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Abstract—Telecom networks together with mobile phones must
be rigorously tested for robustness against vulnerabilities in order
to guarantee availability. RRC protocol is responsible for the
management of radio resources and is among the most important
telecom protocols whose extensive testing is warranted. To that
end, we present a novel RRC fuzzer, called Berserker, for 4G and
5G. Berserker’s novelty comes from being backward and forward
compatible to any version of 4G and 5G RRC technical specifica-
tions. It is based on RRC message format definitions in ASN.1 and
additionally covers fuzz testing of another protocol, called NAS,
tunneled in RRC. Berserker uses concrete implementations of
telecom protocol stack and is unaffected by lower layer protocol
handlings like encryption and segmentation. It is also capable
of evading size and type constraints in RRC message format
definitions. Berserker discovered two previously unknown serious
vulnerabilities in srsLTE – one of which also affects openLTE –
confirming its applicability to telecom robustness.
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I. INTRODUCTION

Context. Telecom networks enable not only mobile broad-
band connection, but also (increasingly) industry automa-
tion and critical communications. They are required to have
99.999% (five 9s) availability, which is less than six minutes
of downtime in a year [1]. To ensure high availability, telecom
networks must be rigorously tested for robustness against
failures.

Radio Resource Control (RRC) is a Layer 3 protocol used
for radio resource management between mobile phones and a
base station. The RRC protocol also tunnels an upper layer
protocol called Non-Access Stratum (NAS). Without graceful
handling of RRC messages, there would not be a communica-
tion channel. Therefore, it is imperative that the RRC protocol
(including the tunneled NAS protocol) is handled in a robust
manner by both the mobile phones and the network.

To ensure robustness, manufacturers need to perform two
broad categories of software testing, i.e., conformance and
fuzz testing. While conformance testing ensures that a System
Under Test (SUT) works properly with expected messages,
fuzz testing tries to identify vulnerabilities in the SUT by
sending unexpected messages [2]. Fuzz testing complements
conformance testing by discovering faults not identified by
the latter, e.g., buffer overflow and race conditions. Discovery
of faults contributes to a robust software by giving the man-
ufacturers an opportunity to fix them before the software is

shipped. Hence, fuzz testing of the RRC and the tunneled NAS
protocols is indispensable to ensure robust telecom networks.

Related work. BASESPEC [3] proposes Layer 3 testing by
comparing baseband firmware to cellular specification, how-
ever, such comparison is mainly limited to conformance testing
and not to fuzzing. BaseSAFE [4] fuzzes a mobile phone
baseband by collecting downlink messages; using AFL++ [5]
on those messages to generate a fuzzing corpus; and replaying
the corpus to the mobile phone baseband. LEFT [6] fuzzes
mobile phones but by perturbing the order of messages in a
modified concrete implementation of a base station. Works
such as LTEInspector [7], LTEFuzz [8], and 5GReasoner [9]
generate and use test cases based on manual analysis of 3GPP
technical specifications (TS). A major hurdle with fuzzing the
RRC protocol using the above-mentioned telecom fuzzers is
that they are tied to the implementation of a particular 3GPP
TS version. It makes the fuzzers non-backward compatible
with older SUTs and soon-to-be obsolete with newer SUTs,
because 3GPP TSes are continuously evolving for new features
and enhancements.

There are fuzzers like T-Fuzz [10] for NAS and T3FAH [11]
for SIP that are based on TTCN-3 schema and do not natively
embed message formats. But they too are not sustainable for
fuzzing the RRC protocol since RRC messages are not defined
in 3GPP TSes using TTCN-3 format.

Our work. Despite its importance – to our knowledge –
we see a research gap in fuzz testing of the RRC protocol
that can cope with continuously evolving 3GPP TSes. To fill
this research gap, we present the design and evaluation of our
backward and forward compatible RRC fuzzer for 4G and 5G
– called Berserker1.

Berserker relies on a concrete implementation of telecom
protocol stack and can fuzz test both the network side (uplink)
and the mobile phone side (downlink) as SUTs (§II). Berserker
acts as an additional shim layer in the concrete implementa-
tions and mutates or replaces RRC messages before they are
sent to lower layers and ultimately to the SUT. Thus, Berserker
is unaffected by lower layer protocol handlings like encryption,
integrity protection, segmentation, and scheduling.

