
Dynamic p-graphs for predictions
in vehicular networks

Guillaume Béduneau, Ghada Jaber, Bertrand Ducourthial
Sorbonne Universités, Université de Technologie de Compiègne

CNRS UMR 7253 HEUDIASYC
CS 60319 - 57, avenue de Landshut, 60203 Compiègne, France

{guillaume.béduneau, ghada.jaber, bertrand.ducourthial}@hds.utc.fr

Abstract—Vehicular cooperation aims to solve traffic issues and
to improve road safety for vehicles and pedestrians. Such a co-
operation is done through distributed algorithms that have to be
executed in a topology-changing vehicular network. Ensuring the
success of the cooperative strategies is of particular importance
for ITS. We propose a method to predict the performances of
such distributed algorithms regarding the traffic conditions.

Index Terms—vehicular network, dynamic graphs, perfor-
mance prediction

I. INTRODUCTION

Intelligent Transport Systems (ITS) that intend to solve road
safety issues and traffic jams have been an important field of
research in recent years. ITS are expected to include coopera-
tion features (C-ITS) [1] that require vehicles to communicate
with each other and exchange data such as perceptions and
intentions. This is achieved by distributed algorithms that are
implemented in the vehicles and in the infrastructure devices.

For legal reasons, it would be preferable that ITS services
become predictable. Indeed, when an accident occurs, the
software designer and the transportation system manager could
be considered liable if they do not provide software efficiency
guarantees. Moreover, the important ITS deployment costs
(software design, hardware purchase and exploitation costs)
urge the policy makers to make sure that they are improving
road safety or road traffic fluidity. Therefore, the efficiency
of the vehicular cooperation algorithms should be somehow
guaranteed especially when used for safety applications.

However, the dynamic nature of vehicles can not ensure any
distributed algorithm to succeed for every dynamic vehicular
scenario. It remains always possible, using a scenario with
faster movements to prevent some vehicles from exchanging
enough information to achieve their cooperation. Therefore,
any success prediction depends on the network dynamic.

To overcome the difficulties, we propose a method able
to predict the performances of a distributed algorithm in a
given road scenario. Starting from real road observations,
the proposed method computes a modeling of the dynamic
(namely family of dynamic p-graphs), which in turns is used

This work was carried out and funded in the framework of the Labex MS2T.
It was supported by the French Government, through the program ”Invest-
ments for the future” managed by the Agence Nationale de la Recherche (Ref-
erence ANR-11-IDEX-0004-02) and through the Agence Innovation Défense.

to check some properties ensuring the success of the algorithm
for a given use-case. We apply such a method to predict the
behavior of some ITS services.

The paper is organized as follows. In section II, we present
related works. Section III explains the prediction methodology.
Section IV describes experiments intended to validate the
accuracy of the prediction and their results. Finally, Section V
concludes the paper with some perspectives.

II. RELATED WORK

Dynamic networks gain interest for their applications related
to communication in mobile systems, satellites constellation,
vehicles cooperation, fleets of robots... A lot of works are
conducted about them but predicting a distributed algorithm
behavior in a vehicular network remains complex. This section
briefly reviews the existing models for dynamic networks and
their use for performance prediction in vehicular networks.

A. Static graphs sequences

As static networks are usually modelled with graphs, dy-
namic networks were first modeled with adapted graphs taking
into account the time evolution. In [3], dynamic networks are
represented with a sequence of graphs, in which graphs could
be studied independantly [4] as static ones. While this method
is simple to use (graphs are well known models with a lot
of interesting properties), it may be less useful if the studied
period goes through a transition because graph properties do
not take transitions into account. When transitions occur more
often, they can not be ignored and the model should represent
temporal evolution within the graph.

B. Dynamic graphs

To be able to study graphs through transitions, it is possible
to consider and study the whole sequence of graphs, with its
own properties. The notion of evolving graphs is proposed
in [5]. It takes into account time evolution while proposing
interesting temporal properties such as the journey which is
a path that respects temporal network topology evolution.
The evolving graph may be timed to consider different edge
durations.

In [6], the authors propose a formalism called TVG (for Time
Varying Graphs) in which any dynamic network may be fully

407



described. TVGs are classified by their dynamic properties
[11] and adaptations are made to static graph properties to
cope with dynamic topologies [?]. This classification may
help algorithm design and analysis [10]. The TVG formalism
includes a duration function, that can be used for journey du-
ration calculation. This latter performs well for Delay Tolerant
Networks (DTN) analysis [7] and epidemiology [8], [9] where
nodes are numerous and end-to-end communication may have
a high duration.

