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Abstract—The increasing urbanization of society is resulting in 

numerous challenges. One of these challenges is transport 

congestion and the associated increase in pollution that is widely 

accepted as driving global warming. For many individuals and 

especially those with respiratory issues, e.g., those with asthma or 

chronic obstructive pulmonary disease, high levels of pollution can 

cause direct health events. The ability to measure pollution 

accurately in real time at disaggregated levels and subsequently 

avoid pollution hotspots is thus highly desirable. This paper 

describes a Cloud-based infrastructure and associated mobile 

application that utilizes real time, mobile pollution measurement 

technology to help individuals avoid pollution hotspots through 

real-time pollution-aware routing algorithms.   (Abstract)  

Keywords—Air pollution, Route planning, Airbeam technology, 

Particulate Matter. 

I. INTRODUCTION (HEADING 1) 

In recent years, air pollution has become an increasing 
problem as more and more people live in cities that are 
continually increasing in size. There are many challenges in 
such urbanisation with one major issue being traffic. Traffic 
congestion is an all too familiar problem facing major cities, 
especially given the continual dependence on fossil fuel-based 
cars. Such concentration of vehicles gives rise to pollution from 
exhausts that can have direct health impacts. Kim et al [1] found 
that major pollutants in air, such as volatile organic compounds, 
particulate matter and even biological matter such as dust mites 
directly contribute to and indeed often exacerbate diseases like 
asthma and allergies. Similarly, Ebba et al [2] found that air 
pollution is directly associated with increasing likelihood of 
premature babies and poor fetal growth. 

One of the major air pollutants from vehicles and indeed 
industry, is small particulate matter (PM). Small particles 
emitted from car exhausts and burning of fossil fuels within coal 
fire-based power stations are a major source of pollution. Such 
particles can be measured at different sizes including PM1.0 
(particles of 1 micron diameter), PM2.5 (particles up to 2.5 
microns in diameter) and PM10 (particles up to 10 microns in 
diameter). The number of particles is typically measured in 
given concentrations (micrograms of given particle type per 
cubic metre). 

At present such air quality pollution information is captured 
by government organisations such as the Environmental 
Protection Authority (EPA - www.epa.vic.gov.au). However, 
the data they collect is based on fixed locations. The distribution 

of these air quality data collection for sites around Melbourne is 
shown in Fig. 1. This data is subsequently used to provide a 
spread of information regarding pollution using approaches such 
as Kriging and interpolation [3]. However, such an approach 
ignores the real-world challenges of dispersal of air pollution. 
For example, one street can be highly polluted whilst a parallel 
street that is metres away can have minimal pollution based on 
the traffic patterns, the building facades and wind direction. The 
ability to capture such disaggregated air pollution data anywhere 
and in real time is thus highly desirable.  

 

Fig. 1: Location of Air Quality Stations Around Melbourne (EPA 2021) 

Many portable air pollution sensors have been developed to 
help people capture and understand localised air pollution. 
Aircasting (https://www.habitatmap.org/aircasting) is an end-to-
end, open-source platform that uses Airbeam technology to 
record, share and display such environmental data. The devices 
capture a range of data including PM10, PM2.5, PM1.0, 
temperature, humidity and sound information.  The devices are 
connected (via Bluetooth) with an Android app and capture 
second by second data. The apps use the location service in the 
phone for associated geolocation information. Such data can 
then be pooled together to provide aggregated data across given 
regions at a much higher spatial accuracy than would ever be 
possible using the data collection sites in Fig. 1. 

Fig. 2 shows an example of individual Airbeam data 
collected by the author as part of their daily commute (on a 
scooter) from the suburbs to the city centre Central Business 
District (CBD). As seen, the level of pollution increases (red 
line) towards the Melbourne CBD where there are many more 
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people, cars and skyscrapers that lock in air pollution and hence 
concentrate the pollution levels. It should also be noted that by 
and large Melbourne has extremely good air quality, but this is 
not always the case in the city centre and especially when 
external events take place such as thunderstorm asthma and 
bushfires – an increasingly common phenomenon in Australia. 

 

Fig 2: Airbeam data collection for individual commute of citizen scientist 

The real time aggregation of such data can be used to provide 
much more accurate air pollution data. This can be used for 
many things, e.g., warning people about excessive air pollution 
in specific streets and avoiding routes that are highly polluted 
would be advantageous.  

In this paper we described the realisation of a real time 
pedestrian routing algorithm that factors in pollution levels both 
at the start of a journey and as the pollution evolves throughout 
the journey. To ensure sufficient real time data was available, 
we focus specifically on the Melbourne CBD. This is the area 
that has the highest levels of pollution and also the most data 
collected using the Airbeam technology by Melbourne-based 
citizen scientists.   