1Berserkers are historic Nordic warriors known to be extremely furious;
the name represents our fuzzer that is ruthless with a system under test.
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We designed Berserker to obtain knowledge of RRC mes-
sages from whichever version of 3GPP TS 36.331 [12] for 4G
and TS 38.331 [13] for 5G it is provided with. It extracts
RRC Abstract Syntax Notation One (ASN.1) [14] schema
definitions directly from a 3GPP TS and compiles the extracted
schema to produce a corresponding encoder and decoder.

However, encoder and decoder based on the RRC ASN.1
schema follow constraints imposed by the ASN.1 schema on
what values a field can take; e.g., if a field is defined to be 40-
bits long, then the encoder cannot set that field to 80-bits long
value. To overcome this, we added a capability in Berserker
to mutate the RRC ASN.1 schema itself, e.g., changing the
field definition from 40-bits to 80-bits.

We evaluated Berserker with the open-source project,
srsLTE [15], in two configurations (§III): (a) srsUE as the
concrete implementation of 4G mobile phone; srsENB and
srsEPC as the 4G network SUT, and (b) srsENB and srsEPC
as the concrete implementation of 4G network; srsUE as
the 4G mobile phone SUT. Berserker discovered two serious
vulnerabilities in the srsEPC, thus proving its effectiveness
(§IV). Upon further investigation, we learned that one of them
is inherited from another open-source project, openLTE [16].

To summarize, our contributions are:
1) We designed a novel RRC fuzzer, Berserker, that is

both backward and forward compatible with continuously
evolving 3GPP TSes by extracting RRC ASN.1 schema
directly from any 3GPP RRC TS for 4G and 5G.

2) We present a technique of sidestepping constraints in
RRC ASN.1 schema by mutating the schema itself.

3) We evaluate the fuzzer using open-source components
in srsLTE and discovered two previously unknown se-
rious vulnerabilities in srsLTE, one of which also affects
openLTE.

4) We prove that RRC fuzzer can act a machinery to
effectively fuzz upper layer NAS protocol.

5) By using concrete implementations of telecom protocol
stack, we show that the RRC (and NAS) layer can be
fuzzed while staying unaffected by lower layer protocol
handlings.

Responsible disclosure. We have informed the srsLTE
team about the crash. For wider disclosure to commercial
manufacturers, other relevant open-source projects (including
openLTE) as well as their users, we are coordinating with
Ericsson’s PSIRT.

II. BERSERKER: RRC FUZZER FOR 4G AND 5G

Berserker comprises of two main components called Fuzzer
and Driver as shown in Fig. 1. In what follows, we give detail
description of these components.

A. Berserker Fuzzer

Berserker Fuzzer component is responsible for fuzzing the
RRC messages (including the tunneled NAS messages). It
supports both: mutating the contents of an existing RRC
message – called mutation-based fuzzing – and generating
a new RRC message from scratch – called generation-based
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Fig. 1: Components of Berserker. When RAN/CN are the
SUTs, only the UE’s UL messages are fuzzed while the
RAN/CN’s UL/DL protocol handlings are untouched. When
UE is the SUT, only the RAN/CN’s DL messages are fuzzed
and the UE’s UL/DL protocol handlings are untouched.

fuzzing. When doing mutation-based fuzzing, Berserker con-
forms to the ASN.1 constraints of the original RRC message.
When doing generation-based fuzzing, Berserker replaces the
original RRC message with a random RRC message. The
replaced message could be of a different type than the original
message as well as not conforming to the original ASN.1
constraints.

It implements no part of RRC procedure handling and state
management, instead relies on a concrete implementation of
UE (for uplink fuzzing) and RAN/CN (for downlink fuzzing)
to setup the communication in a state that RRC messages are
sent to the SUT. The protocol handling of SUTs (RAN/CN for
uplink fuzzing and UE for downlink fuzzing) are untouched.

