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Abstract—This paper designs Artificial Intelligence (AI)
method, to determine an optimal trajectory for an Unmanned
Aerial Vehicle (UAV) mounted mobile base station to maximize
its coverage of distinct users. Determining such an optimal
trajectory for arbitrarily distributed users over an area is, in
general, difficult and there is no closed-form solution. Since the
users are arbitrarily located the method must adapt accordingly.
To accomplish this, the problem is formulated in a way that
is compatible with Reinforcement Learning (RL) and two AI
approaches are designed to learn an optimal trajectory. The
first uses Deep Reinforcement Learning (DRL) implemented
with a Deep Q-Network (DQN) while the second is a reward-
based greedy algorithm. It is shown that these new algorithms
significantly outperform the state-of-the-art previously proposed
deep learning based approaches. Moreover, the simple AI-based
greedy approach is shown to perform close to the DQN-aided
DRL algorithm at a much lower computational complexity at
least in the type of scenarios considered in this paper.

Index Terms—Deep Q-Network (DQN), Deep Reinforcement
Learning (DRL), optimal trajectory learning, Unmanned Aerial
Vehicles (UAVs), wireless user coverage, greedy algorithm.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have gained popularity
over the years for use in military and civil applications [1],
[2]. In civilian areas, UAVs have gained traction for use in
wireless communication systems. In particular, they have been
considered as flying base stations to provide wireless coverage
to areas that are inaccessible via traditional mobile base
stations [3], [4]. For example, wireless transceivers mounted
on UAVs can act as portable mobile base stations that can be
deployed in scenarios including floods, earthquakes, wars and
other similar disasters [5].

Similar to a traditional fixed base station, a UAV-mounted
base station will have a limited radius of coverage. However,
unlike a traditional fixed base station, a UAV-mounted base
station’s flying and serving time will be limited by its bat-
tery life. However, a UAV-mounted base station allows for
choosing a path that maximizes the number of distinct ground

users covered [6]. The total flying time of the UAV can be
divided into intervals of equal duration. At each time instant,
the UAV flies over a location covering a set of users and for
the next time interval it moves to another location covering
a different set of users [6]. The set of locations the UAV
traverses from the beginning to exhaustion of its energy is
called its trajectory [5], [6]. This gives rise to the optimal
trajectory planning problem for a UAV-mounted base station
where optimality can be defined as maximizing the number of
distinct users served by the UAV before it runs out of battery
life.

The trajectory has to be fair in a sense that no set of users
must be favored over the other. In other words the UAV should
provide a fair coverage. Choosing such a trajectory that covers
as many users as possible can be difficult. Finding an optimal
trajectory using brute force method can be computationally
expensive and inefficient. In this scenario, using artificial
intelligence (AI) and learning based algorithms can be a
promising approach.

Over the past few years, several innovative techniques have
been proposed to provide better coverage to ground users
by deploying UAVs. For example, the authors of [5] discuss
how UAVs can be placed in such a way that every ground
terminal is connected to at least one base station. This ensures
that every user is connected to a mobile base station. When
users are spread across a large geographical area, however,
a large number of UAVs are required which may not always
be feasible. Providing coverage for arbitrarily distributed set
of users by strategically placing a single UAV is discussed in
[7]. The authors developed a modified knapsack algorithm to
find the optimal height and coordinates for the UAV mounted
base station to cover as many users with guaranteed data
rates. However, a single stationary UAV might not always
be able to serve all users owing to its limited radius of
coverage. The authors of [8] discussed deployment of multiple
UAV base stations in disaster struck areas. The authors used

2021 Fourteenth International Workshop on Selected Topics in Mobile and Wireless Computing

978-1-6654-2854-5/21/$31.00 ©2021 IEEE 13



Artificial Bee Colony (ABC) algorithm to place the UAVs
in a way that maximizes network throughput. However, the
energy limitations of UAVs were not taken into account. The
authors of [9] discussed deployment of a UAV in a dynamic
environment where the UAV has to provide coverage to a non-
stationary set of users. The authors used majority vote rule
wherein the UAV moves to a spatial location with the greatest
number of users. This, however, has some limitations: the
majority rule will be biased against smaller sets of users and
such users might not be provided a fair coverage. Using UAV
as a relay between a fixed base station and a mobile terminal to
reduce the probability of outage was considered in [10]. This
method indeed reduces the outage for users located at places
that are outside the coverage of the base station. However,
if there are clusters of users, each of which are outside the
coverage area and are at different places, then additional relays
would need to be deployed to provide coverage to each such
cluster of users which might not be possible or desirable.