The rest of the paper is structured as follows. Section II 
considers related work. Section III considers the pollution data 
collection process. Section IV presents the realisation of the 
mobile app that supports real-time pollution aware routing, and 
finally section V concludes the work and identifies potential 
areas of future work. 

II. RELATED WORK 

Air pollution has been a topic of major concern in recent years 
and a source of big data research challenges due to the size, 
volume and velocity of production/consumption. It is now 
widely recognised that the main sources of air pollution in cities 
stem from cars and burning of fossil fuels amongst other 
environmental factors, e.g., bushfires [4].  

Huang et al [5] explored pollution prediction based on Long 
Short Term Memory (LSTM) using a range of features in the 

data. Guan [6] explored big data analytics of a range of air 
pollution data sets including use of different models including 
linear regression, Artificial Neural Networks (ANN) and LSTM 
recurrent neural networks. They found that LSTM performed 
best and was able to predict high PM2.5 values with reasonable 
accuracy, whilst ANN and linear models have drawbacks in 
prediction of high PM2.5 values however they offered 
reasonable overall performance. 

Zhang et al [7] found that the accumulative effect of both 
medium-term-low-intensity over-exposure and shorter term, 
high-intensity exposure to PM pollutants posed serious threats 
to individuals. Lina et al [8] identified that PM 2.5 specifically 
often contained several kinds of heavy metals and the long-term 
accumulation of such heavy metals pose a great threat to people. 

In terms of routing and route planning, an A-star based 
mobile dynamic vehicle navigation system was developed by 
Shahzada and Askar [9]. This application considered dynamic 
and changing road conditions. The system had a range of 
functionalities including panning and zooming, geocoding, 
reverse geo-coding and routing. Nana et al [10] put forward a 
mobile phone application based on the ZigBee technology, 
which was able to monitor and control real-time intelligent 
systems remotely with specific focus on measurement of the 
concentration of PM2.5. However, such apps simply recorded 
levels of PM2.5 and not how to avoid hotspots nor how such real 
time changes to the routes using evolving data could be 
supported. 

Bell [11] proposed a multi-path A-star algorithm called 
Hyperstar for risk averse vehicle navigation. Wang and Xiang 
(2018) improved the A-star algorithm through incorporation of 
a range of orientation constraints. Ghose et al. [12] proposed a 
thin-client approach and associated set of metrics suitable for 
navigation using mobile devices. Sharma and Gandole [13] 
improved the thin client performance by reducing network 
latency and hence improved the speed of access to real time data. 
Neither of these works focused on pollution avoidance, 
however. 

Alam et al [14] showed that air pollution exposure data could 
be used as a targeted travel cost in route selection. They found 
that routing results based on travel time, distance and carbon 
dioxide levels were similar, but PM10 could cause a small 
increase in these values. They did not attempt to quantify the 
total amount of exposure to air pollution nor show how evolving 
data would impact the routes that were proposed.  

Vamshi and Prasad [15] demonstrated that routing only 
based on shortest distances causes traffic congestion in urban 
areas, and traffic junctions especially, i.e., where vehicles are 
more likely to be stationary, which subsequently lead to higher 
levels of air pollution. They proposed a dynamic route planning 
algorithm to balance the traffic flow to reduce the air pollution 
exposure based on minimising the number of junctions traversed 
and hence minimising locations with higher pollution. 

The algorithms above are mostly based on indirect air 
pollution data and use of non-real-time data. Air pollution 
mobile apps only provide feedback of monitored air pollution 
data to users at an aggregated level at best and they do not make 
use of real-time disaggregated data that can be used for decision 
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making and avoidance of air pollution hot spots that evolve in 
real time at the street level. In this paper, we present a mobile 
application and routing system that use real-time air pollution 
data collected by portable air pollution sensors to calculate the 
least polluted exposure routes between two given locations. We 
focus here on the Melbourne CBD however the app can in 
principle be used wherever real time pollution data is being 
captured. 

III. DATA COLLECTION 

The air pollution data used in this paper was sourced from a 

targeted version of the Aircasting platform hosted at the 

University of Melbourne and involving citizen scientist (users_ 

of the Airbeam technology. As mentioned, to ensure that 

sufficient data was available we focused on the Melbourne 

CBD. The main reason for this is the adoption of the Airbeam 

solutions for real time air quality data capture is not widespread 

across the population.  It is also the case that far more people 

live in the CBD and the traffic is far denser and more congested 

compared to the suburbs. There are also many more pavements 

and shops in the CBD where people will walk and thus able to 

benefit from real-time route planning and avoiding higher 

levels of pollution where possible. The Melbourne CBD itself 

is a moderately sized area of approximately 1km*1.8km (see 

Fig. 4) and hence this can be walked from corner-corner in a 

relatively short time-period (approx. 30mins).  