Berserker operates as below: acts as an additional shim
layer in the concrete implementation between the Layer 3 and
the lower layers; intercepts RRC messages in Layer 3 before
they are passed down to lower layers; fuzzes or replaces the
intercepted RRC messages; and passes down the fuzzed or
replaced messages to lower layers. It comprises of following
sub-components:

RRC ASN.1 schema extractor. This component extracts all
RRC message definitions from a 3GPP RRC TS and produces
an original RRC ASN.1 schema. First, an appropriate version
of RRC TS is manually identified based on what is suitable for
testing, e.g., which version the concrete implementation of UE
or RAN/CN, and the SUTs support. Different versions of RRC
TSes for 4G and 5G are publicly available as MS Word files
[12], [13]. Next, this component extracts the complete RRC
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TABLE I: Mutation strategies for RRC ASN.1 schema

Strategy Description (examples relate to TS 38.331 [13])

Change primitive
data types

Change type of data that are BOOLEAN,
INTEGER, ENUMERATED, OCTET STRING,
and BIT STRING. E.g., change spare from BIT
STRING to BOOLEAN.

Change
structured data
types

Change type of data that are SEQUENCE,
SEQUENCE OF and CHOICE. E.g., change
rrcSetupRequest from RRCSetupRequest-IEs to
InitialUE-Identity.

Extend options
Add new options for data that are ENUMERATED,
SEQUENCE and CHOICE. E.g., add fuzz-code1 to
EstablishmentCause.

Reduce options
Remove existing options for data that are
ENUMERATED, SEQUENCE and CHOICE. E.g.,
remove randomValue from InitialUE-Identity.

Scramble options

Change the order of options for data that are
SEQUENCE and CHOICE. E.g., change the order
in RRCSetupRequest-IEs to spare, ue-Identity,
establishmentCause.

Change size

Change upper and lower limits of size for data that
are INTEGER, OCTET STRING, BIT STRING,
and SEQUENCE OF. E.g., change the size of
ng-5G-S-TMSI-Part1 from 39 bits to 99 bits.

ASN.1 schema into a single plain text file which contains all
the text paragraphs between an ASN1TSTART tag and the
following ASN1STOP tag in the order they appear throughout
the TS.

RRC ASN.1 schema mutator. It mutates a RRC ASN.1
schema to sidestep the constraints in that schema. The intuition
behind sidestepping constraints in the schema is to increase
chances of finding bugs in SUTs by sending partially or
completely non-conforming RRC messages. This component
takes an original RRC ASN.1 schema produced by the RRC
ASN.1 schema extractor, performs various mutation strategies
(listed in Table I), and produces a mutated RRC ASN.1 schema.

RRC ASN.1 compiler. This component takes the original
and mutated RRC ASN.1 schema files, which are platform
agnostic plain text files, and compiles them to produce
programing language specific encoder and decoder of RRC
messages.

RRC ASN.1 encoder and decoder. Encoder converts
programming language specific RRC message structures into
ASN.1 encoded series of bytes, and decoder does the opposite.
They conform to constraints in the schema from which they
were compiled. Berserker has one encoder and decoder pair
compiled from the original RRC ASN.1 schema, and an-
other (only) encoder compiled from the mutated RRC ASN.1
schema. So, there is one decoder that takes the intercepted
RRC Protocol Data Unit (PDU) – ASN.1 encoded series of
bytes – from the concrete UE or RAN/CN implementation,
and produces a decoded RRC message structure. It is required
for the decoder to conform to the original RRC ASN.1 schema
because otherwise decoding of the intercepted RRC PDU will
fail. There are two encoders. We discuss their use below.

RRC PDU mutator. It is responsible for mutation-based
fuzzing in which the contents of an existing message are
modified. It takes the decoded RRC message from the decoder;
performs various mutation strategies listed in Table II; and

TABLE II: Mutation and generation strategies for RRC mes-
sages

Data typea Strategyb

BOOLEAN
(primitive) Randomly set to True or False.

INTEGER
(primitive)

Set to random integer within the corresponding
SIZE constraints.

ENUMERATED
(primitive)

Set to a random chosen option from corresponding
enum options.

BIT STRING
(primitive)

If bounded by SIZE constraints, set to a random bit
series of random length within the SIZE
constraints. Otherwise, if unbounded, set to a
random bit series of length 8000c. (or use
radamsad)

OCTET
STRING
(primitive)

If bounded, set to a random octet series of random
length within the SIZE constraints. Otherwise, if
unbounded, set to a random octet series of length
1000c. (or use radamsad)

SEQUENCE
(structured)

For mutation, traverse to find primitive data types,
and apply corresponding strategy above when
found. For generation, traverse for structured and
primitive data types, and initialize them with
corresponding strategy above.

SEQUENCE OF
(structured)

For mutation, traverse to find primitive data types,
and apply corresponding strategy above when
found. For generation, initialize a random number
of corresponding structured or primitive data type
with corresponding strategy above.

