
An ETSI NFV Implementation for Automatic
Deployment and Configuration of a
Virtualized Mobile Core Network

Francesco Asquini∗, Armir Bujari†, Daniele Munaretto∗, Claudio E. Palazzi‡, Daniele Ronzani‡
∗Athonet S.R.L., Italy

†Department of Computer Science and Engingeering, University of Bologna, Italy
‡Department of Mathematics “Tullio Levi-Civita”, University of Padua, Italy

∗{name.surname}@athonet.com
†{name.surname}@unibo.it
‡{name.surname}@unipd.it

Abstract—The recent trend of network disaggrega-
tion and community push towards open source network
management and orchestration projects has given rise
to a rich ecosystem of frameworks and tools. In partic-
ular, ETSI NFV proposes a conceptual, reference archi-
tecture standardizing management and control inter-
faces in softwarized mobile broadband networks. These
frameworks present highly customizable features, em-
bodying varying degrees of complexity, communed by a
steep learning curve. In this article, we propose a step-
by-step description of a virtualized testbed environment
setup, adopting an NFV-compliant ecosystem, describ-
ing an implementation of the NFV SOL002 reference
point which aims to standardize the lifecycle manage-
ment of virtualized functions. In addition, we present
an experimental assessment measuring the mobile core
deployment times.

Index Terms—Virtualization, VNF, OSM, mobile core

I. Introduction

Cellular networks have become the de facto means
for communication. In particular, 5G connectivity rep-
resents the next generation of ultra-broadband mobile
technology, paving the road to many application areas
by leveraging on its performance in terms of high
throughput and very low latency [1]–[5]. Industry 4.0,
C-V2X, etc. represent some use-cases where 5G is seen
as a key technological block [6]–[10]. In this context,
the increasing demand of mobile connectivity and traf-
fic increase rates, pose new and critical requirements
to mobile networks, in terms of delay, throughput and
loss tolerance. Furthermore, the increasing Capital and

This work has been partially funded by the FSE project cod.
2105-0601463-2019 “Design and Development of 5G Mobile Network
Systems for the Smart Industry 4.0” and by the Department of Math-
ematics of the University of Padua through the BIRD191227project.

Operating Expenditures (Capex and Opex) for deploy-
ment and maintenance of network assets, are becom-
ing unsustainable for network operators. The evolution
of information technology has encouraged the advent
of promising research directions, like that of Network
Function Virtualization (NFV) and cloud/edge-centric
computing. NFV is the paradigm where network func-
tions, defined as functional building blocks of a network
infrastructure, with external interfaces and functional
behavior (e.g., router, gateway, mobile core, load bal-
ancer, etc.), may be implemented as pure software.
This innovation is opening new opportunities for net-
work operators and infrastructure providers, aiming at
removing the strict dependency of network services on
the underlying hardware infrastructure and enhancing
network deployment flexibility, scaling and costs. In
particular, technologies such as the ETSI NFV [11] and
Multi-access Edge Computing (MEC) are considered as
key enablers, bringing network automation capability
and supporting innovative use-cases [12]–[19].

In particular, since the release of the first ETSI
NFV MANagement and Orchestrator (MANO) draft,
different projects have emerged proposing highly cus-
tomizable software frameworks aimed at addressing
network automation issues [11], [20], [21]. These soft-
ware frameworks embody a multitude of highly cus-
tomizable features, posing a higher barrier of entry for
practitioners and users.

To this end, in this article we propose a step-by-
step description of a virtualized testbed environment
setup, adopting an NFV-compliant ecosystem, consist-
ing of OpenStack [22] and Open Source MANO [20],
to instrument the deployment of a fully virtualized
mobile network core [23]. As an addon, we propose©2021 IEEE

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

978-1-6654-2854-5/21/$31.00 ©2021 IEEE 357

an implementation of the ETSI NFV SOL002 reference
point [24], standardizing a set of RETSful APIs aimed at
lifecycle management of virtualized network functions.
An experimental assessment is presented, measuring
the mobile core deployment times, decomposing the
delay contributions of each deployment phase.