For vehicular networks, the cooperation algorithms depend
more on the other nodes and latency has to be very low.
Moreover, the cooperation usually takes place within a small
group of nearby vehicles.

For this purpose dynamic p-graphs have been proposed in
[12] with the particularity to take into account the network
capacities of edges directly in the model. This feature allows
to drop edges that would appear in a TVG without being
usable by the communication protocol. It appears to be suitable
for vehicular cooperation algorithms, where nodes have to
exchange several messages in a close neighborhood, generally
with low end-to-end communication duration.

C. Performances prediction

While designing a distributed algorithm intended to be used
in a vehicular context, designer usually test its performances
under few specific traffic scenarios (often in a simulator). This
validates the algorithm and gives an idea of its performances
but there is no guarantee that the performances with another
scenario will be similar to the explored one. This may limit
the real deployments of such algorithms or force the algorithm
designer to make tests with a very large number of scenarios
(potentially infinite) which come with costs. Moreover, each
algorithm update would lead to the same situation as creating
a new one.

An ITS manager would like to know, when a vehicular
cooperation is proposed, what performances it should expect
in its specific conditions before engaging any expensive imple-
mentation or deployment. Though road traffic prediction are
common for the drivers, it seems there is no solution in the
literature for predicting the behavior of cooperative algorithms.

To fill the gap between simulation and deployment, we
propose a method for predicting the behavior of distributed
systems. It is based on so-called dynamic p-graphs, which
proposes a modeling of the dynamics that encompasses both
the nodes mobility and the communication protocol efficiency.
This method has the ability to increase the reproducibility
of the studies related to vehicular cooperation. Moreover, it
reveals to be useful for safety critical studies when it becomes
important to ensure some performances.

III. PREDICTION METHODOLOGY

This section presents the proposed method to predict the
performances of various distributed algorithms intended to
be used in vehicular networks. We first present the p-graphs
modeling it relies on before explaining the performance study.
Then, we describe the prediction method and the used tools.

A. Family of dynamic p-graphs

A static network is usually represented by a graph G(V,E)
where vertices of V represent the nodes and the edges of
E linking two nodes represent their capacity to communicate
with each others. However, for dynamic networks, the evolu-
tion of the topology gives a succession of static timed graphs
(see Section II) called in the following observation.

Starting from such an observation, the dynamic p-edges are
determined. A dynamic p-edge (u, v) exists whenever its du-
ration is sufficient for the communication of p messages [12].
A dynamic p-edge depends both on the nodes mobility and
on the communication protocol properties. Indeed, if the node
speed increases then less messages would be exchanged before
leaving the communication range. In case the throughput or the
range of the communication protocol increases, more messages
could be exchanged.

If (u, v) is a dynamic p-edge, then it is also a dynamic q-
edge for every integer q satisfying 0 < q < p. The maximal
order of a p-edge is the number of messages it can transport
before disappearing. Edges with an infinite duration do not
admit a maximal order.

Considering all p-edges for a given value of p define a
sequence of graphs called dynamic p-graphs. By starting with
p = 1 and incrementing p, it is possible to get a set of
dynamic p-graphs encompassing both the nodes mobility and
the communication protocol. Considering that the observation
edges have either a finite bounded duration or last forever, it is
possible to prove that, after a certain value of p, every dynamic
p-graph representing the scenario are identical, meaning that
the further values of p may be ignored. Hence, any vehicular
scenario leads to a unique finite set of dynamic p-graphs [12],
called a family of dynamic p-graphs. The dynamic p-graph
family faithfully represents the dynamics of the scenario for
our purpose while being finite.

B. Algorithm study

Distributed algorithms are defined using specification which
may be based on liveness and safety properties for instance.

To compute a prediction related to a distributed algorithm
running in a given scenario, it is possible to convert the algo-
rithm specification into a property that depends on conditions
over the dynamic p-graphs family representing the scenario.

This specification expression can be refined considering
specific use-cases where a performance has to be reached.
For instance, a diffusion algorithm that is used for alert trans-
mission should have a low latency while the same diffusion
algorithm should have a sufficient flowrate if it diffuses high
definition map fragments. Such performance properties could
be combined in order to obtain multi-criteria study.

