast properties. The delivery of a View indication further
signals the application that a synchronization of the group
state (State Sync) may be advisable. Once the synchronization
is concluded, the application proceeds to the in View state
until a Block indication is received. Block signals the need to
stop broadcasting messages for the possible installation of a
new view. The application should move to a flush state where
it is allowed to send messages to conclude some ongoing
operations. Once the application acknowledges this indication
with the BlockOk request, it enters the blocked state where it
can still receive the messages sent from the flush procedure
of other members but it is not allowed to reply to them.
Transition from the blocked state happens upon the installation
of a new View or with the reception of an Unblock indication.
The difference between these two indications is whether the
LWG service performed any membership changes that led to
the installation of a new view or the membership remained
the same. Avoiding unnecessary view changes and group
state synchronizations as provided by Unblock is key for the
resource and performance gains of our approach.

B. Implementation

The lightweight group service is implemented with an
instance of each of the LWG, HWG and BEB building blocks
(depicted in Fig. 1). The LWG service uses the reliable
broadcast and membership service of HWG to provide the
corresponding properties to the lightweight groups and to
ensure state consistency between the LWG instances of each

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

347

surrogate. BEB is used to provide fast application message
delivery delaying the verification of the reliable broadcast
properties until a view change occurs.

1) View Management: The service replicates the views
state (defined by an ordered list of members and view id) of
every li by all members of the heavyweight group. Consistent
replication is guaranteed by using the HWG reliable broadcast
service to disseminate all the Join and Leave requests and
to coordinate the installation of lightweight group views. It
should be noted that until the new heavyweight group view
is installed, it is not possible for the LWG service to learn
which (if any) lightweight groups are affected. As soon as the
new heavyweight group view is installed, the leader compares
the membership of every lightweight group with the list of
heavyweight group members. For those lightweight groups
which have seen their membership changed, the leader triggers
the installation of a new view. For those whose heavyweight
group membership change had no impact on the lightweight
group view, the leader coordinates the resume of the view,
which is converted by every instance of the LWG service on
an Unblock indication. Coordination is once again assured
by the use of the reliable broadcast service of the HWG
to disseminate the leader decisions. This algorithm is an
extension of the flush procedure defined in [20] to encompass
lightweight groups. It is applied on every view change either at
the lightweight or heavyweight group level with the additional
gain of postponing the performance impact of reliable broad-
cast to the moment where view changes occur. Considering
the large ratio between the number of messages and the
number of views, this is expected to significantly contribute to
improve performance without sacrificing reliability. It should
be noted that changes in the heavyweight group membership
can result in the execution of the flush algorithm without a
view change. This is the case addressed before when the view
blocks and then unblocks as no change in the lightweight
group membership was found.

A particular case happens when the leader of the heavy-
weight group fails. This problem is solved considering that:
i) the HWG service elects a new leader with every view;
and ii) the reliable broadcast service ensures that the view
state of every lightweight group is consistent and can be
synchronized with joining processes. As a result, the new
leader can perform the coordination tasks as soon as the new
heavyweight group view is installed. The period between the
reception of the Block indication from the HWG service and
the installation of new views or the unblock of the existing
ones at the lightweight groups is mostly spent ensuring the
delivery guarantees of the messages exchanged in the view.

2) Message broadcasting and consistency: An application
data message m sent for group li is disseminated by the
LWG service using the BEB service. The BEB service uses
a set of TCP connections to implement a low-cost message
delivery service where messages are exclusively delivered to
the processes affiliated with li. The advantage of using the
BEB service is that it scales linearly with the number of group
members. However, it does not ensure the reliable broadcast

properties, that must be found in any virtual synchrony service.
To enforce reliable broadcast properties, the LWG service
running on surrogate S adds every message either broadcast
or delivered to lightweight group li to a set MS,li .

A lightweight or heavyweight group is considered blocked
when processes are not allowed to send messages. Once the
group is blocked, proceedings to ensure reliable broadcast
properties are as follows. At the lightweight group level,
the LWG service on surrogate S uses the reliable broadcast
primitive of the HWG to disseminate the content of its MS,li

set. The properties of reliable broadcast ensure that the union
of the sets MS,li received from every correct member of
the lightweight group contains all messages delivered to any
correct member of the view. LWG services can then compare
their lists of messages with the union and deliver any message
not delivered by BEB.