This paper is organized as follows: Sec. II provides
some background information on the ETSI NFV ref-
erence architecture, with particular focus on SOL002
interface, while Sec. III discusses some related work in
the context of ETSI NFV. Sec. IV provides an overview
on the adopted software ecosystem. Sec. V provides
some insights into our implementation of the SOL002
RESTful APIs. Sec. VI illustrates the testbed, along
with a measurement study of the deployment process.
Finally, Sec. VII concludes the paper.

II. Network Function Virtualization

Traditionally, network functions are realized through
a variety of specific combinations of dedicated hard-
ware and proprietary software. Although hardware and
software are optimized for network functions, they
have the drawback of being designed only for a subset
of functions and not being scalable, as well as being
subject to deterioration, requiring continuous mainte-
nance. For this reason, in 2012, the European Telecom-
munications Standards Institute (ETSI) defined the
Network Function Virtualization (NFV) reference ar-
chitecture, where network functions are implemented
as purely software entities, called Virtual Network
Functions (VNF), which can run on appropriate virtu-
alization infrastructures. The main idea behind NFV
is to break the strict binding between software and
hardware in current systems, by designing software-
only network elements.

The NFV reference architecture exploits virtualiza-
tion in the network context, with the opportunity to
install network functions on generic commercial off
the-shelf hardware, e.g., multi-purpose servers, whose
role is only to provide computational, storage, and
networking resources. The advantage in doing this is
the reduction of the number of different devices in a
network and the complexity of deploying, configuring,
and maintaining them. ETSI standard defined the NFV
architecture [24] that illustrates a high-level functional
view to support VNF operations. With reference to
Fig. 1, three main working domains are identified:

• NFV Infrastructure (NFVI), the underlying phys-
ical resources and hypervisor of virtualized ele-
ments; the NFVI provides a virtualized environ-
ment for all the VNFs and communicates with the
MANO through the Nf-Vi connection point.

• Virtual Network Functions (VNFs), the software
implementation of network functions capable of
running over the NFVI; the MANO can interface
to VNFs through the Ve-Vnfm connection point, ap-
plying SOL002 RESTful API commands (evidenced
in red in the figure). Another module on top of the
VNF, the Element Manager (EM), is responsible
of FCAPS (fault, configuration, accounting, perfor-
mance, and security) management of the actual
network application residing in the VNF itself.

• Management and Orchestrator (MANO), cov-
ers the orchestration layer of physical and virtu-
alized resources and manages the entire VNF life-
cycle. The MANO can receive or send information
to the vendor/operator-specific Operations Sup-
port System and Business Support System (OS-
S/BSS) through the Os-Ma connection point.

In the following, we synthetically discuss some litera-
ture material about the NFV domain, outlining relevant
features of the NFV reference architecture.

III. Related Work

There is a vast body of literature related to NFV and
orchestration, spanning different areas of networking.
However, to the best of our knowledge, there is a
lack of studies devoted to the implementation and
evaluation of the ETSI NFV APIs for configuration
and automation of deployments. The authors in [26]
provide a general overview of the APIs exposed by the
components of the NFV system. They focus on RESTful
characteristics of the APIs, providing usage examples
regarding the lifecycle of a VNF.

In [27], a novel testbed, called 5GIIK is introduced,
proposing a framework for network slicing across dif-

Virtualisa�on Layer

Hardware Resources

VNF

Manager

(VNFM)

Os-Ma

Nf-Vi

VNF 2 Ve-Vnfm

EM 1 EM 2

VNF 1 VNF 3 Or-Vi

Or-Vnfm

Vi-Vnfm

Or-Or

Virtual

Storage

Virtual

Network

MANO

NFVI

VNFs

(SOL002)

Virtualized

Infrastructure

Manager

(VIM)

Virtual

Compu�ng

OSS/BSS NFV

Orchestrator

(NFVO)

Compu�ng

Hardware

Storage

Hardware
Network

Hardware

EM 3

Fig. 1. NFV reference architectural framework, highlighting in red
the SOL002 API context [24].