Let take an example. Consider the algorithm sending a
fragmented piece of data from one node to another. It would
fulfill its success property if “The destination node gets the
whole data during the scenario”. If the use case is an RSU
(Road Side Unit) sending a fragmented map (composed of
8 fragments) to the vehicles on the road by using DSRC
(Dedicated Short Range Communications) communication, the

408



performance property could be “Any vehicle that remains on
the road and whose speed remains below the speed limit gets
the whole data before leaving the RSU range”.

Note that neither the algorithm specification expression nor
the performance properties have necessarily to be computed in
real time because they are only used for the algorithm behavior
prevision.

The performance properties is easily expressed using dy-
namic p-graphs. For instance, an example of a performance
property for the previous example could be the existence of a
dynamic 8-edge linking the RSU and every vehicle.

C. Prediction

Once a performance property has been expressed, the pre-
diction can properly take place. The observation can be made
from a trajectory history of all involved nodes: for every node,
a link connects it to others depending on the communication
range. The dynamic p-graphs family is then computed, taking
into account the communication protocol. The performance
property is looked for in the dynamic p-graph family and
enables to conclude whether the algorithm would succeed in
the tested scenario.

The only experiment such a prediction requires is getting
real observation. It could have taken place even before the
conception of the tested algorithm and do even not need
the vehicles to have been able to communicate. This can be
useful to size the communication protocol, or the scenarios
parameters (before implementing real conditions.

The most difficult step of the prediction methodology is the
algorithm study that may not yet be automatable. This step is
only done once and can be used on a variety of scenarios.

Figure 1 presents the method steps for an algorithm and a
given observation.

Fig. 1. Summary of the proposed prediction method

D. Toolchain

The implementation of the method requires several tools. In
the real world, getting an observation remains a bit complex
and costly. For practical reasons, we use a dynamic network
emulator, belonging to the Airplug middleware that enables
to use the exact same implementation of distributed algorithm
for emulation and real condition tests. The emulated conditions
have been shown to be conform with real world experiments
[13]. The emulator can directly use real GPS tracks to produce

Fig. 2. Summary of the experimental protocol used to validate the prediction
method

the observation needed to model the scenario with a dynamic
p-graph family for various scenarios.

To compute the dynamic p-graph family, a program named
pgraphtool takes as input the observation and the communi-
cation parameters (duration to transmit 1 message) and has
as output the dynamic p-graph family describing the scenario.
Regular expressions allow checking whether the dynamic p-
graph family satisfies the performance property.

IV. EXPERIMENTS

This section presents the validation of our method by means
of experiments illustrated with an easy to understand example
and its results. We then describe the design, the use cases, the
algorithm and the expression of performance property.

A. Overview

To validate the prediction methodology, a ground truth is
necessary: comparing the prediction and ground truth results
in the prediction accuracy.

This ground truth is obtained through the execution of
the distributed application in the prediction scenario. For this
purpose, we use the network emulator introduced previously.
The application generates log files containing its state at
different moments of the execution. Tiny scripts are used on
the log files to check whether the application did fulfill the
success condition or not.

Independently, a prediction is made on the same scenario
using the methodology presented in the previous section.

The ground truth is used to validate the prediction predicate,
representing the success (predicted or real) of the execution.
The prediction accuracy can either be:

• a predicted algorithmic success
• a predicted algorithmic failure
• an unpredicted algorithmic success
• an unpredicted algorithmic failure

Experiments with 100% of algorithmic success or 100% of
algorithmic failures could result from selecting too permissive
or restrictive performance properties. Indeed, setting infinitely
harsh conditions would make easy to predict for any algorithm
that it would fail. On the contrary, too favorable conditions

409



would allow easily predicted algorithmic successes. The val-
idation experiments will therefore take place in scenarios
allowing both ends.

Finally, as our method intends to be usable for any cooper-
ative algorithm, its validation requires to test a variety of such
algorithms.

B. Experiment setup
By lack of place, a single algorithm is presented here; it has

been chosen for its pedagogical interest. The algorithm to be
tested is a beaconing algorithm called Beacon: every vehicle
sends periodic beacons including its own identifier and stores
the received messages.

The algorithm is tested with a variety of scenarios: a car
is overtaking a truck (a slower vehicle whose speed is around
90 km/h) on the highway, after having been in the range of an
RSU. The car may get several more fragments from the truck
re-transmissions if its speed prevented full reception. The car
speed may be either 110, 120 or 130 km/h.