CHOICE
(structured)

For mutation, traverse to find primitive data types,
and apply corresponding strategy above when
found. For generation, randomly choose one of
corresponding options and initialize the chosen
structured or primitive data type with
corresponding strategy above.

OPTIONAL
(qualifier)

For mutation, remove included field or include
missing field. For generation, randomly choose to
include field. If included, initialize with
corresponding strategye above.

Specific name
(custom, for all
data types)

In mutation, a specific field name can be chosen if
multiple fields are of same type. Not used in
generation.

Perturbation
(custom, for
messages)

Not used in mutation. In generation, messages are
replaced out-of-order.

aWorking on ASN.1 data types instead of concrete RRC fields makes
Berserker generic to any version of 4G and 5G 3GPP RRC TSes.

bStrategies for both the mutation- and generation-based fuzzing always
conform to the constraints of underlying ASN.1 schema. In generation
-based fuzzing, sidestepping the constraints comes from the fact that
the underlying schema is mutated, not from non-conforming strategy.

cThe chosen length is based on our empirical observation with
srsLTE that messages above certain length do not get transferred,
although up to 8188 octets should have been supported [17].

dradamsa is an open-source general-purpose fuzzer [18].
eIn a so-called Christmas tree message, all optional fields are included.

produces a mutated PDU (called RRC PDU*) using the RRC
ASN.1 encoder (compiled using original RRC ASN.1 schema).
This RRC PDU* is then forwarded to lower layers. We note
that, encoder used by this mutator component conforms to
original RRC ASN.1 schema. It is our design choice to focus
mutation-based fuzzing within same constraints as of the
intercepted RRC PDU. This way, it is guaranteed that the RRC
PDU* will never be early rejected by the SUTs (assuming
robust SUTs) because of non-conformance.

RRC PDU generator. This component does generation-
based fuzzing in which a new message is generated from
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scratch. It instantiates a randomly chosen empty RRC mes-
sage; fills the content based on various generation strategies
listed in Table II; generates a RRC PDU* using the RRC
ASN.1 encoder compiled from the mutated RRC ASN.1
schema; and replaces the original RRC message with the RRC
PDU*. This RRC PDU* is submitted to lower layers.

This component performs two types of tests on the SUTs.
One type is to test how the SUTs handle RRC messages
(including tunneled NAS) deviating from constraints in the
original RRC ASN.1 schema. In this case, the encoder used by
this component conforms to the mutated RRC ASN.1 schema.
Another type is to test how the SUTs handle out-of-order
messages (also known as perturbation or sequence fuzzing). In
this case, we made a design choice to not mutate the schema,
meaning that the encoder is as good as conforming to the
original RRC ASN.1 schema. By doing so, the RRC PDU*
will not be early rejected by the SUT on account of non-
conformance.

B. Berserker Driver

Berserker Driver component is responsible for monitoring
the concrete UE or RAN/CN implementations, and the SUTs;
and providing feedback to the Berserker Fuzzer component.
It also orchestrates the fuzzing by e.g., controlling seed
for randomness; configuring mutation strategies for ASN.1
schema; configuring mutation and generation strategies for
RRC messages; triggering transfer of RRC messages; restart-
ing the concrete UE or RAN/CN implementations, and the
SUTs if unresponsive.

III. EXPERIMENTS

Components. In order to evaluate Berserker’s design (Fig.
1), we did experiments by using the components listed in
Table III. Among them, asn1c [19] and srsLTE [15] are the
most prominent. asn1c is an open-source ASN.1 compiler
that converts ASN.1 schema into C source code (compatible
with C++). srsLTE is an open-source implementation of 4G
protocol stack written in C++ and comprising of a CN (called
srsEPC), a RAN (called srsENB), and a UE (called srsUE). We
chose srsLTE because not only it is popular among telecom
security researchers, but also an open-source implementation
of 5G protocol stack was unavailable at the time of writing
(OAI’s [21] 5G RAN and 5G CN are not yet 5G ready).
We note that although our experiments are in 4G, they are
sufficiently general because the control plane protocol stack is
layered in the same order in 4G and 5G, and the RRC protocol
in both are defined using ASN.1. For mutation-based fuzzing
of BIT STRING and OCTET STRING, we used radamsa [18]
in addition to random data.