V. EVALUATION

To assess the performance gains of the LWG service over
virtual synchrony in Fog Computing, both were compared in
two dimensions: scalability and performance. The goal is to
understand if LWG can attenuate the well known scalability
and performance limitations attributed to HWG. The imple-
mentation rests on top of the off-the-shelf View-Synchronous
Group Communication service of Appia [15]. The tests using
LWG differ from the HWG with the inclusion in the Appia’s
composition stack of the lwg layer.

A. Testbed Configuration

To emulate the Fog based mobile distributed application,
two transaction workloads were generated from the Austin’s
b-cycle (https://austin.bcycle.com/) application public dataset.
Austin b-cycle is a bicycle sharing service where users check-
out and return bicycles from specific stations (called kiosks).
The baseline testing workload, hereafter named Small Groups
(SG), consists on 90% of transactions that either checkout or
return a bicycle to a kiosk, 5% to checkout a bicycle from
a kiosk and reserve a parking slot at the destination and
the remaining 5% to probe kiosks on a 500m radius for an
available bicycle and make the respective checkout. A second
workload was derived, hereafter named Large Groups (LG),
composed of the opposing ratio of transaction distribution:
90% of transactions having at least three objects and the
remaining 10% requiring at most two. Each transaction is
implemented as a single message, delivered to the closest
surrogate, who is in charge of committing the transaction.
Considering the smaller number of participants per transaction,
it is expected that the SG workload further benefits from the
lwg approach.

Experiments were run with 6 to 24 surrogates, each partici-
pating on the fog computing service as an HWG member. Each
object is stored and replicated in a lwg of 3 surrogates and the
locations of each application state item is known in advance.
Each surrogate runs on a t2.micro Amazon EC2 instance.
Latency is simulated by distributing the instances by 5 Amazon
datacenters in Europe. Members of the same replication group

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

348

are co-located in the same datacenter, to simulate the low
latency connection between nearby surrogates.

The evaluation consists on comparing two approaches. In
the lwg approach, surrogates are all part of the large virtual
synchronous group on top of which fine grained lightweight
groups are created by the LWG service. Lightweight groups
are created when needed and between all members that store
at least one object in the respective transaction. In the hwg
approach, each transaction is exchanged in the single core
group and delivered to every member. On average, each
transaction carries 40 bytes of raw, non-compressed data. A
test consists on having each surrogate delivering 150 000
transactions from either the SG or LG datasets. For hwg,
the performance results are the same for both datasets as the
number of surrogates involved in each transaction is constant.
Performance is compared by measuring the time from the
moment the test starts until the last surrogate receives the
last message. Tests were executed in sequence in an effort
to attenuate latency variations with the time of day. Results
presented are the average 90th percentile of execution time of
20 runs in comparable conditions.

B. Crash Safe Steady Broadcast Test

In this test each surrogate broadcast a new transaction
every 2ms and surrogates do not fail. Expectations are that
broadcasting messages to different subgroups in parallel em-
phasises the lwg’s scalability in contrast with the hwg approach
where all members are required to process every message. The
results depicted in Fig. 3 show that the workload has a non-
negligible impact on performance. The LWG abstraction can
be up to 3 times faster than the HWG approach in the SG
scenario. For the LG scenario, which increases group sizes
due to larger multi-object transactions, lwg is still able to
reduce execution time up to 60%. This behavior is explained
by the fact that every additional member that joins the hwg
configuration represents a fixed increase of 150000 messages
while, in the lwg approach, system size increase leads to
a more widespread data deployment. In turn, this creates a
greater number of groups that can process transactions in
parallel, leading to the lwg’s linear growth in both workloads.
Nevertheless, an interesting observation from the figure is that
the hwg’s completion times only start to differentiate from
lwg at 9 surrogates. Until that point, all configurations present
results very close to 300s. This value is the minimum for
test completion time considering that 150000 transactions are
broadcast by each surrogate at a pace of one every 2ms. This
indicates that for smaller system sizes and until a message
workload delivery of around 1 million per surrogate, the tests
are able to finish as soon as the last message is broadcast.