With this algorithm, the number of beacons received by the
car is obtained by adding the capacities of the different edges
between the truck and the car. The algorithm is considered
successful if the vehicle received at least 20 beacons. The
vehicles start randomly located on their trajectory so that the
car has to overtake the truck.

C. Results
For each experiment, we get either a failure or a success

of the algorithm. We use bar charts for presenting them in
Figure 3. We observe a very good prediction.

Fig. 3. Prediction accuracy for Beacon algorithm: scenario is a car overtaking
a truck on a highway, with various speeds (110, 120, and 130 km/h).

Considering the algorithm is simple and the scenario only
involves two nodes, the prediction accuracy is very good for
both success and failure predictions. These results even show
there was no prediction errors which validates the proposed
method. Very good predictions have also been observed for
more complex algorithms and use-cases; they cannot be pre-
sented here by lack of place.

V. CONCLUSION

In this paper, we presented a method for predicting the
behavior of cooperative algorithms in dynamic networks.
Starting from the observation of real scenarios, a complete
modeling of the network dynamic is obtained through so-
called p-dynamic graphs. Such a modeling is convenient for
expressing algorithmic properties characterizing their success
and/or performance. A simple tool chain then allows checking
such conditions without having to run long and complex
simulations. Our prediction method has been validated through
many experiments (a single one has been presented here as
illustration) and the results are promising. Such an approach
could allow giving safety guarantee before deploying a dis-
tributed vehicular cooperation algorithm; it could also help to
identify what to improve in order to reach better algorithmic
performance in a given deployment.

Though the method requires the formulation of algorithmic
properties, our examples show that this is not a serious
drawback. But this point will be confirmed in the future when
studying more cases. Another future work consists in the
integration of the packet losses directly into the modeling.

REFERENCES

[1] “A European strategy on Cooperative Intelligent Transport Systems,
a milestone towards cooperative, connected and automated mobility”,
European Commission.

[2] A. Matthias, “The responsibility gap: Ascribing responsibility for the
actions of learning automata,” Ethics and information technology, 6(3),
175-183, 2004.

[3] G. N. Frederickson, “Data structures for on-line updating of minimum
spanning trees, with applications,” In SIAM Journal on Computing,
14(4), 781-798, 1985.

[4] J. H. Reif, “A topological approach to dynamic graph connectivity,”
Information Processing Letters, 25(1), 65-70, 1987.

[5] B.-M. Bui-Xuan, A. Ferreira, and A. Jarry, “Computing shortest, fastest,
and foremost journeys in dynamic networks,” In International Journal
of Foundations of Computer Science, 14(2):267285, 2003.

[6] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro, “Time-
varying graphs and dynamic networks,” In International Journal of
Parallel, Emergent and Distributed Systems, 27(5):387408, 2012.

[7] A. Casteigts, P. Flocchini, B. Mans, and N. Santoro, “Measuring tempo-
ral lags in delay-tolerant networks,” IEEE Transactions on Computers,
63(2), 397-410, 2012.

[8] J. Enright, K. Meeks,G. B. Mertzios, and V. Zamaraev, “Deleting Edges
to Restrict the Size of an Epidemic in Temporal Networks,” In 44th Inter-
national Symposium on Mathematical Foundations of Computer Science
(MFCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,2019.

[9] G. B. Mertzios, H. Molter, R. Niedermeier, V.Zamaraev, and P.
Zschoche, “Computing Maximum Matchings in Temporal Graphs,”
In STACS (Vol. 154, p. 27), Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020.

[10] Altisen, Karine, et al. ”Self-stabilizing systems in spite of high dynam-
ics.” International Conference on Distributed Computing and Network-
ing, 2021.

[11] Casteigts, Arnaud, et al. ”Robustness: A new form of heredity motivated
by dynamic networks.” Theoretical Computer Science (vol 806, p. 429),
2020.

[12] B. Ducourthial, and A. Wade, “Dynamic p-graphs for capturing the
dynamics of distributed systems.” Ad Hoc Networks, 50, 13-22, 2016.

[13] A. Buisset, B. Ducourthial, F. El Ali, and S. Khalfallah, “Vehicular net-
works emulation,” In 2010 Proceedings of 19th International Conference
on Computer Communications and Networks (pp. 1-7). IEEE, 2010.

[14] A. Segall, “Distributed network protocols,” IEEE Transactions on Infor-
mation Theory, 1983.

410