RRC and NAS messages in our experiments. Berseker
covers all messages observed during an initial attach
procedure in srsLTE. In uplink, Berserker covers six
RRC messages (RRCConnectionRequest, RRCConnection-
SetupComplete, ULInformationTransfer, SecurityModeCom-
plete, UECapabilityInformation, and RRCConnectionRecon-
figurationComplete) and four NAS messages (AttachRequest,

TABLE III: Experiment components

Component Details

SUTs

srsENB/srsEPC (for uplink fuzzing) and srsUE (for
downlink fuzzing) applications in srsLTEa. srsENB
terminates RRC, srsEPC terminates NAS, and srsUE
terminates both RRC and NAS. Inactivity timer at
srsENB was set to 5 seconds.

Concrete im-
plementations

srsUE (for uplink fuzzing) and srsENB/srsEPC (for
downlink fuzzing) applications in srsLTEb. They
generate RRC and NAS (tunneled in RRC) messages
and send them to SUTs.

RF front-end ZeroMQ-based RF driverc provided by srsLTE. It
exchanges IQ samples over TCP.

3GPP RRC
TS

3GPP TS 36.331 [12] version 15.4.0 (2019-02-19). It
was chosen based on what srsLTE supports. It is a MS
Word file sized 11.9 MB.

RRC ASN.1
schema
extractor

Our inhouse toold. It extracts RRC ASN.1 schema
from a 3GPP RRC TS. The extracted schema from the
above TS is a plain text file sized 668 KB.

RRC
specification
mutator

A Python (version 3.8) script. It produces a plain text
file with mutated RRC ASN.1 schema. There are
multiple mutated files.

RRC ASN.1
compiler

asn1c. We use a forke [19] of original asn1c to
simultaneously work with encoders and decoders
compiled from different ASN.1 schemas.

RRC
encoders and
decoder

Namespace-separated custom wrapper around C files
produced by the fork of asn1c.

Shim, RRC
mutator, and
generator

Integrated into send_<ul,dl>_ccch and
send_<ul,dl>_dcch functions in srsUE’s
src/stack/rrc/rrc.cc (for uplink fuzzing) and
srsENB’s src/stack/rrc/rrc.cc (for downlink
fuzzing). radamsaf is also integrated here.

Driver Combination of bash scripts and configuration files.

Test
machines
(virtual)

4 x (4GB RAM, Intel Xeon E3-12xx v2 of x86 64),
1 x (10GB RAM, Intel(R) Core(TM) i5-8350u CPU @
1.70ghz) all using Ubuntu 18.04 64-bit with gcc
version 7.5.0. Each virtual machine had a complete
experiment setup.

a, bsrsLTE – c892ae56be5302eaee5ca00e270efc7a5ce6fbb2 commit tag,
Release 20.04.1.

cAn actual RF front-end and transmission on the air interface is
unnecessary for our purpose of fuzzing the RRC protocol since

Berserker is unaffected by lower layer protocols.
dAn alternative publicly available tool is at [20]. Clause A.3.1.1 in [13]
describes how one can make their own extractor.

easn1c fork – 27eaf82abed937a2da5a5fd9e0d4076d9abcfc75 commit tag.
fradamsa – d71c384bafb53865a561684035fbea1cf6c76734 commit tag.

AuthenticationResponse, SecurityModeComplete, and Attach-
Complete). In downlink too, it covers six RRC messages
(RRCConnectionSetup, DLInformationTransfer, SecurityMod-
eCommand, UECapabilityEnquiry, RRCConnectionReconfig-
uration, and RRCConnectionRelease) and four NAS messages
(AuthenticationRequest, SecurityModeCommand, AttachAc-
cept, and EMMInformation). When doing mutation-based
fuzzing, the RRC messages (including tunneled NAS mes-
sages) are modified. When doing generation-based fuzzing,
they are replaced with any RRC message (that may include a
tunneled NAS message) available in the RRC ASN.1 schema.

Collecting results. The Driver continuously triggers RRC
messages by either (re)starting the srsUE or by initiating an IP
ping request via srsUE. It stores all the mutated and generated
RRC PDUs produced by the Fuzzer (PDU* in Fig. 1) and
application logs from srsUE, srsENB and srsEPC.