C. Crash-Recovery Steady Broadcast Test

The behavior of lwg in a faulty environment was evaluated
in scenarios where at every 60s each surrogate independently
decides to crash and immediately recover with a probability of
respectively 10% and 30%. After each crash, state consistency
is recovered using the same synchronization procedure on the

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 6 8 10 12 14 16 18 20 22 24

90
th

 P
er

ce
nt

ile
 E

xe
cu

tio
n

Ti
m

e
(s

)

Number of HWG Members

HWG
LWG-SG
LWG-LG

Figure 3: Completion time in the Crash Safe Steady Test.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 6 8 10 12 14 16 18 20 22 24

90
th

 P
er

ce
nt

ile
 E

xe
cu

tio
n

Ti
m

e
(s

)

Number of HWG Members

HWG
LWG-SG
LWG-LG

(a) 10% probability of crashing

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 6 8 10 12 14 16 18 20 22 24

90
th

 P
er

ce
nt

ile
 E

xe
cu

tio
n

Ti
m

e
(s

)

Number of HWG Members

HWG
LWG-SG
LWG-LG

(b) 30% probability of crashing

Figure 4: Completion time in the Crash-Recovery Steady Test.

3 tests. Transactions are resumed once consistency is assured.
Results are depicted in Fig. 4 and, as expected, show that
faults have a non-negligible impact on the performance of all
approaches. As discussed before, LWG concentrates most of
its effort towards reliability on view installation time (a process
that occurs once for every fault) and has a strong dependency
on the underlying heavyweight group. Therefore, it would be
expected that, at some point, the overhead introduced by the
lwg approach would penalize its performance up to the point
where the plain use of hwg would show to be more beneficial.
However, this expectation is only half confirmed. Considering
the 10% crash scenario, one can observe that lwg-SG takes
about half the time to conclude the tests compared to the other
two approaches. This is attributed to the fact that each crash
only affects groups with smaller memberships, able to deliver
new views faster and with a reduced number of undelivered
messages that need to be rebroadcast before the test resumes.

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

349

This behavior proves that if the 2 conditions of Fog Computing
are met: a well suited state deployment that promotes data
locality and a small number of participants per transaction,
the performance can be significantly improved over traditional
view-synchronous systems, even in the presence of crashes.
Since these later conditions are progressively lost in the lwg-
LG, its performance is penalized.

D. Discussion

Fog Computing has the potential to mitigate jitter, end-
to-end latency and reduce load in the backbone networks as
long as 2 conditions are met: i) a state deployment strategy
able to deploy and relocate data to the surrogates closer to
where it is more frequently used and ii) a process coordination
mechanism able to support the emergence of distributed trans-
actions while maintaining scalability. The evaluation of the
LWG abstraction shows that, by creating multiple subgroups
with smaller affiliations than the hwg coarse group, the lwg
approach always presents better completion times regardless of
the characteristics of the workload. But such solution is only
possible for applications that do not require every transaction
to be delivered to every member. In the presence of frequent
faults, the performance gains obtained by the lwg approach
were expected to be overtaken by the hwg counterpart, as it
relies on the properties of the later to provide its own failure
recovery. However, the results have shown that this expectation
holds just to a certain degree. Even in the presence of a high
degree of crashes (surrogates failing independently after every
300 000 transactions on average) and in face of a workload
that exploits the validation of transactions by smaller groups,
lwg is still able to outperform hwg. As any of the conditions
that make lwg advantageous for Fog Computing degrade, the
lwg gains are unavoidably erased, resorting to a performance
comparable or worst to that of hwg.

VI. CONCLUSIONS

Large scale mobile distributed applications must manage
the application state and provide a consistent view to every
participant. Centralizing the application state in the Cloud
facilitates these tasks, but creates a geographical barrier be-
tween the end users and the datacenters. Fog Computing tries
to mitigate this impact by deploying surrogate servers at the
network edge. However, its performance depends of the ability
to deploy each of the application state components at their
most convenient location and of a coordination mechanism to
cope with distributed transactions. In this paper, we explore
how virtual synchrony can benefit of partial groups defined at
the application level to create multiple fine grained virtual syn-
chronous groups, in a technique named Light-Weight Group
(LWG). This paper formalized the LWG communication ab-
straction and presented an implementation. The evaluation has
shown the benefits of the LWG abstraction in mitigating the
scalability problems of the View-synchronous group commu-
nication (HWG). In a scenario without crashes, it is able to
surpass the standard approach completion time by 2 to 3 times.
In the presence of crashes, the LWG abstraction does not

incur in a significant performance penalty if 2 conditions hold:
percentage of crashes is not high and the LWG abstraction is
able to fully exploit the existence of smaller groups.