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

358

ferent domains and technologies. This is achieved by
making use of open-source tools and additional fea-
tures and capabilities to include dynamicity and real-
time monitoring to the VNFs.

A comprehensive state-of-the-art analysis of open-
source software and frameworks for 5G networks has
been conducted in [28]. The authors describe in detail
and compare capabilities and functionalities of each of
them, concluding with a discussion of hardware and
testbeds where these frameworks can run and their
limitations.

In [29], a performance comparison of the OSM (re-
lease 4) and the ONAP softeare solution has been
undertaken measuring some specific MANO reference
KPIs. The two solutions have been also compared in
terms of required virtual CPU, memory and storage.

In the following section, we illustrate the virtual-
ization and orchestration tools that we will use in
our experimental framework, aligned with ETSI NFV
specifications [21].

IV. Key Enabling Technology and Tools

In this section, we identify and briefly describe
our software choice for the NFV management and
orchestration implementation. The main aspect that
have been considered are the alignment with ETSI
specifications, as well as the maturity and stability of
the solutions. The adopted software framework and
its alignment to ETSI NFV standard architecture is
illustrated in Fig. 2. Open Source MANO implements a
full MANO stack including the VNFM and NFVO enti-
ties; it adheres to the ETSI standards and supports the
integration with many compliant VIMs, among which
we chose OpenStack. Both the applications are open
source and offer a large and continuous community
contribution.

A. OpenStack

OpenStack [22] provides an Infrastructure-as-a-
Service (IaaS) solution for public and private clouds.
It manages hardware pools and provides a virtual in-
frastructure for service or network deployments. Open-
Stack operates as a VIM in the NFV MANO framework
and orchestrates NFVI resources, instantiating VMs
and virtual networks.

The OpenStack project includes a set of independent
microservices, each deliverying a specific functionality.
Some of these services are not strictly needed and
a typical minimal installation comprises the following
five modules:

• Keystone (Identity service), which implements
client authentication and authorization, managing
user credentials.

• Glance (Image service), which provides the man-
agement of virtual machines’ images.

• Nova (Compute service), which enable the pro-
visioning of compute instances, allowing the cre-
ation/destruction of virtual machines on-demand.

• Neutron (Networking service), which provides net-
work connectivity between the services.

• Horizon (Dashboard), which provides a web based
interface to interact with the services.

B. Open Source MANO

Open Source MANO (OSM) [20] is an ETSI project
that implements the MANO layer, in particular the
functionalities of NFV Orchestration (NFVO) and VNF
Manager (VNFM) and can relate to a VIM (e.g., Open-
stack, AWS, etc.). Its main purpose is to deploy, or-
chestrate and automate a network service (NS) under
a virtualization infrastructure. A NS can be deployed
as a single VNF or can be composed by multiple
chained VNFs realizing a certain end-to-end service.
OSM adheres to the ETSI NFV set of standards; for that
reason, it has been widely considered for telco services,
inasmuch it removes uncertainties and captures the
complexity of real systems. OSM approach aims to
minimize the integration effort thanks to a well-known
information model (IM), which allows to model and
automatize the complete life-cycle of network functions
(virtual, physic, or hybrid) and network services [25].
The IM is completely infrastructure agnostic, meaning
that the same model can be instantiated on different
VIMs.