We selected PM2.5 as the indicator to reflect the 

concentration of air pollution and not all PM that can be 

collected by the Airbeam technology. This choice was made in 

part by the previous versions of the Airbeam technology only 

supporting PM2.5. More recent versions of the devices support 

PM1.0 and PM10. The raw data pollution data is stored in a 

mySQL database and call be pulled in real time to the mobile 

application through a targeted API. An example of the data in 

CSV format is shown in Fig. 3. This includes a timestamp, the 

latitude/longitude and the actual value of the PM2.5 recording. 

 
Fig. 3. Sample of the raw air pollution data 

 

The streets in the Melbourne CBD are naturally intertwined and 

cut into small blocks. Each crossing and street segment was 

mapped into a Java object to implement the route planning 

algorithm. The mean value of PM2.5 of each street segment is 

continuously calculated based on the data captured by citizen 

scientists. Where no new data was available, historical average 

data was used for the algorithm. Based on these mean values, 

we defined and colour coded three ranges of pollution exposure 

levels based on historical averages specific to the Melbourne 

CBD:  

• green (good) - PM2.5 lower than 2 μg/m3 

• yellow (medium) - PM 2.5 between 2-5 μg/m3 

• red (poor) - PM 2.5 higher than 5 μg/m3  

It is noted that the CBD has historically seen PM2.5 pollution 

levels over 300 PM μg/m3, however such events are rare, e.g., 

during bushfires. The colour coded pollution levels for a typical 

mid-day during the working week for the CBD are shown in 

Fig 4.  

       

Fig 4. Pollution levels across the CBD  

IV. IMPLEMENTATION OF THE ROUTING ALGORITHM 

The solution for pollution-avoiding route planning is realized 

through an Android mobile application. The app was required 

to support several core scenarios: 

1. A user uses the app to find their current location.  

2. The user sets their current location as a starting point 

and types (or selects on the map) another location as 

their intended destination.  

3. The least polluted route is calculated and shown.  

4. The user walks along the calculated path to reach their 

intended destination. 

5. As the user walks along the selected path, the route is 

continuously assessed and updated based on the real 

time updates to the pollution data from citizen 

scientists, and if needs be alternative (better) routes are 

calculated. 

6. The distance and pollution exposure of the routes are 

shown to the user for them to make decisions on the 

specific route to take. 

After choosing a starting point and intended destination, the 

user has the choice of either minimizing pollution exposure or 

minimizing the distance by clicking two buttons on the top of 

the map. Fig. 5 shows the difference between air pollution 

routing and normal routing. 
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Fig. 5. Difference between air pollution routing (left) and normal routing 

(right) 

 

To support this real time route planning, the algorithm realises 

the A-Star algorithm as the basis for the path finding method. 

The A-Star algorithm is one of the most popular heuristic search 

algorithms. It aims to find the path with the least cost from a 

given starting point to a given end point. In this work, the cost 

is based on the air pollution exposure and walking distance 

based on normal routing - typically the shortest distance. To 

support this, we use information on the roads and intersections 

of Melbourne CBD. Fig. 6 shows that there are 81 intersections 

and 144 road sections in the Melbourne CBD. Each segment of 

road will have an associated pollution level that is recorded and 

continually updated. 

 

Fig. 6. Intersections and road sections in the Melbourne CBD 

 

Each intersection shown in Fig. 6 has an id and associated 

geographic information. Each road section includes the length 

of the road and the current pollution index based on the average 

PM 2.5 value for that stretch of road. This average can be a 

historic average of the average of real time updates from 

multiple citizen scientists. The A-star algorithm proposes 

routes based on the actual cost from the start and an estimated 

cost value to the end of the path. This cost can be based on 

distance or other factors (such as pollution).  

The primary difference between air pollution routing and 

normal routing is how cost is calculated. The cost in air 

pollution routing is equal to the distance of the road multiplied 

by the average PM2.5 value for that stretch road. Thus, a long 

road with higher pollution value will lead to larger associated 

cost. The algorithm is continually updated with new data and 

recalculates the route with the least overall cost to the intended 

destination based on the length of the route and the accumulated 

pollution for the different paths that might be taken. The cost in 

normal A-star routing is based solely on the distance of the 

road, i.e., the shortest path is generally the preferred path. 

After finding the optimal route based on the extended A-

Star search algorithm, it is necessary to show the calculated 

route to the user and provide them with detailed information. 

The Google API is used to draw the calculated route on the map. 

A URL request is sent to the http-based Google API. The URL 

string includes the latitude/longitude information of the starting 

point and destination, together with waypoints at the relevant 

intersections. After fetching the response, polylines are drawn 

on the map that show the routing information through decoding 

the returned JSON object.  