For arbitrarily distributed users, [11] used a genetic algo-
rithm based K-means (GAK) to partition the area into cells
and then used Q-Learning algorithm for initial placement and
movement of multiple UAVs based on Quality of Experience
(QoE). The authors of [6] extended the approach of [11] by us-
ing Q-learning and Deep Q-Learning (DQL) based approaches
for finding a path that maximizes fairness and number of users
covered using single and multiple UAVs. To ensure all users
are treated fairly, [6] incorporates Jain’s Fairness index [6] into
the reward function of Q-learning and DQL algorithms. Using
this modified reward function, [6] was shown to outperform
the approaches proposed in [11].

Although the Q-Learning and DQL based methods of [6]
seem to outperform previous results of [11], a closer look
shows that it has some serious drawbacks. For instance, the
authors used coverage history of all the users up to that time
instant, along with location of the UAV and its battery level,
as input to the Q-Learning and DQL algorithms. As a result,
the dimension of the input changes as the number of users
is changed. Hence, the number of users must be known in
advance and the resulting ML model can only be used when
the number of users is exactly equal to the number of users
for which the DQL agent was trained.

In this paper, we first recast the optimal trajectory planning
problem considered in [11] and [6] by generalizing it as
a problem of maximizing the coverage for distinct users.
Then, we propose two AI-based approaches to find an optimal
trajectory for a UAV-mounted base station that not only avoids
the drawbacks of [6] but also significantly outperform both [6]
and [11].

The remainder of the paper is organized as follows: Section
II formulates the optimal trajectory planning problem for a
UAV-mounted base station. Section III discusses the proposed
methods for learning an optimal trajectory for a UAV. Section
IV presents performance results of the proposed methods and
compares them to the state-of-the-art methods found in the
existing literature. Finally, section V concludes the paper by
discussing further improvements that can be pursued in future.

II. PROBLEM FORMULATION

A. System Model
As in [6], a square geographical area of length L is divided

into M number of square cells each of identical size as
shown in Fig. 1. An arbitrary, and unknown, number of users
are assumed to be spread uniformly across this area. We
assume that the UAV maintains a fixed altitude precluding
the actions of moving up or down. In many situations this
may make sense in order to provide uniform coverage while
simplifying interference management among multiple UAVs
and subscribers [6], [12]. For simplicity, the UAV is restricted
to hover only in the corners and centers of the cells, so that
there are 2

√
M(
√
M +1)+ 1 possible hovering points. If we

assume that the coverage radius of the UAV base station is
l/2, where l is the side-length of a square cell, then the UAV
base station will be able to provide coverage to any user from
one of the possible hovering points.

Fig. 1. A UAV hovering at location (500,500). The UAV coverage radius is
represented by the green circle. The blue dots indicate the users and the 41
red crosses represent the possible hovering points.

The limited battery life of a UAV, however, imposes a
constraint on the total flying time of the UAV. As with [6],
[11], we divide the total flying time of the UAV into N slots
of equal length. At each time slot, the UAV can be in any
of the 2

√
M(
√
M + 1) + 1 hovering points providing service

to users located within the coverage radius. As can be seen
from Fig. 1, the possibility of all ground users being covered
when UAV is hovering over any fixed point is highly unlikely
justifying the need for a UAV to traverse a trajectory over
the given geographical area to find and provide coverage to
distributed users.

Although a UAV is capable of moving in any direction, for
the sake of simplicity, we assume that the UAV is restricted
to move in nine directions namely: North, North-East, East,
South-East, South, South-West, West, North-West or be sta-
tionary. Note that, despite this restriction, a UAV will still
be able to provide coverage to any location starting from an
arbitrary hovering point in finite number of steps.
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B. Deep Q-Learning

A reinforcement learning algorithm consists of an environ-
ment and an agent. At each time step t, the agent observes
the state of the environment at that time represented as St,
takes an action appropriate for that state and time given by
at and receives a scalar reward rt depending on the action
and the environment’s transition to a new state St+1. For any
given state, the agent should take an action a that maximizes
the sum of discounted expected future rewards [13]. In the
case of Q-Learning, this is done by looking up the Q-table
and selecting an action that has the highest expected future
rewards:

at = argmax
a

Q(St, a)

Note that, Q(St, a) is a function of the two variables St and
a. A Q-table approach to learning the function Q(St, a) works
if both St and a were to take values on finite sets. Even then,
unless the number of actions and possible states are relatively
small, the Q-table approach may not be convenient in practice.