OSM provides three different phases for VNF deploy-
ment, classified according to the time of execution and
the available operations. The different sets of opera-
tions are known as day-0, day-1, day-2 procedures. Day-
0 procedures regard the basic VM instantiation stages
and initial configuration, aiming to make the VNF
operational and manageable. The basic instantiation
is configured by VNF descriptors (VNFD), templates
used to describe every VNF attribute. The VNFD is
defined by a yaml file loaded into OSM via GUI or
CLI. Day-1 procedures apply the service initialization
for VNFs; they are automatically executed right after
instantiation. To perform day-1 operations, OSM makes
use of Juju, a framework that enables the execution
of life-cycle configuration routines through the use
of proxy charm. Day-2 procedures allows to perform
actions to the VNF at any time after the VNF is installed
and configured; we exploit this option to make the VNF
reconfiguration. In the next section, a more in-depth
description of Juju and proxy charms is provided.

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

359

VNF MANO

NFVI

Virtualized Infrastructure
Manager (VIM)

NFV Orchestrator (NFVO)
Lifecycle Management (LCM)

Hardware
Resources

Resource Orchestrator
(RO)

VNF
1

VNF
2

Virtualized
Resources

VNF Manager (VNFM)
VNF Configura�on and

Abstrac�on (VCA)

LXD
Container

Proxy
Charm

Fig. 2. ETSI NFV framework architecture, related to the chosen soft-
ware. Note the OSM modules (green) implementing MANO entities.

C. Juju and proxy charms

Juju is an application modelling tool that supports the
configuration and scaling of cloud applications through
the executions of software scripts, called proxy charms.
Juju is adopted by the VNF Configuration and Abstrac-
tion (VCA) module, the OSM implementation of VNFM.
A proxy charm is a collection of YAML descriptors,
support files and executable code, written either in
Python or Bash language, which provide the actual
executive actions onto the VNF, via SSH, RESTful API,
etc.). From the point of view of ETSI NFV architecture,
a proxy charm may represent the EM) of a VNF. Inside
a proxy charm a set of actions, also called primitives,
are implemented, to be executable on the VNF.

V. SOL002 API implementation

In this section we expose our implementation of
the SOL002 configuration API, which OSM adopts to
configure the instantiated VNF. First, we provide some
details about the API, then we illustrate the specific
configuration field, and finally we illustrate our actual
implementation.

A. SOL002 configuration API

ETSI group specification SOL002 [24] outlines the
set of RESTful APIs and data models supported over
Ve-Vnfm interface. The SOL002 APIs define different
administration procedures on the VNFs, such as perfor-
mance management, fault management, and network
configuration. Each of them is accessible via HTTP
protocol, trough a corresponding URL of the form:

{apiRoot}/{apiName}/{apiVersion}/

In our work, we implemented the configuration
part, where apiName is set to "vnfconfig" and the
only resource made available by the VNF is the
configuration resource. In the specific, the configu-
ration access is made via the URL:

{apiRoot}/vnfconfiguration/v1/configuration

with apiRoot containing the IP address of the entity
in charge of applying the configuring (which can be the
VNF itself).

B. SOL002 configuration field

The scope and focus of the SOL002 interface is that
of configuring a deployment of the virtual core. This
entails the association of each VNFC connection point
to a physical interface of the VM, the inclusion and con-
figuration of network routes, IP addresses, and other
parameters specific to the virtual core deployment.
Since part of these configuration data is not natively
supported by SOL002, we exploited the optional field
vnfSpecificData made available by the API. It is a
general field providing key/value pairs, whose purpose
is to allow vendors and operators to perform their
specific configuration. Hence, the SOL002 request is
accompanied by a JSON payload with the following
structure:

{ "vnfcConfigurationData": [
{ "vnfcInstanceId": "<vnfc_id>",
"CpConfig": [
{ "cpId": "<interface_name>",
"cpdId": "<phy_interface_type>",
"addresses": [
{ "address": {"ipAddress": "<addr>/<mask>"},
"useDynamicAddress": "<boolean>"

}]
}],
"vnfcSpecificData": "<specific_vcore_conf>"

}]
}

A single request may contain the configuration of an ar-
bitrary number of VNF components, each identified by
vnfInstanceId and with a connection point defined in
CpConfig. Finally, the optional field vnfcSpecificData
serves to define all the specific parameters for the
virtual core configuration, not otherwise specifiable.