ACKNOWLEDGMENT

This work was supported by FCT through the LASIGE
Research Unit, ref. UIDB/00408/2020 and the Individual Doc-
toral Grant, ref. SFRH/BD/120631/2016.

REFERENCES

[1] M. Gerla, “Vehicular cloud computing,” in 2012 The 11th Annual
Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), 2012.

[2] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, Fog Computing: A
Platform for Internet of Things and Analytics, 2014.

[3] K. P. Birman, “The process group approach to reliable distributed
computing,” Commun. ACM, vol. 36, no. 12, 1993.

[4] B. B. Glade, K. P. Birman, R. C. B. Cooper, and R. van Renesse,
“Light-weight process groups in the isis system,” Distributed Systems
Engineering, vol. 1, no. 1, 1993.

[5] L. Rodrigues, K. Guo, P. Verı́ssimo, and K. Birman, “A dynamic light-
weight group service,” Journal of Parallel and Distributed Computing,
vol. 60, no. 12, 2000.

[6] D. Lima and H. Miranda, “State deployment in fog computing,” in Proc.
of the 17th EAI International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services (to appear), ser. MobiQ-
uitous ’20, 2020.

[7] M. T. Gonzalez-Aparicio, M. Younas, J. Tuya, and R. Casado, “Evalu-
ation of ace properties of traditional sql and nosql big data systems,” in
Proc. of the 34th ACM/SIGAPP Symp. on Applied Computing, ser. SAC
’19, 2019.

[8] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Comput. Surv., vol. 22, no. 4, 1990.

[9] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, 1998.

[10] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in Proc. of the 2014 USENIX Conference on USENIX Annual
Technical Conference, ser. USENIX ATC’14. USENIX Association,
2014.

[11] L. L. Hoang, C. E. Bezerra, and F. Pedone, “Dynamic scalable state
machine replication,” in 46th IEEE/IFIP Int’l Conf. on Dependable
Systems and Networks (DSN), 2016.

[12] F. Nawab, D. Agrawal, and A. El Abbadi, “Dpaxos: Managing data
closer to users for low-latency and mobile applications,” in Proc. of the
2018 International Conference on Management of Data, ser. SIGMOD
’18. Association for Computing Machinery, 2018.

[13] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to Reliable and
Secure Distributed Programming, 2nd ed., 2011.

[14] Y. Amir, C. Danilov, and J. Stanton, “A low latency, loss tolerant
architecture and protocol for wide area group communication,” in Proc.
Int’l Conf. on Dependable Systems and Networks. DSN 2000, 2000.

[15] H. Miranda, A. Pinto, and L. Rodrigues, “Appia, a flexible protocol
kernel supporting multiple coordinated channels,” in Proc. of The 21st
Int’l Conf. on Distributed Computing Systems (ICDCS-21), 2001.

[16] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems,” in Proc. of the 2010 USENIX
Conf. on USENIX Annual Technical Conf., ser. USENIXATC’10, 2010.

[17] B. Reed and F. P. Junqueira, “A simple totally ordered broadcast
protocol,” in Proc. of the 2Nd Workshop on Large-Scale Distributed
Systems and Middleware, ser. LADIS ’08, 2008.

[18] S. H. Mortazavi, B. Balasubramanian, E. de Lara, and S. P. Narayanan,
“Toward session consistency for the edge,” in USENIX Workshop on Hot
Topics in Edge Computing (HotEdge 18). USENIX Association, 2018.

[19] H. Gupta and U. Ramachandran, “Fogstore: A geo-distributed key-value
store guaranteeing low latency for strongly consistent access,” in Proc.
of the 12th ACM Int’l Conf. on Distributed and Event-Based Systems,
ser. DEBS ’18, 2018.

[20] K. P. Birman, “Replication and fault-tolerance in the isis system,” in
Proc. of the Tenth ACM Symp. on Operating Systems Principles, ser.
SOSP ’85, 1985.

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

350