The Deep Q-Network (DQN) approach for RL proposed in
[15], instead uses a deep neural network (DNN) as a function
estimator to learn the Q(St, a). The DQN makes use of an
experience replay [15] where a replay memory is used to store
tuples of transitions consisting of: The State St, the action
at taken for that state, reward obtained by taking that action
rt and the resulting new state St+1. At every time step, the
DQN is trained by sampling a random batch of tuples from
this experience replay memory. The Algorithm 1 details the
DQN-based RL approach.

Algorithm 1 DQN Algorithm
1: Initialize policy network Q(s, a) with random weights
2: Set target network Q′(s, a) with the same weights
3: Set ε = 1
4: Create a replay memory with
5: for episode = 1 to M do
6: for time t = 1 to N do
7: Generate a random number w between 0 and 1
8: if ε > w then
9: Take a random action at

10: else
11: Take action: at = argmaxaQ(St, a)

12: Store transition: (St , at , rt , St+1) into buffer
13: Sample random batch of transitions from the buffer
14: if Episode ends at t+ 1 then
15: Set yt = rt
16: else
17: Set yt = rt + γmaxa′ Q′(St+1, a

′)

18: Fit the policy network on the data: (St, yt).
19: Reduce the value of ε
20: Every K steps set weights of target equal to policy

network.

C. Method proposed in [6]

Authors of [6] formulated the trajectory finding problem for
a UAV as a reinforcement learning problem and used the Q-
learning algorithm to solve it. The state used in [6] is a vector
consisting of coverage of each ground user up to that instant.
Thus the state is of size (N + 3)× 1 where N represents the
number of users and the three additional elements represent
the X and Y coordinates of the current location of the UAV
and the energy remaining in the UAV, as shown below:

St =

[
t∑

i=0

Covi1,
t∑

i=0

Covi2, · · · ,
t∑

i=0

CoviN , xt, yt, et

]
where Covtn ∈ {0, 1}, for n ∈ {1, · · · , N}, denotes whether
the n-th ground user has the coverage at time instant t or not:

Covtn =

{
1, if the user is inside coverage area of UAV
0, otherwise.

(1)
The authors defined the reward function for the t-th time
instance as:

rt = pt +

{∑N
n=1 Cov

t
n × (Ft − Ft−1), if Ft−1 6= 1.∑N

n=1 Cov
t
n × Ft, otherwise.

(2)

where Ft is the Jain’s fairness [15] at time step t for N ground
users, defined as:

Ft =
(
∑N

n=1

∑t
i=0 Cov

i
n)

2

N(
∑N

n=1(
∑t

i=0 Cov
i
n)

2)

and pt is a penalty function which is non-zero only if the UAV
attempts an action that will result in the UAV flying out of the
designated area:

pt =

{
0, if 0 ≤ xt+1, yt+1 ≤ L

P, otherwise.
(3)

In (3), (xt+1, yt+1) denotes the resulting coordinates of the
UAV if action at is taken at the t-th time step and P < 0
is the penalty for selecting an action that will result in flying
outside the desired coverage area. A large magnitude for the
penalty P discourages the UAV from taking actions in future
that would result in UAV flying out of the desired area. Note
that, if the number of users covered at that instant were taken
as the reward function directly, then there is a possibility that
the DQN-UAV agent may get stuck at a hovering point and not
move further because any movement may result in a reduced
reward. The reward function (2) avoids this because if the UAV
hovers at the same location twice in a row then the fairness
for that time instant will be less than that of previous time
instant, making the reward for that time instant negative.

III. PROPOSED METHOD

A. Proposed DQN method

Note that, the dimension of the state used in [6] will change
if the number of users are changed. Since the state is the input
to the DQN, the neural network will have to be modified each
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time the number of users are varied. Hence, in practice it is
important that the dimensions of the state be independent of
the number of users. We propose a new DQN based approach
in which the state is defined to be an array whose dimensions
are determined only by the number of hovering points.

In this approach, the state is made of the number of users
covered at each hovering point up to that time instant along
with the energy remaining in the UAV and its coordinates.
Thus, the state will have 2

√
M(
√
M +1)+4 elements unlike

[6] which had N+3 elements. This eliminates the dependency
of the state on number of users and ensures that the dimension
of the state remains fixed regardless of the number of users.
Fig. 2 shows the state in the proposed method which has
been reshaped into a matrix. Reshaping the state as a matrix
allows to use Convolutional Neural Network (CNN) in the
DQN which is better at capturing spatial features.

This approach indeed was able to find an optimal trajectory
at a significantly lower number of training iterations compared
to [6] as discussed in the next section. The state in Fig. 2 can
further be modified by augmenting information from previous
time steps to create a tensor as shown in Fig. 3. In this case,
the number of previous time steps included in the state tensor
is called the depth. Increasing depth resulted in the DQN
converging a little faster and with improved consistency but
only when using a larger learning rate.