C. SOL002 client/server implementation

The VNF representing the virtual core receives from
OSM the SOL002 configuration request and then trans-
lates it into a request consistent with the proprietary
API exposed by the virtual core, by which the configu-
ration is effectively applied. Hence, a server agent has
been implemented as a separate VNF component, with

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

360

the task of exposing the SOL002 configuration API and
performing such translation.

The client side has been made through the Juju
charm, which sends the VNF configuration as part
of day-1 procedure. The charm implements the prim-
itive of configuration request for the VNF instance
and is developed in Python. More in detail, the ac-
tion implements the RESTful API that manages the
configuration resource.

The implemented primitive is called
initial-patch-configuration, and accepts in
input the IP address to reach VNF and a json file
containing the VNF configuration compliant with
SOL002 specification. After the NS instantiation, the
charm performs a request over the Ve-Vnfm interface
to submit the specified configuration. It is necessary
to include the charm and declare its primitives and
input parameters in the correspondent section of the
VNF descriptor, structured as the given example:

vnf-configuration:
initial-config-primitive:
- name: initial-patch-configuration
parameter:
- name: vnf-hostname
value: <vnf_IP>

- name: vnfc-configuration-data
value: <json_conf_file>

juju:
charm: sol002-client

The primitives defined within the
initial-config-primitive section are called right
after the NS instantiation. The values enclosed by
angle brackets represent the VNF address and the
SOL002 configuration, respectively; their value is
defined by the user in the NS instantiation request.

When performing the NS instantiation request, it
is possible to define the set of parameters to pass
to Juju during instantiation, referring them in the
additionalParamsForVnf section of the yaml file at-
tached to the instantiation command:

additionalParamsForVnf:
- member-vnf-index: 1
additionalParams:
vnf_IP: ’<vnf_IP>’
json_conf_file: ’<sol002_configuration>’

VI. Testbed Implementation and Evaluation

This section outlines the experimental environment.

A. Environment Setup

The testbed is implemented in a virtualization infras-
tructure based on an OpenStack instance. For practical
reasons OSM is installed and deployed into a VM
instantiated on OpenStack itself. The hardware and

TABLE I
Host characteristics of the testbed.

HW Component Characteristic
CPU Intel Core i7-2600, 3.4 GHz
RAM 16 GB DDR3

Storage SSD, 480 GB

SW Component Characteristic
OS Ubuntu 18.04 LTS (bionic)

OpenStack Stein
OSM 8.0.4 (2020-07-01)
Juju 2.8.8-bionic-amd64

Charm-tools 2.8.2

software characteristics of the host are reported in
Table I. Openstack provides connectivity on the phys-
ical network to the VMs through its internal gateway.
All the instances have a port attached to the private
internal Openstack network for external connectivity.

B. VNF instantiation and configuration

The instantiation procedure can be launched from
OSM command line client:

osm ns-create --ns_name vCore --nsd_name full_vCore_ns \

--vim_account openstack --config_file vCore_config.yaml

The required VNF is deployed at OpenStack site
and the internal and external connectivity is set up,
following the information contained in the descriptors.
Then, the charm performs the configuration request
over the Ve-VNFM interface toward the VNF, which
subsequently validates and applies the network set-
tings to the VNF components.

C. Results

The testbed described above has been successfully
tested with a 4G core network. Once the network
service is ready, OSM acknowledges the successful
instantiation and correct configuration, by showing a
visual confirmation on the web client. The instantia-
tion and configuration process has been verified by
analysing the completion time performance.

A total of 100 VNF instances have been deployed
in order to outline the average delay. As showed in
Fig. 3, the total completion time (red) is 363.86 s
and is divided into instantiation time (green) and con-
figuration time (orange). The VNF configuration time
largely depends on both the underlying infrastructure
where OSM is running and the proxy charm structure
itself, and includes two main phases: a) Juju bootstrap
processes, which create a Linux Container (LXC) to
then load the executable proxy charm on in (Juju app
creation phase), b) the actual virtual core configuration
phase, which executes the proxy charm and therefore
applies the SOL002 configuration request to the VNF.