During mutation-based fuzzing, 44,383 uplink and 17,293
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TABLE IV: Partial results from mutation-based fuzzing –
UECapabilityInformation

Fuzzing strategies
Mutated

RRC
PDUs

Added time
for fuzzing

(ms)

Seeds
used

INTEGER 67 0.29-2.08 0-10
ENUM 72 0.33-2.03 0-10
OCTET STRING 81 0.23-3.23 0-100
Append to ueCapabilityRAT-Container 6431 0.32-4.14 0-100
Append to ueCapabilityRAT-Container
and include optional fields 2905 0.46-5.01 0-100

Fuzz existing and append to
ueCapabilityRAT-Container, include
optional fields

93 0.41-3.66 0-100

Include optional fields 3098 0.35-4.59 0-100
INTEGER and ENUM 1431 0.34-3.77 0-50
radamsa fuzzing OCTET STRING 133 0.56-5.71 0-100

TABLE V: Partial results from generation-based fuzzing –
UECapabilityInformation

ASN.1
specifica-
tion
mutation

Mutation selected
Replaced

RRC
PDUs

Added time
for fuzzing

(ms)

Change
structured
type

UE-CapabilityRAT-ContainerList from
“SEQUENCE (SIZE
(0..maxRAT-Capabilities)) OF
UE-CapabilityRAT-Container” to
“UE-CapabilityRAT-Container”

45 0.61-3.66

UE-CapabilityRAT-ContainerList to
UECapabilityInformation-v8a0-IEs 60 0.64-3.38

Extend
options in

RAT-Type: add new-field1, new-field2,
new-field3 49 0.49-3.79

UECapabilityInformation-r8-IEs: add
new-field of type
UE-CapabilityRAT-ContainerList

54 0.55-8.74

Change size
constraints
of

RRC-TransactionIdentifier to
INTEGER (0..31) 46 0.63-6.13

ueCapabilityRAT-Container to OCTET
STRING (SIZE(20)) 46 0.59-3.29

Perturbationa Send other UL-RRC messages in
place of UECapabilityInformation 11 0.51-4.30

aUses non-mutated ASN.1 schema while generating other RRC messages.
Seeds 0-10 were used for all cases.

downlink RRC messages were mutated. During generation-
based fuzzing, 2,598 uplink and 1,997 downlink RRC mes-
sages were replaced. Partial results from our experiments are
shown in Table IV and V for UECapabilityInformation which
is only one of 12 RRC messages. Full results could not be
included due to page limitation, but could be made available
upon request.

Table IV is for mutation-based fuzzing where each row
indicates the strategies used by Berserker’s RRC PDU mutator
according to Table II. Table V is for generation-based fuzzing
where each row identifies the mutations on ASN.1 schema
according to Table I; not all mutations are listed; during per-
turbation, in addition to mutating ASN.1 schemas, Berserker
sends other RRC messages that are generated using original
ASN.1 schema.

Seeds make the experiments reproducible by serving as
initialization values for randomizations; and also, they limit
the number of iterations. We manually choose stop value for
seeds (also) depending on what is being fuzzed. For example,
only 8 iterations are sufficient for an ENUMERATED type
with 8 options; and only few hundreds of values are iterated
instead of all possible values (240) for a BIT STRING of SIZE

0 1 2 3 4 5 6 7 8
milliseconds

rrcConReq: UL

rrcConSet: DL

rrcConSetCmp: UL

dlInfTra: DL

ulInfTra: UL

secModCmd: DL

secModCmp: UL

ueCapEnq: DL

ueCapInf: UL

rrcConRecnf: DL

rrcConRecnfCmp: UL

rrcConRel: DL

Mutation
Generation

Fig. 2: Box plot of the Fuzzer time cost, i.e., time taken
between receiving a RRC PDU and producing a RRC PDU*.
Outliers and radamsa are omitted.

40. We also note that the number of fuzzed or replaced RRC
messages vary even for the same stop seeds. It is because the
srsUE sometimes performs several reconnection attempts itself
without trigger from the Driver.

Filtering out false positives. The Driver identifies un-
expected behavior, e.g., becoming unresponsive or crash-
ing, of the SUTs through their logs. The srsLTE applica-
tion logs have a line “srsLTE crashed... backtrace saved in
‘./srsLTE.backtrace.crash’...” when the application crashes.
But all the unexpected behaviors are not necessarily caused by
the Fuzzer; some may be caused by artifacts of the applications
themselves. In order to filter out false positives, the Driver has
an automated replaying mechanism of RRC PDU* to confirm
the unexpected behavior across multiple machines.