B. Proposed AI based greedy algorithm

For a time instant t and corresponding state St, the proposed
greedy algorithm chooses an action at that yields immediate
maximum reward rt. The greedy algorithm does not take into
account whether the selected action will have unfavourable
results in the long run. Although the algorithm is relatively
simple compared to the DQN based approach discussed in
the previous section, it is nevertheless effective. Indeed, as we
will discuss in the next Section, it was able to perform almost
as good as the DQN method with significantly lower com-
putational complexity and outperform all previously proposed
methods in the literature.

IV. SIMULATION RESULTS

As in [6] we consider an area of 2000m× 2000m divided
into M = 16 square cells of same size resulting in 41 hovering
points. For the simulation, 60 to 100 users were uniformly
distributed over this area.

As shown in Fig. 2, the state in this case is a 9 × 5
matrix, 41 elements of which represent the number of users
covered up to that time at 41 different hovering points, three
more elements record the UAV’s X and Y coordinates and
its remaining energy. Remaining unused elements are set to
0. The parameters used in the simulation are summarized in
Table I and II.

Fig. 2. A sample state for depth = 1

Fig. 3. A sample state for depth = 3

TABLE I Simulation parameters

Area 2000m x 2000m
Number of Blocks (B) 16
Size of Blocks 500m x 500m
Number of Hovering points 41
Number of users 60 to 100
Number of time slots 12
Radius of coverage of UAV 250m
Penalty (P) -10

2021 Fourteenth International Workshop on Selected Topics in Mobile and Wireless Computing

16



TABLE II Specifications of the Convolutional Neural Net-
work

Input Shape 9x5x1
Kernel Size 2 x 2
Padding Same
Layers 3
Filters in each layer 40, 45 , 55
Activation function Sigmoid
Optimizer Adam
Loss Function Huber
Gamma 0.9
Epsilon decay rate 0.001
Learning rate (lr) 0.001, 0.0001
Batch Size 0.4×min(timesteps, 2400)

Fig. 4. Number of users covered by the DQN-UAV agent for different number
of ground users

Figure 4 shows the number of distinct users covered with
the two proposed methods of this paper, previously proposed
method in [6] and random action selection policy for 60 to 100
ground users. There is a significant difference in the number of
unique users covered by [6] and the proposed methods. From
Fig. 4 it can be inferred that roughly twice as many users are
covered using the proposed method in contrast to the method
based on [6]. Figure 4 also shows that the proposed greedy
method is able to perform almost as good as the proposed
DQN based method and is significantly better than [6]. Note
that, there is no training requirement for the proposed greedy
method as for the DQN based proposed method and method
of [6]. This is because at each time step, the greedy algorithm
simply selects the action that maximizes the instantaneous
reward which is computationally inexpensive.

Figures 5 and 6 show the number of training epochs that
are needed to find an optimal trajectory at learning rates of
10−4 and 10−3, respectively. From Fig. 5, we can observe
that the DQN is able to find an optimal trajectory in roughly
500 training iterations when learning rate is 10−4. Figure 6
shows that the performance with the larger learning rate is
inferior which can be attributed to DQN weights not being
able to converge due to oscillations. Figures 7 and 8 show

Fig. 5. Number of users covered by the DQN-UAV as training progresses at
lr = 10−4

Fig. 6. Number of users covered by the DQN-UAV as training progresses at
lr = 10−3

the impact of depth parameter in the state on the number
of training iterations required in finding an optimal trajectory
averaged over ten random distribution of users at learning rates
of 10−4 and 10−3, respectively. It appears that higher depths
are advantageous only when learning rate is high. Figures 9
and 10 show the variance in number of users covered after
each epoch for learning rate 10−4 and 10−3. It can be observed
that the variance is less when the smaller learning rate is used
signifying that the DQN performs better when lower learning
rates are used.

Fig. 7. Average users covered at each depth for 100 at learning rate of 10−4
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Fig. 8. Average users covered at each depth at learning rate of 10−3

Fig. 9. Variance in number of users covered at each depth for 100 users

Fig. 10. Variance in number of users covered at each depth for 100 users

V. CONCLUSION

We developed two AI based algorithms for finding an
optimal trajectory for a UAV-mounted base station that pro-
vides coverage to maximum number of distinct ground users.
The performance of the two approaches were compared with
existing state-of-the-art approach. The results show that the
trajectories obtained using the proposed methods were able
to cover significantly more number of users than previous
approaches. In addition, the proposed greedy algorithm was
shown to perform very close to the proposed DQN-aided DRL
algorithm but at a much lower computational complexity.

REFERENCES
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