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

361

130.85

87.64

82.36

10.57

177.35

363.86

28.35

0 50 100 150 200 250 300 350 400

VM instan�a�on

Juju LXC crea�on

Juju app crea�on

VM up and
ge�ng IP

EPC configura�on

Deployment
dura�on

Erasure

Delay [s]

Fig. 3. VNF instantiation, configuration and deletion delay.

Actually, the two times are partially overlapping; in
fact, the Juju bootstrap process is started a few seconds
later the beginning of the VM instantiation, since these
two steps are independent from each other and can
start simultaneously. Finally, the average VNF deletion
time is 28.35 s.

VII. Conclusion

This paper presents the implementation and analy-
sis of ETSI NFV testbed aimed at the automatic de-
ployment and configuration of a virtual core network.
The testbed relies on open-source software, interacting
with the virtual core through the Ve-Vnfm standardized
interface, enabling advanced configuration of the virtu-
alized network functions. We demonstrated the feasibil-
ity of the process and verified the correct functionality
of the virtual network configured via the SOL002 REST-
ful API. A time performance measurement showcased
the efficiency of the software integration.

References

[1] D.-H. Luong, H.-T. Thieu, A. Outtagarts and Y. Ghamri-Doudane,
“Cloudification and Autoscaling Orchestration for Container-
Based Mobile Networks toward 5G: Experimentation, Chal-
lenges and Perspectives”, in Proc. of IEEE VTC Spring, Porto,
Portugal, Jun 2018.

[2] N. A. Johansson, Y.-P. E. Wang, E. Eriksson and M. Hessler,
“Radio access for ultra-reliable and low-latency 5G communi-
cations”, in Proc. of IEEE ICCW, London, UK, Jun 2015.

[3] M. Giordani; M. Polese; M. Mezzavilla, S. Rangan and M. Zorzi,
“Toward 6G Networks: Use Cases and Technologies”, IEEE
Communications Magazine, vol. 58, no. 3, 2020.

[4] A. Bujari, M. Luglio, C. E. Palazzi, M. Quadrini, C. Roseti and
F. Zampognaro, “A Virtual PEP for Web Optimization over a
Satellite-Terrestrial Backhaul”, IEEE Communications Maga-
zine, vol. 58, no. 10, 2020.

[5] S. Hamdoun, A. Rachedi and Y. Ghamri-Doudane, “Graph-Based
Radio Resource Sharing Schemes for MTC in D2D-based 5G
Networks”, Mobile Netw. and App., vol. 25, no. 3, 2020.

[6] C. A. Kerrache et al., “TACASHI: Trust-Aware Communication
Architecture for Social Internet of Vehicles”, IEEE Internet of
Things, vol. 6, no. 4, 2018.

[7] G. Marfia, M. Roccetti, A. Amoroso, M. Gerla, G. Pau and J.-H.
Lim, “Cognitive Cars: Constructing a Cognitive Playground for
VANET Research Testbeds”, ACM CogART, vol. 29, 2011.

[8] A. M. Vegni, T. D. C. Little, “A Message Propagation Model
for Hybrid Vehicular Communication Protocols”, in Proc. of
CSNDSP 2010, Newcastle upon Tyne, UK, 2010.

[9] V. Loscri, P. Manzoni, M. Nitti, G. Ruggeri, A. M. Vegni, “A Social
Internet of Vehicles Sharing SIoT Relationships”, in Proc. of
PERSIST-IoT, Catania, Italy, 2019.

[10] L. D. Xu, E. L. Xu, L. Li, “Industry 4.0: State of the Art and
Future Trends”, International Journal of Production Research,
vol. 56, no. 8, 2018.