The app also provides detailed routing information that can 

be displayed to the user at the bottom of the screen. Fig. 7 (left) 

shows the detail routing information and Fig. 7 (right) shows 

the total accumulated pollution exposure based on the route 

taken and the remaining route at that specific time together with 

the time taken in walking along the calculated route up to that 

point. 

 
Fig. 7. Detailed routing information (left) and accumulated exposure (right) 
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V. DISCUSSION 

The current realization of the mobile app demonstrates that the 

algorithm does indeed produce routes that minimize routes 

based on their air pollution levels. One of the challenges with 

this work is the amount of actual citizen scientists and hence 

data that is available to drive these real-world scenarios. The 

Airbeam technology works and accurately captures pollution 

information [16]. However, the devices are not cheap and 

unlikely to be adopted by the population at large. Organisations 

such as the EPA are currently exploring these devices as a 

mechanism to provide real time air pollution data at a 

disaggregated level. Such systems are not intended to replace 

the more accurate and more costly systems that are in place (as 

shown in Fig. 1) but to augment them with other sources of data. 

Activities are underway to use Internet of Things (IoT) devices 

for measuring air pollution at specific locations around Victoria 

– most notably on major thoroughfares where the devices are 

attached to overhead lighting and signage.  

The work described here is based on actual data collected 

by Airbeam devices from citizen scientists (approx. 3Gb data) 

however to demonstrate the real time evolving nature of 

pollution and the impact on the route-finding algorithm, this 

data is used to generated (seed) more data for the specific 

locations across the CBD. Ideally this representative but 

simulated data would not be necessary and official sources of 

such data would be directly accessible from given agencies. It 

is noted that other Government departments are making 

increased amounts of data available across Australia. For 

example, VicRoads (Department of Transport) now provide 

access to daily traffic patterns based on Bluetooth-based data 

captured across the road network. Such data is released on a 

daily basis however, this is after the fact and live access to real 

time traffic movement data is not yet supported. Such live data 

would be essential for an app such as this that calculated and 

provides live routing information. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we have realised a route planning algorithm using 

real time air pollution data collected by citizen scientists using 

Airbeam devices. This was delivered through an Android-based 

mobile application. Although recommended routes can 

sometimes be slightly longer than the shortest routes, we have 

shown how the algorithm can minimize people's exposure to air 

pollution. For many people, e.g., those with asthma, this may 

be a choice they are willing to make. 

The current version of the mobile app uses the Melbourne 

CBD as the focus area. The algorithm has been designed for 

scalability and larger scale routes have been demonstrated, e.g., 

involving routes outside of the CBD, however the benefit of 

large-scale route needs to be considered in terms of the 

diffusion of air pollution. Thus, the pollution levels at the start 

of a 5km walk that traverses the Melbourne CBD may bear no 

resemblance to the pollution levels towards the end of the walk. 

There are various ways that the work here can be improved. 

One obvious one is introducing air pollution prediction 

mechanisms, using real-time air pollution data and taking 

traffic flow information.  Big data pollution platforms for real 

time traffic analytics using Docker/Kubernetes Cloud scaling 

have been explored in [17,18].  

Given the real time high volume and high velocity demands 

arising from potentially thousands of citizen scientists, there is 

a need for stream-based data processing solutions that scale.  

Work has explored streaming technology platforms such as 

Kafka [19] and demonstrated how Cloud infrastructure can 

scale up and down as needs be, e.g., more resources are needed 

and used during rush hour. 

Air pollution can have many health impacts. Understanding 

the impacts of air pollution exposure on lung cancer or other 

respiratory conditions would be an obvious extension to this 

work. Drawing on projects such as the Australian Urban 

Research Infrastructure Network (AURIN – 

www.aurin.org.au), a wide range of definitive Government data 

sets are now widely accessible. Fig. 8 shows the incidence of 

lung cancer across Victoria using data from the Victorian lung 

cancer registry and other resources that may in part explain this 

distribution.  

   

Fig. 8. Lung cancer patient distribution across Victoria 

 

Fig 8 shows the number of patients per postcode in the 

choropleth map with darker reds indicating more patients; the 

centroids show the factories that pollute (PM2.5).  Not visibly 

shown is the number of vehicles travelling on the road network 

across Victoria. In short, the potential for use of such air 

pollution data to be captured and used together with other data 

sets is directly possible. 

Further extensions to the work include the use of app-based 

notifications related to higher levels of pollution. This could be 

used to tackle ad hoc major pollution events such as those 

caused by bushfires and or thunderstorm asthma. Numerous 

people died as a result of the last major incident of thunderstorm 

asthma in Melbourne in 2016 [20]. 
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