IV. FINDINGS

Two vulnerabilities in srsEPC. Berserker found two previ-
ously unknown vulnerabilities, both of which cause the srsEPC
– the CN part of srsLTE – to crash. One of them was found
through mutation-based uplink fuzzing and another through
generation-based uplink fuzzing. The root cause of one vul-
nerability is buffer overflow because of improper parsing of
a NAS message. It is triggered by a fuzzed RRC message
(RRC PDU* from mutation-based fuzzing) that tunneled a
NAS message. We observed “stack smashing detected” error;
it originates from safety mechanism against buffer overflow in
C++ applications compiled using gcc. The other vulnerability’s
root cause is invalid memory address access because of
improper security processing of a NAS message. It is triggered
by a replaced RRC message (RRC PDU* from generation-
based fuzzing) that causes the srsEPC to crash.

Because of the sensitive nature of telecom networks, we do
not disclose the exact byte sequences or message names in this
paper. But full details could be made available via Ericsson
PSIRT.
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One vulnerability in openLTE. We investigated fur-
ther and learned that srsLTE uses some lines of codes
from openLTE [16] (another open-source LTE project) for
parsing NAS messages. We fed the fuzzed RRC mes-
sage, that caused buffer overflow in srsLTE, into openLTE
(a5a66ed660e6094a9f50f7e00a0e9805dfbac724 commit tag,
30th Jul 2017 – the latest commit at the time of writing) and
discovered that openLTE crashes too. This suggests that the
buffer overflow vulnerability in srsLTE came from openLTE’s
code base.

Effect in srsENB and srsUE. In our experiments, Berserker
did not identify any fuzzed RRC message that crashes srsENB
or srsUE. Although, during generation-based fuzzing (that uses
mutated RRC ASN.1 schema), their application logs contain
several errors like “Invalid field access”, “Buffer size limit was
achieved”, and “Failed to unpack”. It is yet to be seen if
running Berserker for more time (with higher stop values for
seeds) will uncover any vulnerability in srsENB and srsUE.

Time cost. The Fuzzer time cost, shown in Fig. 2, is the
time taken between receiving a RRC PDU and producing a
RRC PDU*. For uplink fuzzing, delay requirements on the
UE side are relevant, which are specified in Clause 11.2 of
3GPP TS 36.331 for 4G with minimum requirements up to
10ms. Similar requirements for 5G are defined in Clause 12
of 3GPP TS 38.331, which are more stringent with minimum
requirements up to 5ms. As seen in Fig. 2, Berserker mostly
introduces 1-2ms of delay for uplink fuzzing which is well
within the range of 4G and 5G requirements. In downlink,
RAN itself is responsible for scheduling and 3GPP RRC
TSes do not specify delay requirements on the RAN side.
Nevertheless, as seen in Fig. 2, Berserker introduces 1-3ms of
delay for downlink fuzzing, which is in similar range as for
uplink.

V. CONCLUSION AND FUTURE WORK

Berserker’s ASN.1-based design shows good results by
discovering previously unknown vulnerabilities in two open-
source telecom projects, srsLTE and openLTE. Its main advan-
tage comes from requiring minimal maintenance after initial
integration with a system under test, because it is compatible
with any version of 4G and 5G 3GPP RRC technical speci-
fications. Berserker can sidestep the constraints on sizes and
types imposed by RRC ASN.1 schema and is unaffected by
lower layer protocol handlings. It covers fuzzing of not only
the RRC protocol but also the NAS protocol tunneled in RRC.
In fact, the discovered vulnerabilities are caused by improper
parsing and security processing of NAS messages by the
network. Discovery of vulnerabilities provides manufacturers
of mobile phones and network equipments an opportunity
to fix them. Hence, Berserker is very relevant to increasing
telecom networks’ robustness.

For future work, ability to probe the SUTs’ system re-
sources like CPU and memory usage would be a useful
addition to Berserker. Berserker also needs to be upgraded
for coverage-guided fuzzing and integration with symbolic
executions. Further, when Berserker sends out-of-sequence

messages in generation-based fuzzing, it does so in random
without any knowledge of RRC or NAS protocol states,
therefore, Berserker could be enhanced to do smart sequence
fuzzing.
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