[11] ETSI. Group Report NFV001. “Network Functions Virtualisa-
tion (NFV); Use Cases”, Oct 2013.

[12] A. Salam et al., “Implementation of Virtualised Network Func-
tions (VNFs) for Broadband Satellite Networks”, in Proc. of
EuCNC 2019, Valencia, Spain, 2019.

[13] Z. Xu, W. Gong, Q. Xia; W. Liang, O. F. Rana, G. Wu, “NFV-
Enabled IoT Service Provisioning in Mobile Edge Clouds”, IEEE
Transactions on Mobile Computing, vol. 20, no. 5, 2021.

[14] S. Mirri, C. Prandi, P. Salomoni, L. Monti, “Social Location
Awareness: A Prototype of Altruistic IoT”, in Proc. of 8th IFIP
NTMS, Larnaca, Cyprus, 2016.

[15] A. Bujari, M. Furini, F. Mandreoli, R. Martoglia, M. Montangero,
D. Ronzani, “Standards, Security and Business Models: Key
Challenges for the IoT Scenario”, Mobile Networks and Appli-
cations, vol. 23, no. 1, 2018

[16] A. Bujari, O. Gaggi, C. E. Palazzi, D. Ronzani, “Would Current
Ad-Hoc Routing Protocols be Adequate for the Internet of Ve-
hicles? A Comparative Study”, IEEE Internet of Things Journal,
vol. 5, no. 5, 2018.

[17] A. Bujari, O. Gaggi, M. Luglio, C. E. Palazzi, G. Quadrio, C.
Roseti, F. Zampognaro, “Addressing the Bandwidth Demand of
Immersive Applications Through NFV in a 5G Network”, Mobile
Networks and Applications, vol. 25, no. 3, 2020.

[18] M. A. Lema et al., “Business Case and Technology Analysis for
5G Low Latency Applications”, IEEE Access, vol. 5, 2017.

[19] C. E. Palazzi, A. Bujari, “A Delay/Disruption Tolerant Solution
for Mobile-to-Mobile File Sharing”, in Proc. of IFIP Wireless
Days, Venice, Italy, 2010.

[20] ETSI, Open Source MANO (OSM) Project, accessed: 2021-02-
27, [Online] Available: https://osm.etsi.org.

[21] ETSI. Group Specification NFV-MAN 001. “Network Functions
Virtualisation (NFV); Management and Orchestration”, 2014.

[22] OpenStack, ”OpenStack project portal”, accessed: 2021-02-27,
[Online] Availabe: https://www.openstack.org.

[23] Athonet, Private LTE and 5G Networks for En-
terprise, accessed: 2021-02-27, [Online] Available:
https://www.athonet.com/private-lte/.

[24] ETSI. Group Specification NFV002. “Network Functions Virtu-
alisation (NFV); Architectural Framework”, Dec 2014.

[25] ETSI, OSM End User Advisory Group. “OSM White Paper:
Experience with NFV Architecture, Interfaces, and Information
Models”, May 2018.

[26] B. Chatras. “On the Standardization of NFV Management and
Orchestration APIs”, in IEEE Communications Standards Mag-
azine, vol. 2, no. 4, 2018.

[27] A. Esmaeily, K. Kralevska and D. Gligoroski, “A Cloud-based
SDN/NFV Testbed for End-to-End Network Slicing in 4G/5G,”
in Proc. of IEEE NetSoft, Virtual Conference, 2020.

[28] L. Bonati, M. Polese, S D’Oro, S. Basagni, and T. Melodia,
“Open, programmable, and virtualized 5G networks: State-of-
the-art and the road ahead,” Comp. Netw., vol. 182, 2020.

[29] G. M. Yilma, F. Z. Yousaf, V. Sciancalepore, and X. Costa-Perez,
“On the challenges and KPIs for benchmarking open-source
NFV MANO systems: OSM vs ONAP”, Computer Communica-
tions, vol. 161, 2020.

2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

362

